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Abstract. We prove that the quasiconvex envelope of a differentiable func-
tion which satisfies natural growth conditions at infinity is a C'! function.
Without the growth conditions the result fails in general. We also obtain re-
sults on higher regularity (in the sense of Cﬁ;é’) and similar results for other
types of envelopes, including polyconvex and rank-1 convex envelopes.

1 Introduction and the main resuits

The existence of minimisers for multiple integrals

I(w) = /9 F(e,u, Vi) do

defined on mappings u : 2 C R™ — R", is classically deduced by use
of the direct method. In cases where the minimum of [ is not attained,
or, more generally, when minimising sequences develop oscillations in the
gradient, it is often useful to consider the related relaxed problem. This
consists in minimising the lower semicontinuous envelope of I(u). If F is
a Carathéodory integrand satisfying the growth conditions

c1lélP — ca < F(z,v,€) < ea(JEfP +1), (L1

where (z,v,£) € 2 x R® x R®*™ and c1, cg > 0, p > 1, then the
relaxation is the weak lower semicontinuous envelope I of I on the Sobolev
space W1P(£2,R™). By a general result (cf, [14], [1], [41]) T is again a
multiple integral and

T(u) = /Q F(z,u, Vu)dz,
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where the integrand F" is obtained by taking for each (x, v) the quasicon-
vex envelope of F'(z,v,-) (see Sect. 2 for terminology). The quasiconvex
envelope is still relevant in connection with relaxation without the growth
conditions (1.1), but the situation is more complicated (see [6], [32], [33]
for examples, and [4], [15], [35] for systematic expositions and further ref-
erences).

Assuming (1.1), the Euler-Lagrange system associated with the envelope
T is formally given by

(EL) divV¢F(z,u, Vu) = V, F(z, u, Vu).

This naturally raises questions about differentiability properties of T which
we address in this paper. The calculations involved in computing F explicitly
for interesting examples of F' are at best extremely involved. At present it
has been done in only very few cases, see e.g. [28), [29], [311, [2], [21], [ 19]
and [39]. The approach taken in this paper is rather abstract and is based
on a representation formula for the quasiconvex envelope from [14] and
elementary properties of separately convex functions.

It is not difficult to see that even if F is a C* function satisfying (1.1),
the envelope F is in general not differentiable with respect to u. We present
a large class of such examples in Sect. 5 (in all dimensions m, n > 1).
However, it is possible to show by adapting an argument from [43] (see also
[17] and [18]) that, under quite general conditions, F has finite one-sided
directional derivatives with respect to u everywhere. We intend to pursue
this elsewhere. The situation for the ¢ variables is different. Theorems A
and B below imply that if F' is differentiable with respect to &, then so is F.
More general versions of these theorems can be found in Sect. 3.

Theorem A Suppose f : R"*™ — R is differentiable and either that it
satisfies for some p > 0 the growth condition

liminf =~ 1)

o0 JEJP

f)

1P+t

= 00 and hm sup < 00, (1.2)

or that it is bounded from below, locally Lipschitz and satisfies the growth
condition

Vi)
max{f(£),1}

Then the quasiconvex envelope £ is a C* function.

—0as€& — o0. (1.3)

The method of proof also yields a formula for the gradient V Sf9€ of the
envelope in terms of V f and a sub-probability measure v on the space of
matrices R"*™: V f9¢ = f V f dv. Under the growth conditions (1.1), v
can be interpreted as a minimising (gradient p-) Young measure, i.e., in
the terminology of [27], v is a homogeneous W1P- -Young measure and
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f9(@) = [ f dv, where U denotes the centre of mass of v. In the setting of
nonlinear hyperelastostatics the formula for the gradient

V f9(7) = / Vidy, 7:=(yid),

then has the interpretation that the solution to the relaxed problem, i.e. the
problem of minimising the effective elastic energy

/,, F(Vu) do

subject to prescribed boundary conditions, not only yields the effective local
energy density (which is clear), but also the effective local stress. However,
it should be noted that, in common with many other results involving quasi-
convexity, our assumptions on the stored-energy function f are inconsistent
with the natural requirement that f(£) — oo as det¢ — 0%. For stored-
energy functions satisfying this requirement it is not obvious whether the
representation (2.1) of f9¢ holds, or whether [, f%(Vu)dz is the correct
effective elastic energy.

Another consequence of Theorem A is that any minimiser @ of a multiple
integral I(u) with F(z,v,£) = f(£) satisfying (1.1) satisfies the (possibly
degenerate) elliptic system (EL).

Without (1.2) or (1.3) the envelope may not be differentiable. In Theorem
5.1 we present a C™ function f satisfying

f©) £

0 < liminf =—=* < oo and limsup >~ < oo,
{00 ,fl £—00 '6’2

and for which f9€ is not differentiable. Hence, the growth conditions (1.2) or
(1.3) cannot be omitted in general. However, the conclusion of Theorem A
holds under various other hypotheses (see Theorems 3.1 and 3.4). Theorem
5.1 also shows that neither the polyconvex envelope, fP¢, nor the rank-1
convex envelope, ™, will in general be differentiable without a growth as-
sumption like (1.2) or (1.3). This contrasts with the case of convex envelopes
where weaker growth conditions suffice (see e. g. [25], [24], [7] and [30]).

Quasiconvexification can have a smoothing effect. Indeed, f need not
be differentiable for ¢ to be C. It suffices that the following condition is
satisfied:

Ve 3a:limsup &t ) —fam) o (1.4)
n—0 Inl

When (1.4) holds we say that f is upper semidifferentiable. An important
subclass of the upper semidifferentiable functions consists of the functions

s
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F(¢) = min{f1(€),..., fn(€)}, where fi,..., fn are differentiable. As a
consequence of Theorem 3.1 and Lemma 3.2 we have the following theorem.

Theorem B Suppose f : R®*™ — R is continuous, upper semidifferen-
tiable and that it satisfies (1.2). Then the quasiconvex envelope fi€isa C 1
function.

A slightly stronger result is obtained for the polyconvex envelope in
Proposition 4.1. ‘

In general, there is a natural limit to how smooth one can expect a qua-
siconvex envelope to be. The quasiconvex envelope of a C™ function (even
of a real analytic function) is not in general of class C?. This already hap-
pens on the level of convex envelopes for functions f : R — R and the
mechanism is exactly the same for quasiconvex envelopes (see the remark
after Proposition 3.7 in Sect. 3). However, it follows from Proposition 3.7
that if f is of class Cllt;g, 0 < a < 1, if (1.2) or (1.3) and another condition
(an estimate on the local Holder constant of V f) holds, then f9€ is also of
class C’llog‘ Here we say that a function f : R"*™ — R is of class Cllog if it
is C! and if V£ is locally a-Holder continuous.

In Theorem 5.5 we exhibit an important class of, in general, non-diffe-
rentiable functions to which our results apply. For a subset K C R™*™
define dist(¢, K) := inf{|¢ —n| : n € K}, where |-| denotes the Euclidean
norm. The following result is contained in Theorem 5.5.

Theorem C Suppose K C R™ ™ is compact and 1 < p < oo. If f(§) =
dist(¢, K)P, then the quasiconvex envelope fi¢ is of class Clloé forp > 2
and of class C*?~! forp < 2.

In the scalar case the relation between existence of a minimiser (in a
Sobolev space and in a class of Young measures) and the smoothness prop-
erties of the convex envelope of the integrand is well understood. See {12,
13], [24], and also [25], where the differentiability properties of the convex
envelope is studied without specific reference to the attainment problem.
Though we have not highlighted it, the results of our paper show that also
in the multi-dimensional case differentiability of the quasiconvex envelope
is a consequence of the existence of a Young measure minimiser. However,
the converse implication remains to be established. The attainment problem
for the multi-dimensional case has been studied in [2] and [16]. Recently,
interesting results on the attainment problem for the scalar case have been
established in [11], [42] and [44].

The paper is organized as follows. In Sect. 2 werecall the main definitions
and state some preliminary results. Sect. 3 contains the precise statements of
the main results together with their proofs. In Sect. 4 we consider the case
of polyconvex envelopes and, very briefly, other types of envelopes too.
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Sect. 5 contains examples showing the sharpness of some of the hypotheses
and some non-trivial examples of functions with envelopes of class Clt: .

2 Preliminaries

Throughout the paper we use standard Euclidean norms on the spaces R™,
R™ and R™™™. For example, if £, n € R"*™ are two matrices, then their
inner product is denoted (¢, 77) and the norm of € isdenoted €] (= 1/(£,8)).
Denote by Lip, ([0, 1]™, R™) the space of Lipschitz mappings u : [0, 1]™ —
R™ that vanish on the boundary of [0, 1]™.

For an extended real-valued function f : R"™*™ _ Ry {oc} we use the
following terminology:

* f is quasiconvex if for all u € Lip, ([0, 1™, R"™) and £ € R™*™ the

inequality
[ s+ vu@yae> £
(0,1)™

holds whenever the right-hand side is well-defined as a Lebesgue integral
(o0 are allowed as values of the integral).

e f is polyconvex if there exists a convex function F' : R™ — RU {0},
such that f(§) = F(M(£)) for all £ € R®*™, where M (€) is the vector of
all minors of £ arranged in some fixed order and + = 7(m, n) is the number
of such minors.

o f is rank-1 convex if for any £;, & € R™™ with rank(§; — &) =1
and each ¢ € (0, 1) the following inequality holds

tf(61) + (1 —1)f(&) > f(te + (1 - )&,).

o f is separately convex if for any &1, &2 € R™ ™ for which £; — &2 has
only one non-zero entry, and each ¢ € (0, 1), the following inequality holds

tF(€) + (L) f (&) 2 fF(ter + (1 - t)&y).

For § C R™*™, wesay that f : § - RU {oo} is separately convex if the
function obtained by extending f as oo outside S is separately convex.

It can be shown that polyconvexity implies quasiconvexity for upper
semicontinuous extended real-valued functions. For real-valued functions
it can be shown that quasiconvexity implies rank-1 convexity (see [22]).
Finally, it is clear that rank-1 convexity implies separate convexity. In the
special cases m = 1 orn = 1 the concepts coincide with ordinary convexity;
in the multi-dimensional case m, n > 1, considered in this paper, none of
the implications are in general reversible (for an overview see [15] and [35]).

The quasiconvex envelope of f is the extended real-valued function

FI(€) = sup{g(¢) : g quasiconvex, g < f}.
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Here we use the convention that sup § = —oo. Itis not hard to show that [for
a real-valued funtion f] either f9¢ = —oo or f%¢ > —oo everywhere and
f2¢ is quasiconvex. The polyconvex, rank-1 convex and separately convex
envelopes are defined similarly.

Proposition 2.1. The quasiconvex envelope fI° of a continuous function
f : R®™*™ R can be represented by the formula

f95(€) = inf { /( N

) f(€ + Vu(z)) dz : v € Lipy([0, I]m,R")} .
2.5)

Remark. It is an open problem whether the formula is valid if f is allowed
to be extended real-valued.

The proof for the case where f is bounded from below by a null La-
grangian can be found in [14] (see also [15]) and a proof for the general
case is contained in the appendix of [26]. For later use we reformulate this
representation for the envelope in terms of measures. Let Q denote the
set of probability measures v on R™*™ for which there exist £ € R™*™,
u € Lipy([0, 1]™,R™), such that

(v, h) = / h(E+ Vu)dz, h e COR™™),
.1y

where C§(R™*™) denotes the space of continuous real-valued functions on
R™*™ tending to zero at infinity. The formula (2.5) can then be rewritten as

F(e) =inf{/wfdu: veq, v=s},

where 7 := (v, id) denotes the centre of mass of v (see e.g. Chap. 2 of [37D).

The next result shows that the Lipschitz constant of a separately convex
function can be estimated by its oscillation. This observation is well known
(see [34] p. 112), however, it appears that the following version with an
explicit constant is missing in the literature. Our argument is a variant of the
one presented in [15]. In the statement B(£, r) denotes the open ball with
centre at &y and radius r, and we recall that the oscillation of f on the set S

is osc(f; S) = sup{|f(§) — f(n)| : §&,m € S}
Lemma 2.2. If f : B(&,2r) — R is separately convex, then

lip(f; Blgo, ) < v o[ ZE021))

In particular, a separately convex function is locally Lipschitz on the interior
of its effective domain.
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Remark. A slight modification of the proof below yields for rank-1 convex
f the inequality

llp(f,B(fo,T)) < \/NOSC(f; 15;.(60’27‘)),

where N = min{m, n}.

Proof. Let ¢ = osc(f; B(o,2r))/r. We first show that if £, 7 € B(&, 1),
such that { — 7 is proportional to one of the canonical basis vectors e; of
R™*™ then

f(n) = £(§) <cln—¢|. (2.6)

Choose ¢ to be the intersection of B(&p, 2r) with the ray from £ through
n. Son € conv({{,(}) and |§ — {| > r. Hence, convexity of f along this
ray in the direction +e; yields as required

F) = F€) _ £Q) = £(&) _ ose(f; B(€o,2r))
=& = KK-¢ = T

Next we show that any pair of points £, 7 € B(&y, ) can be joined by a chain
£ =2¢0:$1,-- -, Cmn =nin B(, 7),suchthat ;— (-1 = (1—¢, e5(5))eq(s)
for a suitable bijection o of {1, ..., mn}. By translation we can assume that
& = 0.Put (p := &. Define I, = {i: (£, e;)| > |(n, €;)|} and let o be any
bijection of {1, ..., mn}, suchthat o(¢) € I, if (and only if) 5 < card(I, ).
Fori=1,...,mnlet

G=E€— ) (€= meqi)en):
j=1

Observe that, §; — Gi—1 = (€ — 1, €5(:) ) €0 (i)
|Gl < 1Gi—1] < €] <rif1 <i < card(Ly)
and
|Gl < |Giw1] < [nl < rif card(Iy) <4 < mn.

Hence the chain (o, (1, ..., (mn has the claimed properties. The proof is
finished by repeated use of (2.6):

1£€) = FmI <D 1£(G) — £(G)l
i=1

mn mn
<D= Gl =Y cl(n— & o)l
i=1 i=1

< QYR Hn— & eo)I)? = cv/mnln — €).
i=1 3

t=1
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Corollary 2.3. Let B C R™<™ be an open ball and f : B — R be sep-
arately convex. Denote by D C B the set where fis differentiable. Then
Vf:D—RV™is continuous.

Proof Let£o € Dandconsider h(€) = £(€)—f(&0)—(V F(€0), €—bo). The

function h is separately convex and differentiable at each point of D. Note
that V f is continuous relative to D at & if VR(§) — 0asé — &0, €D
Observe that

(Vh(€)] < lip(h; B(éo,)) if § € Dand [§ — Lol <7
and, since f is differentiable at €o,
osc(h; B(&o,27))/r — 0 as = 0t.
The proof is concluded by use of Lemma 2.2. a

Lemma 2.4. Suppose | : B(¢o,7) — Riis separately convex and that
a : RV™ — Ris affine with a(éo) = f(&o)- Then

—inf {f(€) — a(§) : €€ B}
< @™ —1)sup {f(§) —alf): £ € B(o:7)}-

Remarks. 1. The constant in the inequality is best possible if instead of the
Euclidean norm we use the norm |§|co = max{|&1), - .-, én|}- The function

f(g) = 1—H£I——1(1—§i)7£= (éla'--agN) GRN,

is separately convex, f (0,...,0)=0and

— inf f(g)=(2"-1) sup (&)

Kl [eloo<1

2. A slight modification of the proof below yields for rank-1 convex f the
inequality

— inf {F(6) — a(§) : € € B(éo,)}
< (2N —1)sup {£(€) — a(§) : § € Béo, ")}

where N = min{m, n}.

Proof. We can assume that § = O and a = 0. Let t < r and take
& € B(0,t) == {£: |€} < t}, such that f&) = inf f(B(0,1)). Let
£1,€2,...,8mn denote the orbit of £ under reflections in the coordinate
hyperplanes (it is not assumed that the §;’s are distinct). By an induction
argument using the separate convexity we get that

Zmn

F0) <Y 2 (&),

i=1
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and since ¢; € B(0,1),

zmn

0=2""f(0) < ) _ f(&) < inf £(B(0,2)) + (2™ — 1) sup £(B(0,2)).
i=1

The inequality follows if we let t — r—. g

In the statement of the next result we make use of the following termi-
nology. A function f : B(,r) — R is upper semidifferentiable at & if
there exists a € R™*™, such that

fo+m) = f(%0) —(am) _ 2.7

lim sup
n—0 (7l

The set of a € R™*™ that satisfy (2.7) is denoted by 8* f(&).

Corollary 2.5. Supposeg : B(&y,7) — Risseparately convex, f : B (o,1)
— R is upper semidifferentiable at &, that g < f on B(&,7) and g(&y) =
f(&o). Then f and g are differentiable at & and V f (é0) = Vg(&o).

The proof is a straightforward application of Lemma 2.4 and is left to
the interested reader.

3 Proof of main results

Theorem 3.1. Suppose that f : R™*™ — R is bounded from below, con-
tinuous and upper semidifferentiable. Assume furthermore that for each n

feE€+n) — £(6)
max{f(£), 1}

—0asé > © @G.1)

and

|f9°(€ +tn) — F(8)| nxm
sup{ tmax( (@), 1} :€€eR ,tE(O,l)} <. (3.2)

Then f9€ is a C* function.

Before presenting the proof we give two conditions that are easy to verify
and that imply the conditions (3.1) and (3.2).

Lemma 3.2. Let f : R*™*™ — R be bounded from below. If for some
p € [0,00),

ligminf _f(_{) > 0 and limsup 1) =0 3.3

=00 [€]P Eoo [EPH

S
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or

f€)

—2 5 ocoas & — oo and limsup
¢l oo [EPF!

7€) 54

< 00,

then (3.1) and (3.2) hold.
Proof. We give the proof for the case where f satisfies (3.3); the other case
is analogous. Since for ¢ positive, (c+ 1) max{f(¢),1} > f(§) +c, wecan

assume, by adding a constant to f if necessary, that f(§) > 1 for all £. By
virtue of (3.3) there exists ¢ > 0, such that

£(6) > max{- €, 1),
and for any € > 0 there exists c(¢) > 1, such that
FI9€) < cle) + el
Fix 7 € R™™ and t € (0, 1); clearly
| F7(€ +tn) — F29(€)| < lip(F7% B(O, €} + In))tInl,

and by Lemma 2.2,

osc(f9% B(0, 2([¢] + [n1)))
€1+ || '

lip(£7%; B(0, [¢] + [nl)) < v'mn

Because f7° is positive we can estimate the oscillation simply by using the
upper bound:

ose(£9 B(0, 2(I¢] + 1)) < c(e) + 2P (J€] + )P+

Hence by use of the lower bound we get

Fo+ ) = FEE | ele) + (el + P
7O S VI axCEP 1} (el + 7D

and, as € was arbitrary, this inequality implies (3.1) and (3.2). g
Proof of Theorem 3.1. In consideration of Corollary 2.3 it suffices to show
that f9€ is differentiable. As above we can assume that f(£) > 1 for all €.
The proof proceeds in three steps and relies on the following result about
weak* convergence of measures.

||
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Lemma 3.3. Suppose that f, g : R®*™ — R are continuous functions,

that f(£) > 1 for all ¢ and that g(§)/f(€) — Oas & — co. If v; 2> vin
CY(R™ ™)' and

sup/fdvj < 00,
J

then g is v-integrable and

lim [gdy; = /gdl/.
J—00

The proof of this lemma is standard and is omitted here.

1. Note that for each &, £ — f(€ + &p) satisfies the hypotheses of the
theorem. Hence it suffices to show that f9€ is differentiable at 0. Referring
to Proposition 2.1 we can take probability measures v; € Q with 7; = 0
satisfying

/ fdvj < f95(0) + % (3.5)

Extracting a subsequence (for convenience not relabelled) we can assume
that v; = v in C§(R™*™)". The measure v is a sub-probability measure
and because f is continuous and bounded from below we get that

/f dv < Jllff,lo /fdl/j = f20) < 0. 3.6)

We remark that the measure v might not have a centre of mass, and that if
it does, then ¥ is possibly different from 0.

2. Claim: f = f9° on spt(v), and hence by Corollary 2.5 f and f9€ are
differentiable with the same derivative at each point of spt(v). Here spt(v)
denotes the support of the measure v, i.e. spt(v) := {£ : v(B(&,7)) >
0 for all r > 0}.

Because f and f9€ are continuous it suffices to show that f = fI¢ v-ae.
Since f > f9, only f < f9€ v-a.e. remains to be verified. For that purpose
lete > 0 and consider E = {{ : f(£) — e > f9(¢£)}. Because E is open,
liminf;_, o v;(E) > v(E). We therefore have

£9°(0) < / f9edv; < / f dv; — evi(B),

and so
F2(0) < f9(0) — elimsup vi(E),
j—o0

thus, »(E) < limsup;_,, v;(E) = 0.
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3. For fixed t > 0 and 7 € R™™ we have by quasiconvexity of £ >
(£ + tn) that

poeem < [ 175+ n) @),
and hence, by (3.5),
pay = D10 /f"c(f ) = 176 gy ) 4 L

In view of (3.1), (3.5) and the continuity of the integrands it follows from
Lemma 3.3 that (¢, n still fixed)

J e e e 8 ave)

and thus

By virtue of (3.2) there exists a constant ¢ = ¢(n), such that for all £ and

O<t<1 ” . i
[t =] (f)lsq(s).

The right-hand side is v-integrable by (3.6). From Step 2 we have for v-a.e. §
. “(¢ +tn) — f*
i {2E = THE) _ (9 5(6),1),

t—0+

and therefore the dominated convergence theorem implies that (Vf,m)is
v-integrable and that

Afw) += timsup A < [ (Vf,) dv. 3.7)

Using that (V f,n) is v-integrable for all 7 we infer that V f is v-integrable.

Observe that A is positively homogeneous of degree 1 and, as a limit
superior of separately convex functions, is separately convex. By Corollary
2.5 we therefore deduce that A is differentiable at 0 with VA(0) = [V f dv
and together with the homogeneity this yields

Alnp) = </Vfd1/, n> , VneR™™, (3.8)

We claim that as a consequence f9¢ is upper semidifferentiable at 0, and
hence, by Corollary 2.5, differentiable at 0. Indeed, otherwise we could find
§ > 0 and §; — 0, such that

Fe&) = £°00) — A&) 5
€51 '
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Up to a subsequence we have that & := &;/|¢;| — &, and therefore by
local Lipschitz continuity of f9¢ we have for some constant L

5 < £ 1E) = 1*(0) A(J¢51€5)
€51

and by (3.8) we get a contradiction as j — oo. This concludes the proof. [

+ LIgj — &gl + A(E) — £50)

Theorem 3.4. Suppose f : R™*™ — R is continuous, bounded from below
and upper semidifferentiable. Assume furthermore that for each n

fE+n) - f©
max{f(£),1}

—0asé — 0 3.9

and

|f(§+t77)—f(§)| . nxm
sup{ T F©),1} £EeR ,tE(O,l)}<oo. (3.10)

Then f9€ is a C" function.

To prove Theorem 3.4 we proceed as in the proof of Theorem 3.1. The
only change is in Step 3 where we estimate the difference quotient A¢(n) as

The next lemma shows how to verify the conditions (3.9) and (3.10).

Lemma 3.5. Let f : R"*™ — R be bounded from below, locally Lipschitz
and differentiable. If

Vi)
max{f(£), 1}

then conditions (3.9) and (3.10) hold.

— 0 as & = oo, @311

Proof. We can assume that f(§) > 1. For §, n € R®*™ and t > 0 define
g(s) := f(€ + stn), s € R. Then g is differentiable, locally Lipschitz and

if we let V)
_ V(£
AT G I

then |g'(s)] < h(|¢ + stn|)t|n|g(s). Thus by integration

h(r) :

1
22 < [ e + st as.
0
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Since h is decreasing we deduce
f(& +tn) < MO (g). (3.12)

Now

. 1 1
l9(1) — 9(0)] < /0 19/(s)|ds < /0 h(I€ + stal)tinlg(s) ds

and since max{0, |¢| — t|n|} < |€ + stn| we get

1
(€ +tn) = F(©) < h(max{0, ] — tal})tIn] / £ + st) ds.
Together with (3.12) this implies for ¢ € (0, 1) and any 7,
|F (€ +tn) — £©)] < MO p(max{0, [¢] — [nl}) £ (€)tlnl,

concluding the proof. O

Proposition 3.6. Suppose that f : R"*™ — R satisfies the conditions of
either Theorem 3.1 or Theorem 3.4. Let § € R"™* ™ and v; € Q,V; = &
and

/fduj - f9(&o)-

If v; 5 vin CY(R™ ™Y, then v is a sub-probability measure with the
following properties:

f = ch on Spt(V)’
f is differentiable at each £ € spt(v) with V f(§) = V f¥(£),
and

Vfi(&) = /Vf dv.
Remark. The measure v might not have a centre of mass, i.e. [|£| dv(§) = oo

is not excluded. Even if v has a centre of mass it can be different from &p.
Furthermore, the inequality f9°(€o) > [ f dv might be strict.

Proof. The claims follow as in the proof of Theorem 3.1. O

Proposition 3.7. Assume that f : R™*™ — R satisfies the conditions of
Theorem 3.1 or of Theorem 3.4, and furthermore that for some o € (0,1]
and c > 0 we have for each £ and some a € 9" f(§)

F(&+n) — f(€) — (a,n) < cmax{f(£), 1}n|*** (3.13)

for|n| < 1.Then f¥isa C’ll(;g function, and more precisely

[V +m) — VF*(§)| < cermax{f(£), L}In|*

for |n| < 1/2, where ¢, = c;(mn, ).
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Remarks. 1. The condition (3.13) is satisfied with o = 1 for example if f is
a C? function satisfying for some constant ¢ > 0

IV2£ ()] < cmax{f(€),1}.

Further examples can be found in Sect. 5.

2. In general, for smooth functions f : R — R the convex envelope f¢
is not of class C2. For example any smooth function f : R — R satisfying
f = f¢ outside [-1,1], f > 0, = 0 exactly at 1 and f"(£1) > 0
provides such an example. The sitvation is the same in higher dimensions
f : R™™ — R. Indeed let g : R — R be a C* function for which g¢ is
not C, Define f(£) := g(£1,1), € € R™™, where &, 1 is the (1, 1) entry of
the matrix £. It is easily seen that f7°(¢) = g°(€11).

Proof. We only give the proof for the case where f satisfies the conditions
(3.1) and (3.2) of Theorem 3.1. The proof in the other case is analogous.

It follows from Theorem 3.1 that f9¢ is C! and we can assume that
f = 1. The main step in proving that V f4€ is locally a-Hélder continuous
consists in verifying the inequality:

IFE€ +m) — £19() — (VF(), m)| < (2™ — 1)cf (&) Inf**e,
(3.14)

forall §, n € R™*™ with |5| < 1. To establish (3.14) we fix & and proceed
as in the proof of Theorem 3.1 to find a sub-probability measure v with the
following properties:

f = f¥v-ae. (and hence f is differentiable v-a.e.),
Vi) = [vie

[0 < s
and for all '

FEo +m) — f(60) — (VF*(&0),m) < / /(€ +m)
= fEE) = (Vi¥(€),m)] dv(§).

Now for v-ae. &, f9¢ + n) — f2(€) — (Vf&),n) < f(E+1) —
F(€) — (Vf(£),n) and, invoking (3.13), the latter is estimated from above

by cf (€)|n|*+* for all £ and |n| < 1. Collecting the above estimates we
have for || < 1,

FE(o +m) — f19(€0) — (V7o) m) < cf*(&o) In|**+
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and as the left-hand side is a separately convex function of n we infer by use
of Lemma 2.4 that

| ai|r<'fn|[ch(§° +8) — f2(E0) — (VF9(£0), 8) > (1—2™)ef* (o) ml .
These inequalities yield in combination (3.14). It is a standard result that
(3.14) implies local a-Hélder continuity of V f9¢, however, in the present

situation it is possible to give a simpler direct proof. For fixed £ the function
h(n) := FI°(E-+n)— FI(E)—(V f1(€), m) is separately convex. By Lemma

i tip(h; B(0,7)) < v/mn osc(h; B(0, 2r))/r,
and by use of (3.14) we get for r € (0,1/2]

osc(h; B(0,2r)) < CefIe(€)r'te,
where C = 2(2™" — 1). For |n| < 1/2 we therefore obtain

IVh(n)| < lip(k; B(O, [n])) < Coy/mn2+f1()Inl*,

and since Vh(n) = VF%(¢ +n) — V2°(€) this inequality concludes the
proof with ¢ = Jymn2iteC. O

4 Other envelopes

It is not hard to extend the results in Sect. 2 on separately convex functions to
functions that are convex in the directions of a general basis for R™*™, The
results in Sect. 3 can therefore be extended to envelopes corresponding to any
notion of convexity for which the envelope can be expressed as an infimum
over a class of probability measures (as in Proposition 2.1), and which imply
convexity in the directions of a basis. These include separate convexity, rank-
1 convexity and polyconvexity. They also include A-quasiconvexity (cf. [23]
and the references therein) in the case where the cone for the corresponding
directional convexity spans the space. Instead of formulating these results
explicitly we prefer to focus on the case of polyconvex envelopes, where we
can obtain a slightly stronger result.

The polyconvex envelope fP¢ of an extended real-valued function f :
R**™ — RU {co} is by definition the largest (extended real-valued) poly-
convex function, which minorizes f (identically —oo if no such function
exists). In symbols,

£Pe(€) :==sup{g(€): g: R™™ — R U {oo} polyconvex, g < f}-

Since polyconvex functions in particular are rank-1 convex it follows from
Lemma 2.2 that fP¢ is locally Lipschitz on the interior of its effective do-
main dom, (fP¢) := {£ : fP(€) < oo}. However, an extended real-valued
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polyconvex function need not be continuous Or even semicontinuous every-

where.
It can be shown (cf. [9, Sect. 1.1 (6)]) that for all ,

7+1 7+1 T+1

fre(€) = inf {Z Af&): M20d N=1,) MM(&) = M(§)} )
i=1 i=1 =1

“.1)

where M(¢) € R is the vector of all minors of ¢ arranged in some fixed
order and where 7 = T(m, n) is the number of such minors. The proof in
[9] is given only for the case of real-valued functions, but it is not difficult
to see that it also covers the case of extended real-valued functions (see also

{15D).

Proposition 4.1. Let f : R™™ — RU {co} be an extended real-valued
continuous function and suppose that f is upper semidifferentiable where it
is finite and that

f&)

W:T—)ooasf—)oo, (4.2)

where p = min{m,n} (and m, n > 2). Then the polyconvex envelope
fre :R™™ 5 RU {oo} is C! on the interior of its effective domain.

Proof. In view of Corollary 2.3 it suffices to show that f?¢ is differen-
tiable on the interior of its effective domain. We assume that the interior
of the effective domain dom(f?¢) of fF¢ is non-empty and let Ebea
fixed point in this set. Referring to (4.1) we select a minimising sequence

{(, e 1cigri1}s i

741 741
3 >0, 520 =1, 32O M) = m(©)
i=1 =1

and
7+1

k k
S AP £(E®) = £ as b oo,
i=1
Extracting a subsequence (for convenience not relabelled) we can assume
that for each 7, /\gk) — \; € [0,1] as k — oco. By (4.2), we may assume that

7+1
sup AB (e P < 0o @3)

=1

for some convex, increasing function 8 : [0, 00) — R satisfying 6(t)/t —
oo as t — oo. For later use we note that we, without loss of generality,




350 JM.Ball et al.

can assume that 6(t) < #/@=1) for t > 0. In view of (4.3) we can find a
subsequence (for convenience not relabelled), such that §i(k) — §ask —» o0

for those 3 where \; > 0. For i such that A; = 0 we define & = & Observe

that (since p > 2)
741 T+1

Yod=tland ) Né&=¢
i=1 i=1

and by the continuity of f

7+1

Z A'tf(g’l,) < 00,
i=1

where we use the convention 0 - co = 0.
Select a convex function F : R™ — R U {oo}, such that fP° = F o M.
For positive integers [ define

F(X) = sup {(X,Y) - F*(¥)}, XE€ER,
y)<i

where F*(X) := supy {{X,Y) — F(Y')} denotes the polar of F'. Then F;
are convex, Fy(X) < min{c(1 + |X|), F(X)} for some constants c; and
F(X) 2 F(X)asl / oo for X in the interior of dom.(F), the effective
domain of F (see [36]). Define f,(¢) = max{Fy(M(()),0(I¢[P~")}; then
f; are polyconvex and

o(IcIP) < fiQ) < G+ ICP)

for suitable constants C;. We claim that f;(¢) /* fP°(¢) asl /" oo for ¢ in
the interior of dom,( f7°). To verify this we observe that dom, (F) is convex;
if therefore B(£,7) C dome(fP°), then the convex hull co[M (B(¢, 1)) C
dom,(F). By virtue of [9, Sect. 3.2 (20)] the convex hull co[M(B(&,r))]is
a neighbourhood of M (£) in R”, hence the claim follows.

For i) # 0 and ¢ > 0 sufficiently small £ + tn belongs to the interior of
dom,( f7¢). For such fixed ¢ and n we have that

fP(€ +tn) — fPe(§) < filg+tn) = fl§)
t t

where €; — 0 as I — oo. Since fj is polyconvex and fi < f we conclude
for any k

JPE(E +tn) — fF°(6)

+ g1,

t mas |
41 (k) ey T
Z /\Ek) fl(gi + tﬂt) fl(gz ) + % Z )‘Sk)(f(gz(k)) _ fl({))
i=1 =1

SR S SRR R L L S L AR A

S A R
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Observe that Lemma 2.2 implies that for some constant A = A(C))

for all €. Hence by (4.3) we getas k — oo

7+1 . _ .
e =) 3o i+ 0 L )

Next let I — oo to obtain

P+ tn) — f78) _ f 3 PG + tn) — f7°(8)
t = ‘ t '

i=1

As in the proof of Theorem 3.1 (we identify v; with 22"11 )\gj )s £)s where

é () denotes the Dirac measure at {;‘i(j )), for ¢ such that \; > 0, we have that
f is differentiable at & and that

fP(& + tn) — FP°(&)
t
and hence with the convention 0 - (undefined) = 0 we have

= (Vf(&),n) as t — 0O,

. PoE +tn) — fPo(e) B

lim sup £ (E+ tn) = 7€) < Do X(VEE), ).
The proof is finished as the proof of Theorem 3.1. a
5 Examples

The following example shows that the differentiability of a quasiconvex
envelope might fail if the growth conditions of Theorems A and B are not
satisfied. Compare in particular with Theorem A in the case where p=1L1

Theorem 5.1. Supposem,n > 2. There exists a C® function f : R"*™
R satisfying the growth conditions

f() f@)

liminf =2 >0 and limsup == < oo,
Esoo [ £voo &2

and where the polyconvex, quasiconvex and rank-1 convex envelopes
(resp. fP¢, f9° and fT°) are not differentiable.

The proof of this theorem relies on the following two elementary lemmas.
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Lemma 5.2. Let &1, 82 € R2%2, & # & and define

g(&) = ma‘x{(ghg)v (&2a€) + det{}, g € szz.
Then g has the following properties:

(1) g is polyconvex,
(2) g isnot differentiable at 0,
(3) forall§ € R2%2,

1
g(€) < (€1, &) + 3l + cof(&2 — &)
and equality holds in particular for § = —cof(&2 — &1)-

In (3) we write cof¢ for the cofactor matrix of £, 1.e.

coft = (_c_ib _‘—IC> if € = (Z Z) .

Proof. 1t is clear that g is polyconvex. (2) is a consequence of

(£1,8) =0 = (£2,8) +-det§ }
Vi, y =& # &=Vt det(-))

As regards (3) we write g(é) = (61,6 + max{0, h(£)}, where h =
(€0, &) + detg, &o = & — &1. Taylor expansion of h about —coffp yields
k() =det(¢+coffg), and the desired inequality follows by use of Hadamard’s
inequality. A straightforward computation establishes the equality for £ =
—cofép. O

até =0.

Lemma 5.3. Let &y, &2, g be as above and assume additionally that (&1, cof
(€2 — £1)) > 0. Define £ := cof(€2 — &1)/1€2 — &l and

S = {€ e R¥?: |€ — (£,€3)6] < Tlg—]’ (€,&) = |61 — &al}-

With ¢ = 2 + |&1 — &a|~2 we have for § € S that g(&) < e+ (£1,8)-

Proof. Write § = t{3 + 1, where ¢ := (&, &3). If £ € S, then

g1 — & <t < 6] < V1+12 and wgéségﬁ_}a

Using these inequalities, Cauchy-Schwarz’ inequality, the algebraic identi-
ties (coffs, £3) = 2det{3 and det(a + b) = deta + (cofa, b) + detb, we get
for£ €S,

(g3 — £1,€) +deté = |61 — £2]{cofés, n) + (cofés, Mt + detn
< 1+1+%|§1—€2|_2 <
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and the claimed inequality is an easy consequence. 0

Proof of Theorem 5.1. We first establish the theorem in the case m = n = 2.
Let &1, €2, €3, g and S be as in Lemmas 5.2 and 5.3. It is important to notice
that we additionally can arrange that rank(£2 — &;) = 1. For example this
can be achieved by taking

a=(5) w o)

Take a cut-off function ¢ € C°(R?*?) satisfying: 0 < ¢ < 1 and

o(€) = {(1) :g g Zéf, &3)€s and (€,&3) > 2|¢1 — &

Define
F(&) = (&) (c+ (£1,8) + (1 — 9(&))
X ((6116) + %lg'}’COf(fg — f])l2) ,f € szz.

In view of Lemmas 5.2 and 5.3, f(&) > g(¢) for all £ € R2%2, and since
—cof(§; — &1) ¢ S, equality holds at £ = —cof(¢; — &;). Next we verify
that f satisfies the stated growth conditions. The upper bound is obvious.
Concerning the lower bound we observe that for £ € S,

(€6 2 (6, 66) Vim0, P - 17 - oL,

and for £ € R2x2,

(60,6) + 3 + cof(a — €07 2 21EP — 20t + &2l + s - &P,

hence

lim inf £€) > (€1,8&) = (€1, cof (€2 — &1))

¢ [¢] 12 ~ &
We claim that fP¢, f9°and f7 are not differentiable at 0. Recall from Lemma
5.2 that g is not differentiable at 0 and hence by Corollary 2.5 not upper
semidifferentiable either. The claim therefore follows if we can establish
that

> 0.

g L fregfre .1
and

fT(0) = 0 = ¢(0). (5.2)
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The inequalities (5.1) are obvious. To see that (5.2) holds we note that the
matrix ¢ := —cof (é2—&1) has rank one and hence by rank-1 convexity that
fort > 1,

fre(—s0) < THH0 + =y )
Passing to the limit t — oo we get
£°(0) < —{€1, Q)+ F(O =0

where the last equality follows from Lemma 5.2. This finishes the proof for
the case m = n = 2. Incase max{m,n} > 2,let P: R"*™ — L denote
orthogonal projection onto the subspace

ab 0...0
cd 0...0
L= 00 0 ...0 .a,bc,d €R

.........

If we define F : K™ = R by F(§) = FPE) +1E— P&, then 1t
follows from the above consideration that F' has the claimed properties.

The next result gives 2 class of smooth integrands F = F(u,¢) for which
the envelopes F are not differentiable with respect to .

Proposition 5.4. Any C* function F' : R X R — R satisfying F(u, £) =
—|ul for all (u, £€) and

F(u,0) = —u, F(u,1)=1u, F(u,2)=—u and F(u,3) = u
for all lul <1 has the property that F(u,€) = F(u,")le = —|ul for

—

lul < 1and1 < ¢ < 2. Hence F is not differentiable with respect to .

Remark. An example of such a function is F'(t, £ =—u cos(n§).

Proof. Clearly,f(u, ) > —|ul-On the other side we have by convexity
of F'(u, ) that F(u,&) < —|uj for |u] <1 and £ € [1,2], and hence that
F(u,§) = —|u] for |u| < 1, ¢ €[1,2]. O

For the statement of the next theorem we introduce some additional
potation. A continuous function f : R™™ — R satisfies growth condition

Gpif
LG
Him SUP e

and no condition is required when p = 00 We denote by Pp the set of
probability measures f on R?*™ that have a ptt moment, i.e.

/\5\” du(€) < oo when p <

< o0, whenp€ [1,00),
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and the support spt(p) is bounded when p = 00 Let

(v, M) = M (¥), VY minors M of order < P},

M ={vePp
ML = {vePp: v ) > f(@), ¥ quasiconvex f satisfying Gp}
Myr={ve Py: ) 2 £(7), V rank-1 convex f satisfying Gp}-

For a compact set K C R*™and 1 < p <O define f(§) := dist(¢, K)P,
where dist(¢, K) = inf{|¢ -nl: NE K}.
FPe, f9°and fT¢ belong to Cll(;i ifp > 2and

! Theorem 5.5. The envelopes
ifv € MY (resp-v € MEorv € M)

10 C1P1 if p < 2. Furthermore,
is minimising, i.e.

ﬁw=ww,wW=W@w=W®J

then f = f¥on spt(v) (resp. f=fror f=1" and f is differentiable

2 at each point of spt(v).
|
2 Remarks. 1. The differentiability of f at £o is equivalent o

of minimisers for

the uniqueness

min{|¢o —nl : 7€ K}-

expressing the last part of the proposition is that the
K is unique on the support of a minimising measure
if and only if the metric projection is

Hence another way of
metric projection onto
v. Recall that a closed set is convex

everywhere single-valued.
£(&) = dist(§, K )2 is rank-1 convex if and

) 2. In [45] it is shown that
5 only if K is convex. The envelopes ™ f9¢ and fP° are therefore not in

general powers of distance functions.
The result is an immediate consequence of Propositions 3.6, 3.7 (and
their versions for fre, f7%) and the following two lemmas.

Lemma 5.6. Letp € (1,00). Then there exists a finite Cp; such that for all

¢,m € R with <1

cpinl? ifl<p<2

\¢+nP = 16P — pl¢,MICP2 <
cp(l + \cPP=2)nl® ifp > 2

s of the claimed inequality are continuous, SO

Proof. Since p > 1 both side
we can assume { # 0.

First consider the case \¢| < 2ln|. Then the left-hand side can be esti-
mated from above by (1] + 1nD)” — |clP +piciPHnl < 7 F p22~ Hnl?
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and since |n| < 1 we get

\ (30 + p2r HpP if 1 <p <2,
I+l — [P — p{¢,mSP <
(37 4+ p2p~1)n|? ifp > 2.
(5.3)

Next we assume |¢| > 2|n|. Then the function h(t) := |¢ + tn|P is twice
continuously differentiable on [0, 1] and the left-hand side of the claimed
inequality equals

/ 1(1 — )K" (t) dt,
0
where () = pl¢ + tnlP~4((p — 2)(C + tn,m)® + [ + tnl*Inl?).-

If p > 2 we get since 2n| < |Cl. h”(t) < p(p — )22 ?|CIP*In|?. If
1 < p < 2 we get since |¢] > 2lnl, h"(t) < pIC + tnlP~2Inl* < p(IC] -
In1)P~2|9|? < p|n|P. Collecting the inequalities we obtain

—2 %p|n|” ifl<p<?,
1€ +nlP — KPP = p, mICIP <
p(p —1)2P3|¢P~2nl? ifp > 2.
(5.4)

The claimed inequality follows with ¢, = 37 + p2P~1 by combination of
(5.3) and (5.4). a

Lemma 5.7. Let K C R" ™ be a compact set and p € (1,00). If f(§) =
dist(¢, K)P, then f is upper semidifferentiable and there exists a constant
¢ = ¢(p, K), such that for each ¢ there is a € 9" f (&) with the property

clnf? ifl<p<2,
f€+m) =€) ~ {am) < 2
(1 + EP~2)Inl® ifp > 2,
foralln| < 1.
Remark. The proof shows that the constant ¢ = ¢(p, K) can be taken inde-
pendently of K if p € (1,2].

Proof. For a given matrix ¢ let #(¢) € K denote a matrix, such that | —
&(¢)| = dist(¢, K), and put

a = pl¢ — BE)P2(€ — B(8))-
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By Lemma 5.6 with { = £ — $(¢) we have, noting that f(§ +n) < |{ +
n =2,

cplnl? ifl<p<2,

fEE+n) — f(§)—(a,n) <
cp(1+ | — () P~2)nl* ifp > 2,

for || < 1. Because #(¢) € K and K is compact the desired inequality
follows from this. g
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