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Abstract. A review is given of the development and present state of the calculus
of variations, starting from the problem of the brachistochrone, and emphasizing the
current interaction with problems of materials science.

1. Introduction. The beginnings of the calculus of variations go back at least as
far as the study of isoperimetric problems by the school of Pappus in ancient Greece.
However, the start of the modern era of the subject three centuries ago can be marked by
the solution by Johann Bernoulli in 1696 of the brachistochrone problem first formulated
by Galileo, that of finding the shape of the curve joining two prescribed points in space,
down which a particle will slide without friction in the least time. Bernoulli circulated
the problem to various mathematicians, among whom Leibniz (in June 1696), Bernoulli’s
brother Jakob and L’Hospital responded, also correctly identifying the brachistochrone
as an arc of a cycloid. Isaac Newton learned of Bernoulli’s challenge on the afternoon
of 29 January 1697, on returning at 4 p.m. tired after his day’s work as Master of the
Royal Mint. He had solved the problem, together with another geometrical one posed
by Bernoulli, by 4 a.m. the next morning, and the same day communicated his solutions
anonymously to the Royal Society. An impressive feat, although Bernoulli later wrote
that neither problem should take “a man capable of (solving) it more than half an hour’s
careful thought” [29] and they took Sir Isaac 12 hours, a warning from the past of how
administration dulls the mind! (For an authoritative account of the history see Whiteside
53].)

The subsequent development of the calculus of variations has been an exciting one, and
has led in particular to a good, though not exhaustive, understanding of one-dimensional
problems. In contrast, for multi-dimensional problems many basic questions remain
unresolved. Many of these questions have been illuminated by a fertile interaction in
the last 20 years with problems arising from solid mechanics and materials science. I
will approach the multi-dimensional issues from a historical perspective, starting from
a discussion of the brachistochrone and some highlights of the one-dimensional theory.
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The discussion makes no attempt to be complete, so that many interesting developments
are not mentioned, and is inevitably coloured by my own interests.

2. The Brachistochrone. We make the simplifying assumptions that the wire is in
the (z,y)-plane, with the z-axis horizontal and the y-axis vertically downwards, and is
in the form of a graph y = y(z) joining the origin with the point z = z; >0, y =y, > 0.
The particle starts at the origin with zero velocity. The problem is thus to find the curve
y minimizing the time of travel

T =/ —" dr.
(v) A \/ 29y

where g is the acceleration due to gravity, subject to the end conditions
¥(0) =0, y(z1) = u1. (2.1)

Bernoulli, and those who responded successfully to his challenge, essentially derived and
solved some form or consequence of the Euler-Lagrange equation for T This Euler-
Lagrange equation has the first integral

y(1+y2) = 2r,

where r > 0 is a constant, from which the unique solution 7 of the Euler-Lagrange
equation satisfying (2.1) can be obtained in parametric form for some r and 6, € (0, 27)
as

z(0) = r(6 — siné), (2.2a)

y(0) = r(1 —cosd), (2.2b)
where 0 < # < 6,. This solution represents the arc of a cycloid corresponding to the
path traced out by a point P starting at the origin and on the circumference of a circle
of radius r that rolls without slipping along the z-axis. The particle thus begins to
fall vertically, rising as it approaches (z1,¥:) if and only if y; /2, < 2/w. However this
analysis does not completely solve the problem since all that has been shown is that if
there exists a (sufficiently smooth) minimizing curve then it is the cycloid. It is easy to
forgive mathematicians of the time for this confusion between necessary and sufficient
conditions, since they would not have been aware of one-dimensional problems for which
the minimum is not attained. Here are two well-known such examples.

EXAMPLE 2.1. Consider the problem of minimizing the integral

I(y) = /D (82 = 1) + 7] da

among functions y that are at least absolutely continuous (so that in particular the
derivative y, is defined almost everywhere) satisfying the end conditions

y(0) =y(1) =0. (2.3)
The infimum of I among y satisfying (2.3) is zero. In fact if y\) is defined by
y9(z) = j'6(jz),
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where 6 : R — R is the 1-periodic function satisfying

T, ifUSa:S%,
9wy—{l~a ifl<z<l,

then it is easily checked that I(y")) — 0 as j — co. The y) are not smooth, but if
desired we could easily smooth them (e.g. by suitably rounding corners) and still preserve
the property I(y")) — 0.

However, there is no y satisfying (2.3) with I(y) = 0, since y would have to satisfy the
mutually incompatible conditions

y=0, |yz| =1 (24)

Hence I does not attain a minimum subject to (2.3) in any usual function space.

A different point of view, pioneered by L. C. Young [113], is to generalize the concept of
a function so that the conditions (2.4) are no longer incompatible. From this perspective
I attains a minimum at a generalized curve consisting of the track y = 0 and associated
Young measure (v;), corresponding to the sequence z(9) = yf,j ) of derivatives of y\9),
given by

ve = 16_, + 16;. (2.5)

In general, the Young measure of a sequence of mappings 2(/) : § — R™, where 0
is an open subset of R", is a probability measure on the range space R™ for almost
all z, that gives the limiting distribution as j — oo of the values of 2U)(z). Provided
zU) satisfies a mild bound (e.g. for 2 bounded provided 219 is bounded in L'(f2)) the
existence of a Young measure for some subsequence of z() is guaranteed by standard
results (see, for example, [3], [8], [109]). For this subsequence (which we do not relabel)
we have that

v, = lim lim v2), (2.6)
in the sense of weak* convergence of probability measures, where V}:J,)- is the probability
distribution of 2(9)(¢) as £ is chosen uniformly at random from the ball B(z,r). The
Young measure has the property that for any continuous function f : R™ — R the weak
limit of f(z()) in L'(E) is given by (v, f) = Jgm f(7) dvy(7) for any compact subset E
of 2, whenever this limit exists.

In the example, v, is independent of z, and to obtain (2.5) we note that since 29 (z) —
{-1,1} in measure, suppr, C {-1,1} and so v, = A(z)é6_; + (1 — A(z))é1, where
0 < X(z) < 1. Since 2) — 0 in L2(0,1) it follows that the weak limit z, of 2%’ is zero.
Thus [ 7dv,(7) = 0, implying that \(z) = —% as required.

EXAMPLE 2.2. The second example (cf. Cesari [38, p. 7]) is that of minimizing

I(y) =/0 V2 +y2dx

subject to the end conditions

y(0) =0, y(1)=1. (2.7)
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In this case the infimum of I equals 1 and is not attained. In fact, for any absolutely
continuous y satisfying (2.7) we have

1
I(y) >[ yodz =1,
0

while it is easily checked that if

. 0 fo<z<1-1%
G (z) = ’ =7 = 3’
v (I)_{j(:c—l—}—%), ifl-l<z<l, (28)

J
then I(yV)) — 1.

The integrand in Example 2.2 is not so unlike that for the brachistochrone, and might
give one pause for thought as to whether the minimum is attained in that case. However,
it turns out that for the brachistochrone the minimum is attained, and is given by the
unique arc § of the cycloid described above. A neat way of proving this, which we now
sketch, is due independently to Kosmol [77] and Troutman [112].

We first make precise the space of admissible functions. Let

A= {y e AC[0,z1] : y > 0,y(0) = 0,y(z1) = y1}.

Here AC|0, ;] denotes the space of absolutely continuous functions on the closed interval
[0,2,]. AC|0,z;] can be identified with the Sobolev space WbH1(0,z,). We must show
that I(y) > I(7) if y € A, y # §. Make the change of variables z = /2y to obtain the
equivalent problem of minimizing

Ty
I(z)zf NE=F
0

A= {z€ AC[0,z1] : z > 0,2(0) = 0, 2(z1) = V2u1}.

To show that this really is an equivalent problem one checks that y € A with T'(y) < o
if and only if z € A with I(z) < co. Now note that the integrand f(z,p) = v/2~2 +p?
is a strictly convex function of (z,p). Using the fact that a convex function lies above its
tangent planes, we obtain

1) -1)> [ (5 22) (2 — 2) + fo(, ) (2 — 7)) 2,

if z # z, where z = /2j. Note that z(z) is a smooth solution of the Euler-Lagrange
equation

d

E:Ef p= f z

corresponding to I, and that as z — 0+ we have from (2.2) the estimates Z(z) ~
c1z'/3,2,(z) ~ 1c127%/3 for some constant ¢; = ¢1(r) > 0. Hence, f2(Z, Z;) ~ cax /3,
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|fp(2,22)| <1, and so

-/Uzl [fz(f'! ZI}(Z - Z) + fp(zs Ex)(z:r - 2::)] d-T

=tim [ 21,52 - ]da =0,

e=0 J_

completing the proof that § is the unique minimizer. The reader is referred to Troutman’s
book for other examples of variational problems that can be convexified via a suitable
change of variables.

For a different rigorous treatment of the brachistochrone problem from the point of
view of optimal control theory, together with another attractive account of the history of
the problem, see Sussmann and Willems [101]. Sussmann and Willems make the point
that an advantage of the optimal control approach is that the form of the brachistochrone
is proved to be a graph. This can be shown also using the calculus of variations (see
Tonelli [110, Vol. II, pp. 405 ff.]).

3. Highlights of the one-dimensional theory. From a general perspective the
brachistochrone problem is unusual, in that there is a unique solution of the Euler-
Lagrange equation that is smooth on (0,z;] and is the unique absolute minimizer. In
general there may be no absolute minimizer, or several local minimizers, and minimizers
may or may not be smooth. In this section we examine some key results addressing these
issues for general one-dimensional integrals on a finite interval (a,b), having the form

b
16) = [ f@v)ds,
with a corresponding set of admissible functions
A= {y € ACla,b] : y(a) = o, y(b) = B},

where a, 3 are given constants. Similar results can be given for more general boundary
conditions. We suppose for simplicity that the integrand f is smooth.

Note that if y € A then I(y) may be undefined as a Lebesgue integral, or be defined
and finite, or be equal to +oc.

3.1. The Weierstrass theory of local minimizers. Weierstrass realized that the theory
of local minimizers for I depends critically on the norm used. One such norm is that of
the Sobolev space W1>°(a, b) of Lipschitz functions on [a, b] and is given by

Iv]l1,00 = max (||v]|co, ||V 0o)
with

lzlloo = l|2ll Lo (a,) = esssup |2()].
z€(a,b

We say that the function § € A is a local minimizer of I in W*°(a,b) (in the classical
terminology a weak local minimizer) if there exists € > 0 such that whenever y € A with
ly = #ll1,00 < € then I(y) is defined with I(y) > I().

Denote by Cj(a,b) the space of all C* functions ¢ on [a,b] with ¢(a) = ¢(b) = 0.
Necessary conditions for a function § € C*([a,b]) N A to be a local minimizer of I in
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W1°°(a,b) are the weak form of the Euler-Lagrange equation (or vanishing of the first
variation)

SI(F)(p) := %I(g +7¢)|r0 =0, for all p € C3(a,b), (3.1)
and the positivity of the second variation
LG @) = i1+ 7p)lmo 20, forall p € Cl(a.b). (32)
We abbreviate the necessary conditions (3.1) and (3.2) by
§I1(7) =0 (3.3)
and
8%1(y) > 0, (3.4)

respectively. A standard argument based on a Taylor expansion shows that if we strength-
en (3.4) to

82I(g) > 0, (3.5)
that is, for some constant g > 0
arz b
@+ olemo 2 [ (4R ds,  forall g € Ci(anb), (3.6)

then (3.3), (3.5) are together sufficient for a function § € C*([a,b]) N A to be a local
minimizer of I in W1*°(a, b).

Now suppose that § € C*([a,b]) N A is a local minimizer in L*°(a,b), that is, there
exists ¢ > 0 such that if y € A with ||y — 7]l < € then I(y) is defined with I(y) > I(7).
Then 7 satisfies the Weierstrass condition, that is, for every z € [a, b] the tangent to the
graph of p — f(z,%(z),p) at p = ¥, does not lie above the graph. The Fundamental
Sufficiency Theorem of Weierstrass states that adding an appropriately strengthened
version of the Weierstrass condition gives a set of sufficient conditions for § to be a local
minimizer in L>(a,b). The strengthened Weierstrass condition is that there exists an
€ > 0 such that given any z € [a,b], and any v,q with |[v — §(z)| <€, |g — ¥z| < €, the
tangent to the graph of p — f(z,v,p) at p = ¢ does not lie above this graph. A modern
statement of the theorem is (see Hestenes [67]):

THEOREM 3.1 (Fundamental Sufficiency Theorem). Let § € C'([a,b]) N A satisfy the
three conditions:
(i) 61(y) =0,
(i) 821(7) > O,
(iii) the strengthened Weierstrass condition.

Then § is a local minimizer of I in L>(a,b). In fact, there exist constants o > 0,
€ > 0 such that

b
I(y) > I(g) +0 / D(ys — §) da (3.7)

whenever ||y — || < &, where D(t) := V1 +t* - 1.
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The classical proof of Theorem 3.1 is via the field theory of the calculus of variations,
as introduced by Weierstrass and simplified using null Lagrangians by Hilbert. It is
this proof that appears in almost all texts. A second “indirect sufficiency proof” due to
Hestenes can be found in his book [67], and has the advantage that it applies in situations
(for example, problems with isoperimetric constraints) for which the field theory does not,
or is difficult to, apply. A direct version of the Hestenes proof based on finite elements
is due to R. D. James and the author [18]. For yet another proof see Clarke and Zeidan
[41].

3.2. Tonelli theory. During the years 1918-1939 Leonidas Tonelli made a systematic
study of the one-dimensional calculus of variations, and in particular of weak lower
semicontinuity, the key to the direct method of the calculus of variations. In his work he
could take advantage of the newly-developed Lebesgue integral. He proved the following
fundamental existence theorem.

THEOREM 3.2 (Tonelli [110, I p. 282], [111]). Suppose that f(z,y,p) is convex in p for
each z € [a,b],y € R, and that f satisfies the growth condition

f(z,y,p) > ®(p) (3.8)
for some function ® that is superlinear, i.e.,

2(p) _

plase ||

Then I attains an absolute minimum on A.

Note that in Example 2.1, f(y, p) is not convex in p but satisfies the growth condition
(3.8), while in Example 2.2, f(y,p) is convex in p but does not satisfy (3.8). For the
brachistochrone problem (3.8) is again not satisfied. However, there is a modification of
Tonelli’s existence theorem that does apply to the brachistochrone example (see Cesari
[38, p. 439]).

Much less well known, indeed apparently forgotten for half a century, is Tonelli’s partial
regularity theorem, the forerunner of modern partial regularity theorems for multiple
integrals.

THEOREM 3.3 (Tonelli [110, IT p. 359]). Let fp(z,y,p) > 0 for all z € [a, b],y,p and let
¥ be a local minimizer of I in L>(a,b). Then § € C*°([a, b]\E), where E is closed and
L'(E) = 0. Furthermore, the derivative

y(@ +h) —y(z)
h

(one-sided if z = a or z = b) exists for all z € [a,b] and is a continuous function from
[a,b] to the extended real line R, with |g,(z)| = oo for z € E.

¥o(2) == AEI})

Here and below L™ denotes n-dimensional Lebesgue measure. The assertion that
¥z : [a,b] — R is continuous is due to Ball and Mizel [26]. Tonelli did not know of an
example in which the Tonelli set E was nonempty, and examples were first provided in
[25], [26]).
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EXAMPLE 3.1 ([25], [26]). Consider the problem of minimizing the integral

1= [ 1@ - 3 + sl ds (3.9)
in the set
A={ye W' (-1,1): y(1) = 1,y(-1) = -1},

where 0 < £ << 1. Provided ¢ is sufficiently small, any minimizer g of I in A is smooth on
[=1,0)U(0,1], but g(z) ~ |z[>?sgnz, fu(x) ~ ||~/ as 2 — 0, so that the Tonelli set
E = {0}. Thus the singularity in the minimizer y = |z|*/* sgnz for £ = 0 is not destroyed
when ¢ is positive and sufficiently small, even though the Euler-Lagrange equation for
(3.9) is an elliptic ordinary differential equation of the form yz, = F.(z,y,y:) with F,
smooth. This equation fails to smooth the singularity because y does not satisfy the
weak form of it on the whole of [—1, 1]. In this example, though not in others in which E
is nonempty, the nonemptiness of E is related to the remarkable Lavrentiev phenomenon
(see Lavrentiev [79], Mania [83]), that

inf I inf I(y) = I(§).
. (y)>;~gA (v) =1(®)

In fact, in this example, the minimum of I in AN W1lee(—~1,1) is attained by a pair
of smooth functions +y* that do not pass through the origin. A further remarkable
property that holds is that I(y\9)) — oo for any sequence of smooth functions y)
satisfying y/)(z) — §(x) almost everywhere. These properties have the implication that
natural finite-element schemes based on piecewise-affine approximations will fail to detect
7 and instead converge to +y*. Various more subtle numerical schemes (see Ball and
Knowles [23], Li [80], [81]) succeed in detecting singular minimizers.

Note the surprising fact that it pays overall to have the integrand infinite somewhere
(so that the minimizer can stay closer to ||?/® sgn z elsewhere). Some idea as to why the
Euler-Lagrange equation is not satisfied on [a,b] can be obtained from noting (see [26])
that I(§+ T¢) = oo unless T = 0 for any smooth ¢ with ¢(0) # 0. In Davie [48] (see also
[26] for the case f = f(y,p)) it is shown that the theorem is optimal, in the sense that
given any closed set E C [a,b] there exists a corresponding f satisfying the hypotheses of
the theorem, and boundary values a, 3, such that the Tonelli set equals E. For further
results and references on singular minimizers and the Lavrentiev phenomenon, see Ball
and Nadirashvili [28], Sychev [105], [106], [107].

4. Multiple integral problems. Consider the integral
16) = [ fz.v(a), Dy(z) ds, (41)
where 2 C R" is bounded and open with Lipschitz boundary €, and y : 2 — R™. Here
33}{
D - mxn
o) = (pe@) e M

denotes the derivative of y at x, where M™*" denotes the space of real m x n matrices.
We assume for simplicity that f : @ x R™ x M™*™ — R is smooth. Our aim is to study
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minimizers of I in the set of admissible mappings
A={y e W'(Q;R™) : ylaa, = g},

where 0 is a subset of 9 with positive (n — 1)-dimensional Hausdorff measure
H™~1(01) and g is a given measurable mapping that is the trace of some y € W' (£;
R™) (so that A is nonempty). We have here chosen a typical set of mixed boundary
conditions, in which the remaining part 9Q; = 9Q\9Q; of the boundary is free. Because
we do not specify y there we expect minimizers to satisfy the natural boundary condition

Daf-N(z) =0, =z €0y,

where D4 f denotes the derivative of f(z,y, A) with respect to the matrix A, and N(z)
denotes the unit outward normal to 9.
A motivating example is that of nonlinear elastostatics, when m = n = 3 and

I(y) = ]ﬂ ¥(Dy) dz,

where 1 = 1)y denotes the free-energy function of an elastic material (assumed homoge-
neous) at a fixed temperature §. However, in this case ¥ = 1(A) is not smooth, but is
typically assumed to be defined only for A € M3*3 with det A > 0, and to satisfy the
condition

P(A) - o0 as det A — 0+, (4.2)

corresponding to the requirement that infinite energy is needed to compress the material
to zero volume. This introduces extra technical difficulties that we do not treat here (see
[5], [6], V. Sverék [102]).
C. B. Morrey [87] discovered the correct generalization of convexity of f(z,y,-) for
multiple integral problems. Consider the case when f = f(A), i.e., f: M™*" — R.
DEFINITION 4.1. If A € M™*™ then f is quasiconvez at A if

/ f(Dv()) de > f f(A)dz = L) f(A)
Q 0

for all v € WH°(;R™) satisfying the linear boundary condition v(z) = Az for all
x € 0Q). We say that f is quasiconvez if it is quasiconvex at every A € M™*™,

Despite first appearances this definition is independent of Q2. If either m=1lorn=1
quasiconvexity of f is the same as convexity. However, this is definitely not the case
for m > 1 and n > 1, and this makes the multi-dimensional calculus of variations an
altogether more difficult subject.

There are important relations between quasiconvexity and certain other convexity
conditions. We say that f is polyconvez if f(A) = g(J(A)) for some convex function
g, where J(A) denotes the vector consisting of all minors (i.e. subdeterminants) of A.
Thus, for example, if m =n = 3, f is polyconvex if and only if there is a convex function
g: M33 x M3%3 x R — R with

f(A) = g(A,cof A,det A) for all A€ M3*3,

where cof A denotes the matrix of cofactors of A. We say that f is rank-one convez if

;2? f(A+TA®pu) >0 (4.3)
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for all nonzero A € R™, u € R"™. The corresponding condition with strict inequality in
(4.3) is known as strong ellipticity. _
It is not hard to establish the implications (see, for example, [5], Dacorogna [45])

f polyconvex = f quasiconvex => f rank-one convex.

Examples of quasiconvex functions that are not polyconvex are known for all dimensions
m > 2,n > 2 (see Zhang [117]). We discuss the reverse implication of whether rank-one
convexity implies quasi-convexity in Section 6.

Morrey showed that f(z,y,-) quasiconvex is necessary and sufficient (under appro-
priate growth hypotheses) for I to be sequentially weakly lower semicontinuous on
Wir = Wip(Q; R™), where p > 1, i.e.,

I(y) < liminf I(y) (4.4)
Jj—o0

whenever y) — y in WP, Later work of Acerbi and Fusco [2] weakened Morrey’s
growth hypotheses to show that (4.4) holds if :

0< f(z,y,A) < C(1+ |AP) forall z,y, A,

and some constant C' (even if f is only measurable in z and continuous in (y, A)). Hence
one can prove the existence of an absolute minimizer for I in A, provided f is also
coercive, i.e.,

f(z,y,A) > Co|AIP —1 for all z,y, A,

and some constant Cy > 0. Quasiconvexity is in a sense also necessary for the existence
of minimizers. For example, as was shown in [27], for f of the form

f(z,y,A) = W(A) + ¢(z,y),

if I attains an absolute minimum for all linear boundary data y|sq = Cz and all contin-
uous nonnegative v, then W is quasiconvex.

Quasiconvexity plays other central roles in the multi-dimensional calculus of variations.
For example, there is a key partial regularity theorem of Evans [59] which asserts that
under suitable growth conditions and an appropriate strengthening of quasiconvexity,
any absolute minimizer y of I in A is smooth off a closed subset E C Q with L™"(E) = 0.

Another key result is the relaxation theorem of Dacorogna [44], [45], which concerns
the quasiconverification Qf with respect to the gradient of an integrand f such that
f(z,y,-) is not quasiconvex (so that minimizers may not exist), defined by

Qf(z,y,A) = sup{g(A) : g quasiconvex with g(B) < f(z,y, B) for all B}.
The theorem states that if f satisfies suitable growth conditions then the functional

QI(y) = [ﬂ Qf (z,y, Dy) dz,

characterizes the weak limits of minimizing sequences for I on A. More precisely, inf 4 I =
inf 4 QI, the weak limit y in W' of any minimizing sequence /) for I in A is a minimizer
for QI in A, and any minimizer y for QI in A is the W' weak limit of some minimizing
sequence for I.
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There is also a remarkable connection between gradient Young measures and quasi-
convexity due to Kinderlehrer and Pedregal [72]. A family (v,) of probability measures
on M™*" depending measurably on z € Q is the Young measure of a sequence Dy') of
gradients bounded in L* if and only if (i) the centre of mass i, is a gradient, and (ii)
Jensen's inequality

vz, f) 2 f(7z) (4.5)

holds for a.e. x and all quasiconvex f. There is also an L? version of this result (Kinder-
lehrer and Pedregal [73]).

One can also study quasiconvex sets. A compact set E C M™*" is quasiconvex if it is
the zero-set of a nonnegative quasiconvex function. The quasiconvezification Q(E) of a
set E is the intersection of all quasiconvex sets containing E. As we will see in Section 5,
these sets are of interest in connection with microstructure in materials. As an example of
a developing theory of quasiconvex sets, Zhang [116] has proved the following interesting
generalization of the finite-dimensional Krein-Milman theorem; if E C M™*" is compact
and quasiconvex, then it is the quasiconvexification of the set of its quasiconvex extreme
points. Here a quasiconvex extreme point A € F is one such that if v is a gradient Young
measure supported in E and with centre of mass 7 — A then v = 4. For other results
see Zhang [115].

5. The elasticity model of martensitic transformations. Most alloys undergo
solid phase transformations involving a change of shape at one or more critical tem-
peratures. The calculus of variations gives insight into why such phase transformations
typically lead to patterns of fine microstructure, in the simplest case consisting of a
laminate of parallel thin layers in which the spatial gradient of the deformation alter-
nates between two values. Roughly, the idea (cf. Ball and James [20]) is that according
to a model based on nonlinear elastostatics, the minimum of the corresponding energy
functional is not in general attained, so that the fine microstructure observed can be
thought of as an element of a minimizing sequence that oscillates more and more finely.
At macroscopic length-scales the deformation gradient can be smooth, even if at the mi-
croscopic scale it oscillates wildly. The analysis of the elasticity model of microstructure
has provided a much needed stimulus to the multi-dimensional calculus of variations,
posing fundamental questions concerning quasiconvexity, relaxation, and gradient Young
measures.

Consider a single crystal of such an alloy that occupies the bounded open subset
2 C R? in a reference configuration. A typical deformation of the crystal is described
by the mapping y : 2 — R3, where y(z) is the deformed position of the material point
with position z in the reference configuration. The elastic energy of the crystal is given
by the integral

Io(y) = /ﬂ vo(Dy(z)) dz,

where 1)y is the free-energy function of the material and 6 is the temperature. In this
model we ignore other possible contributions to the energy, such as any energy associated
to interfaces across which Dy jumps. The temperature is assumed to be constant.
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We assume that the minimum value of ¥s(A) among matrices A € M3*3 is zero.
Provided 1 is bounded below this can be arranged by adding to it a suitable function
of §. We focus attention on the values of A that minimize 1p(A), that is, on the set
K = K(0) given by

K(6) = {A € M**3 : 4(A) = 0}.
Because of the frame-indifference condition
Yo(RA) = yg(A) for all A € M**3 R e SO(3),
this set typically has the form

N
K(6) = J s0B3)Vi,

where N = N(@) and V; = Vi(8) = V;T > 0. For example, in a cubic to tetragonal
transformation with critical temperature . and lattice parameters 7, > 0,72 > 0, we
have

3
K(8:) = SO@3)u | SOB)U;,
i=1
where

Uy = diag(m2, m,m),
Uz = diag(m, 2, m), (5-1)
Us = diag(m, m, m2)-
Thus there are four energy wells, SO(3) corresponding to the undistorted cubic phase
(which we take as reference configuration), and the three others to variants of the tetrag-

onal phase in which the cubic elementary cell of the crystal lattice changes shape to a
tetragon with two sides equal to 7; and the third of length 7. For temperatures 6 > 6.,

K(0) = k(8)SO(3),
where k(@) measures the thermal expansion, with k(f.) = 1, while for 6 < 6.,

3
K(6) = so@)u,
i=1
with the U; as in (5.1) but with the n; = 1;(6).

To see how we can describe microstructures in this framework, consider the case of a
simple laminate defined by a mapping (), whose gradient takes the values A, B € M**?
in alternate layers separated by planar interfaces with normal n. For this to be possible
we must have

A-B=a®n

for some a € R®. We suppose that the layers in which DyY) = A have thickness A/j,
and that the layers in which Dy") = B have thickness (1 —\)/j, where 0 < A < 1. If we
let j — oo we get an infinitely fine laminate. The Young measure (v;) corresponding to
the sequence of gradients Dy) can be identified from the probabilistic description (2.6).
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Clearly one has a chance  of finding the value Dy(¥) = A and 1 — X of finding the value
DyU) = B, and hence v, = v is independent of z and given by

v=As+ (l —A)éB.

The corresponding macroscopic deformation gradient is the weak limit Dy of Dy,
namely

Dy=XA+(1-))B.

In general, the passage from the microscopic continuum theory to a macroscopic one
is achieved via weak limits and quasiconvexification. For example, according to the
relaxation theorem of Dacorogna (see Section 4) we expect the macroscopic deformation
(weak limit) y to minimize the relaxed integral

QI(y) = fn Qu(Dy) dz,

where we have suppressed the dependence on 6. (See, however, Section 6.1.) A special
case is that of microstructures of least possible energy, corresponding to sequences Dy()
of deformation gradients with Dy(/) tending in measure to the set of energy wells K.
The associated Young measures (v,) are those with

suppr, C K a.e. z €. (5.2)

The corresponding macroscopic deformation gradients are those with values in the qua-
siconvexification Q(K), which can be expressed in the alternative forms

QK) = {AeM*®: inf /nep(Dy)dx=0}

vlen=Az

= {7:v a homogeneous gradient Young measure with suppv C K}.

Unfortunately the computation of Q(K) is a nontrivial task. For example, it is an open
problem to calculate Q(K) when K consists of the three tetragonal wells in a cubic-to-
tetragonal transformation, i.e. when

3
K =|J So@)u..

i=1

However, the computation can be done for the case of just two tetragonal wells, namely
for

K = SO(3)U; U SO(3)Us,, (5.3)
to which the general case
K =S0(3)UuSO(3)V,

of two wells with det U = det V' that are rank-one connected (i.e. rank(U — RV) =1 for
some R € SO(3)) can be reduced via a linear change of variables (cf. Ball and James
[22)).
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THEOREM 5.1 (Ball and James [22], [21]). For K given by (5.3), Q(K) consists of those
A € M3*3 with det A > 0 such that

a ¢ 0
ATA=|e¢ 0],
0 0 n}

a+b+2 n? +n3,
ab—c* = min.

o o

where a > 0,b > 0, and

IA

Furthermore, any invertible y with Dy(z) € Q(K) a.e. is a plane strain, i.e.

y(z) = Q(z1(z), 22(), mz3 + )
with Q € SO(3), and
621 622 -0

dzy  Ozy
The proof is in part based on the minors relations
< g, J >= J(Pz),

for any minor J = J(A) of A. These are the relations obtained by considering the
case when equality holds in (4.5). Clearly equality holds if and only if £f is quasiconvex,
which is known to be true (see [5], Dacorogna [45]) if and only if f is an affine combination
of minors. It is apparently a piece of luck that one can get away with using just these
relations rather than the general set (4.5).

As observed by Ball and Carstensen [11], the plane strain assertion in Theorem 5.1
leads immediately to a statement concerning non-attainment.

COROLLARY 5.2. If A € Q(K)\K then
inf ] Y(Dy) dz
Q

ylea=Az

is not attained.

Proof. Suppose A € Q(K) and that y is a minimizer. Then Dy(z) € K a.e.. Since
ylaq is linear, a known invertibility theorem [6] ensures that y is invertible. Hence by
the theorem y is a plane strain. But it is easily shown that a plane strain that is linear
on the boundary of a (three-dimensional) region must itself be linear. Hence Dy = Ais
constant, and so ¥(A4) =0, ie. A€ K.

It follows from Corollary 5.2 that for A € Q(K)\K minimizing sequences for I generate
microstructure. In two dimensions the corresponding result is false (cf. Miiller and Sverak
(90]).

It is not possible to do justice here to the many interesting contributions to this area;
so instead we give an incomplete set of additional references for various topics:

General surveys. Ball and James [17], Luskin [82], Miiller [89], Pitteri and Zanzotto [99].

Continuum theories of crystals and twinning. Ericksen [54], [55], [56], [57], (58], Gurtin
[64], James [68], Pitteri [98], Zanzotto [114].
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Microstructures and energy-wells. Bhattacharya [32], Bhattacharya, Firoozye, James,
and Kohn [33], Chipot and Kinderlehrer [39], Fonseca [60], Hane [65], Kinderlehrer [71],
Matos [84], Sversk [104]. For the special case of austenite-martensite interfaces see [20]
and Ball and Carstensen [11], [12]. For special microstructures, including those that are
only possible when special relations between lattice parameters hold, see Bhattacharya
[30], [31], Ruddock [100]. For interesting explicit examples of quasiconvexifications see
Kohn [74], Pipkin [96], [97].

Metastability and hysteresis. Abeyaratne, Chu and James [1], Ball, Chu and James [13),
[14], Ball and James [19], Chu [40].

Theories with interfacial energy. Fonseca [61], Dolzmann and Miiller [52], Kohn and
Miiller [75], [76].

Polycrystals. Bhattacharya and Kohn [34], [35].

Numerical computations. Carstensen and Plecha¢ [37], [36], Collins, Kinderlehrer and
Luskin [42], Collins and Luskin [43], Dolzmann [51].

Magneto-elastic materials. A. DeSimone [50], James and Kinderlehrer [69], [70].

Dynamics and minimizing sequences. Ball [9], [10], Ball, Holmes, James, Pego and Swart
[16], Friesecke and McLeod [62], Pego [95].

6. Some outstanding open problems. In this section I highlight some important
open problems of the multi-dimensional theory in the context (see Section 4) of integrals
of the form

16) = [ f@..Dy)ds (6.1)
subject to mixed boundary conditions

ylon = g, (6.2)

where the hypotheses are as for (4.1).

6.1. To characterize quasiconvez functions. The problem is to give a tractable char-
acterization of quasiconvex functions. At present we do not know how to verify whether
or not a given f = f(Dy) is quasiconvex. Morrey introduced quasiconvexity in his 1952
paper [87]. Later, in his 1966 book [88] he wrote (with a change to modern terminology),
“It is an unsolved problem to prove or disprove the theorem that every rank-one convex
function is quasiconvez”. This conjecture was finally disproved in 1992 by Sversk [103],
who for the dimensions n > 2,m > 3 found a quartic polynomial that was rank-one
convex but not quasiconvex. This eliminated the only existing plausible conjecture for a
characterization. (For a review of the question prior to Sverék’s work see [7].) The cases
n 2 2,m = 2 remain open, and there is some circumstantial evidence that rank-one con-
vexity could be the same as quasiconvexity if m = n = 2 (see Dacorogna and Haeberly
46], [47], Parry [92], Pedregal [93], Pedregal and Sverdk [94]).

In his original paper [87] Morrey had written: “In fact, after a great deal of experi-
mentation, the writer is inclined to think that there is no condition of the type discussed,
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which involves f and only a finite number of its derivatives, and which is both necessary
and sufficient for quasiconvexity in the general case”. Morrey’s intuition was vindicated
when Kristensen [78] used Sverdk’s example to show that for n > 2,m > 3 there is no
local condition on f that is necessary and sufficient for f to be quasiconvex. Thus, for
these dimensions, any characterization must be nonlocal (e.g. of the form that a function
is quasiconvex if it is the supremum of some family of special quasiconvex functions).

A by-product of a successful characterization might be to make the theory of quasi-
convezity apply to elasticity. At present the basic existence, regularity, and relaxation
theorems described in Section 4 do not apply to elasticity because they make growth
hypotheses that are inconsistent with the property (4.2). It is hard to see how to extend
the current proofs without a better understanding of approximation by piecewise-affine
functions in the presence of pointwise constraints on the determinant. However, a new
characterization of quasiconvexity might lead to different proof ideas for which these

- approximation problems could disappear.

The problem of characterizing quasiconvexity can be posed also for integrals depending
on higher derivatives (cf. Meyers [86], Ball, Currie and Olver [15]). In this context the
problem is open even in the scalar case. For example, there are no known tractable
conditions on f that are necessary and sufficient for the integral

I(u) =_/Qf(“a:m“yw“zy)dr

to be sequentially weak* lower semicontinuous in W?>°(Q2), where @ C R? is bounded,
open, and u: Q) — R.

6.2. To extend the Weierstrass theory of local minimizers to multiple integrals. The
goal here is to find a set of necessary conditions for a given 7 to be a local minimizer of
I with respect to the boundary conditions (6.2) in the space wWiP(Q;R™), 1 < p < oo,
which when slightly strengthened will also be sufficient. The natural generalizations
of the Weierstrass condition to the case of multiple integrals with m > 1,n > 1 are
the conditions of quasiconvexity in the interior, namely that if z € 2 then f(z,¥(z),") is
quasiconvex at D(z), and of quasiconvezity at the boundary, which is a similar condition
applying to boundary points z € 90, = 92\ (see Ball and Marsden [24]). So
a conjecture would be that if § is sufficiently smooth and satisfies the weak form of
the Euler-Lagrange equation, the strict positivity of the second variation (the natural
generalization of (3.6)), and appropriate generalizations of quasiconvexity in the interior
and at the boundary, then § is a local minimizer of I in W'*. The methods of field
theory seem doomed to fail, since they rely on null Lagrangians (integrands whose Euler-
Lagrange equations are identically satisfied), and these are associated with polyconvexity
rather than quasiconvexity. When m = 1 or n = 1 the quasiconvexity conditions reduce
to the Weierstrass condition, and the Fundamental Sufficiency Theorem holds. For the
case n = 1,m > 1 see, for example, Hestenes [67]. The case n > 1,m = 1 is less well
known; see Hestenes [66] and, for a modern treatment and other results, Taheri (108].

6.3. Regularity of minimizers. Since the work of De Giorgi [49] and Giusti and Mi-
randa [63] it has been well known that minimizers of “elliptic” multiple integral problems
can be singular. Most examples of such singular minimizers are discontinuous; for exam-
ple, of the form y(z) = z/|z|. An exception is the example of Necas [91], who constructed
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an example of a strictly convex smooth integrand f = f(Dy) such that

1) = [ foyas, (63)
where BC R"isaballand y: B — R"?, n 2 5, with unique minimizer
IiT;
ig(z) = 72 (6.4)
’ |z

subject to its own boundary conditions. Note that ¢ is Lipschitz but not C*.

Two important open questions are:
(1) Are there examples of strictly quasiconvex integrands f = f(Dy) such that I has
a singular minimizer § that is continuous but whose derivative Dj is unbounded in the
interior? The condition that § is continuous is automatic by the Sobolev embedding
theorem provided f satisfies the growth condition

f(A) > ColAPP —C,  for all A€ M™™, (6.5)

for constants Cy > 0,C; and p > n.
(2) Are there useful conditions guaranteeing that any minimizer § of (6.1) belongs to
Ce(R™) (or C*(%;R™))? Possible supplementary conditions (both satisfied for
elasticity theory) are low values of m and n and invariance of the integrand under some
group.

Ideally one would like not only conditions implying regularity, but a classification of
possible singularities that can otherwise occur, with associated hypotheses that eliminate
them.

7. The future. Having charted a selective path from the beginning of the modern
era of the calculus of variations to the present day, it is natural, but no doubt rash,
to speculate about what the future may hold for the subject. In the medium term one
could hope for a substantially increased understanding of the multi-dimensional theory
and especially of quasiconvexity, and a penetration of the newly-developed methods into
other branches of mathematics. For example, one might conjecture that quasiconvexity
could have a role to play in topology, since the class of quasiconvex functions contains
more information about gradients than does the class of null Lagrangians, and these are
used to define various topological invariants. One could also hope to better appreciate the
relation between the dynamics of infinite-dimensional systems with a Lyapunov function,
and the corresponding variational problem of minimizing the Lyapunov function over the
state space. Most physical applications of the calculus of variations have such an origin,
and there are fundamental issues that have not been sufficiently explored concerning
the relationship between different kinds of local minimizers and their dynamical stability
properties, and the extent to which dynamical solutions generate minimizing sequences.

Thinking further ahead, there is a general lesson to be drawn from the history of
the subject. There have been periods in which the calculus of variations has developed
successfully more or less as a branch of pure mathematics. Examples are the development
of field theory by Weierstrass and Hilbert, and of the direct method by Tonelli and his
school. However, these periods came to an end as the techniques being studied were
worked out. An example is the demise of the Chicago school, much of whose fine work
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finally lacked direction. Listen to the words of one of its members, E. J. McShane [85],
written in 1978:

“The problem of Bolza was the most general of the single-integral problems of the cal-
culus of variations. Its mastery gave us the power to answer many deep and complicated
questions that no one was asking. The whole subject was introverted. We who were
working in it were striving to advance the theory of the calculus of variations as an end
in itself, without attention to its relation with other fields of activity.”

The necessary injection of ideas from outside was provided to McShane and others
by the newly emerging problems of control theory. Morrey’s basic work on the multi-
dimensional theory languished unappreciated for many years, until its importance for
elasticity theory became apparent. Currently we are fortunate to be in a period in which
the problems of materials science are posing fundamental new questions. But this period
too will come to a natural end, and we will have to wait for new questions posed by
nature to push the subject forward again, just as the problem of the brachistochrone did
300 years ago.
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The time I spent in the Division as a postdoc had a major influence on my mathematical
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participate in the celebrations. An earlier version of the lecture was given at the Isaac
Newton Institute, Cambridge, on the occasion of the 300th anniversary of Newton’s so-
Jution of the brachistochrone problem, and is available as a video [4]. 1 am grateful to
P. Loewen and J. Troutman for useful references, and to Jan Kristensen for suggesting
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