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Abstract. This paper represents an attempt to understand, from basic principles, the origins of hysteresis during variant 
rearrangement. As a framework for this study, we focus on the biaxial loading experiments conducted in 171 on single crystals 
of 7; martensite, oriented so that two compound twinned variants of martensite have least energy. Our analysis supports the 
idea that hysteresis (at least in these slow cyclic experiments) is due to metastability: as the loads are changed, the current state 
goes from stable to metastable to unstable. The idea we explore is that the metastability is essentially caused by geometric 
incompatibility. That is, even though there is a state of lower energy than the metastable state, it is necessarily geometrically 
incompatible with it, and this gives rise to an energy barrier. We show that this concept of metastability (based on calculating 
relative minimizers of energy) has a close relation with the Schmid Law and reveals an interesting dependence on the shape 
of the specimen. Further details and background for the ideas presented here can be found in [4], forthcoming. 

1. BIAXIAL LOADING EXPERIMENTS 

To test any idea of metastability as it relates to hysteresis, it is helpful to have a set of experiments for 
which the beginning and ending states are single-variant (so that one need only assess the metastability of of 
the single variant state) and for which there are several independent control parameters, so that the idea is 
rigorously tested. The experiments of Chu and James [1,7,8] are of this type. They are orthogonal biaxial 
loading experiments on single crystals of Cu- 14.0wt.%Al-3.9wt.%Ni in the fully transformed yi martensitic 
phase. The loading device in these experiments was specifically designed to be governed by the free energy, 

where y (x) is the deformation (defined on the reference configuration a) and T is a constant 3 x 3 matrix of 
the form 

0 0 0  
(2) 

in a certain fixed basis el, e2, e3 (the "machine basis"). The two constants (TI and a2 are the engineering 
stresses applied to the edges of the specimen. See [4] for further background and [7] for the technical details of 
how the design of a machine based on (1) was carried out; briefiy, the loading wires are attached to the edge of 
the specimen (a thin square plate 2.54 cm x 2.54 cm with normal (100)) and all loading wires along one edge 
pull with approximately the same force, no matter how the specimen deforms. The resultant forces in the two 
directions el, e2 can be independently controlled and, by varying the ratio of these forces, the stable variant 
can be made to shift. It was noted in these experiments that the technical details of constructing a loading 
device faithful to (1) are important; if slight changes in the loading device are made, then the hysteresis loops 
change considerably, even when the evolution of the resultant forces remains the same. 

The reason for designing a loading device that accurately simulates the energy (1) is that, if the total free 
energy of the specimen and loading device has the form ([2,3]), 

i.e., the energy of the specimen is given by the first integral in (3), then (under mild hypotheses on p) linear 
deformations minimize energy. That is, if the 3 x 3 matrix G = A minimizes the integrand p(G, 8 )  - T . G,  
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then the deformation y(x) = Ax minimizes the total energy (3) relative to all other deformations. In (31, B 
is the temperature. 

In this machine specimens of essentially any orientation can be meaningfully tested, i.e. the specimen 
axes do not have to line up with the machine axes. For the tests considered here the specimen was oriented 
so that, according to the calculation presented in Section 2 below, just two of the six possible variants of 
martensite have lowest energy for all values of the loads, and these two variants are compound twinned. 
These particular variants were chosen because it is known from [lo] that the twin interfaces in this case are 
extremely mobile, and for this study we wanted to explore metastability alone. 

The results of the tests of interest here are as follows ([7]). For most values of ul and u2 the specimen 
was observed to be homogeneously deformed in a single variant of martensite (say, variant 2), as expected 
based on the design of the machine. As the loads changed, this deformation changed slightly due to elastic 
deformation of this variant. Occasionally, on certain loading paths, this deformation became unstable at 
certain values of the stresses uyit. and myit., and there occurred a rapid avalanche of variant rearrangement, 
invoking microstructures of the two variants, that led to a single, homogeneously deformation of variant 1. 
Continuing on this loading path, the deformation remained homogeneously deformed in variant 1. Reversing 
the loading path, the specimen remained in variant 1 until certain critical loads, different from orit. and uyit., 
were reached, and there followed an abrupt transition back to variant 2. A plot of the volume fraction X of 
variant 1 as a function of a1 - uz, on a loading program in which u1 + o2 was held constant, is shown in 
Figure 1. 
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-4 -3 -2 - 1  0 1 2 3 4 
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Figure 1. Typical outer loop: X vs. o1 -u2 with 01+u2 = 10.7 MPa. 

Note the squareness of the hysteresis loop and the absence of a rate-effect at these rates. From these loops 
the transition stresses can be identified as the values corresponding to X = 0.5. Of course, these values of 
depend on the loading path, and it was found that for various loading paths these values corresponding to the 
variant 1 4 2 transition fall nearly on a straight line, and those corresponding to the variant 2 --+ 1 transition 
fall on a parallel line, as shown in Figure 2. 



Figure 2. Effect of loading path. The circles are experimental, the dashed line is given by the minimum energy 
calculation of Section 2 and the dotted line is the loading path described in Section 3. 

The distance between these two lines is a measure of the size of the hysteresis. In incremental tests, with a 
relatively long waiting period between increments, it was found that transition occurred also on two straight 
lines a little inside of the solid lines pictured in Figure 2, as might be guessed from the slight roundedness 
of the shoulders of the hysteresis loop shown in Figure 1. In fact, the transition stresses were found to be 
sensitive to imposed disturbances: by tapping lightly on the loading wires, the transition could be induced 
at stresses somewhat inside the lines shown in Figure 2. Thus, the identification of the transition stresses as 
the values corresponding to X = 0.5 is a little arbitrary, and the actual stresses at transition depend on the 
disturbances present, which originally motivated us to consider metastability as the source of hysteresis. 

Specimen orientation had a significant effect on hysteresis, as shown in Figure 3. All specimens used in 
the tests shown in Figure 3 had face normal (100) (cubic basis) but had edge normals (1 lo), (1-10) for AlS2, 
(0.34,0.76,0.56), (0.047,0.58, -0.82) for 1-10, (0.34,0.88,0.35), (-0.043,0.36, -0.93) for 1-9 and (0.21,0.88, 
-0.43), (-0.27, -0.37, -0.89) for 1-6. 

Figure 3. Effect of orientation on hysteresis. See text. 
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2. MINIMUM ENERGY 

For the y; martensite studied here, cp(G, 8) has six energy wells corresponding to the six variants of martensite 
([2,5]). These are defined by the six matrices, 

in the cubic basis, where cr = 1.0619, = 0.9178 and y = 1.0230. That is, suppressing the dependence of 
cp on 8 (since the experiments described above were done at a fixed temperature below A,) we assume that cp 
has minima at these matrices. Since by general principles cp must also be frame-indifferent, cp(RG) = p(G) 
holds for all 3 x 3 matrices R in the set SO(3) = {R : R T R  = 1, det R = 1) and all 3 x 3 matrices G,  then 
cp must also be minimized at all matrices of the form RU1, . . . , RU6, where R E SO(3). For simplicity, we 
let M = S0(3)U1 U . . . U S0(3)U6 be the collection of all the energy wells. 

As discussed above, the problem 
min{cp(G) - T . G )  

G (5 )  

serves to determine energy minimizing homogeneous deformations. One can do a direct calculation of the 
minimizing deformation gradients from (5), after using the measured linear elastic moduli of the material to 
determine the shape of cp near each of its energy wells. Because of the fact that all the stresses used in the 
experiments were much smaller than these linear elastic moduli, the minimizers of (5) lie exceedingly close 
to the energy wells and, one obtains an excellent approximation to these minimizers by minimizing (5) under 
the additional constraint G E M (see [4] for further discussion). Throughout the rest of this paper we shall 
operate within this constrained theory, for simplicity. This simplifies (5), since cp = const. on M, and really 
reflects the fact that the loading device energy dominates the specimen energy [I]. With this constraint and 
the properties of cp we have assumed, (5) becomes 

min {const. - T . RUi) 
i€{i, ..., 6), RESO(3) 

(6) 

The solution of (6) is a straightforward algebraic calculation [4,7]. The result depends strongly on orientation, 
i.e. the relation between the machine basis and the cubic basis, as expected based on the form of (6). For all 
of the orientations represented in Figure 3 and for a1 > 0 and a 2  > 0, the minimum in (6) is attained with i 
= 1 or 2. Having said this, the best way to express the result is to draw the locus of points in the ul, a 2  plane 
at which variants 1 and 2 have the same minimum energy, i.e., at which (6)  has equi- minimizers with i = 1 or 
2. This locus is shown as the dashed line in Figure 2 for that orientation. Below this line variant 2 is stable; 
above this line variant 1 is stable. It is seen that the dashed line nearly bisects the two lines that define the 
size of the hysteresis, and this also occurs for the other orientations tested (Note that in Figure 3, the slopes of 
the pairs of transition lines are different for different orientations). However, a minimum energy calculation 
cannot explain the size of the hysteresis. 

3. METASTABILITY AND GEOMETRIC INCOMPATIBILITY 

Before explaining the notion of metastability we believe is operative in these experiments, we recall the 



conditions of compatibility. A deformation y (x) of the form 

Ax,  x . n  5 0, 
B x ,  x . n > O ,  A # B ,  

is continuous ("fiducial scratches can bend sharply but never break") if and only if rank(B-A) = 1. We use the 
terminology "A and B are rank- 1 connected" if rank(B - A )  = 1. The pairs of rank- 1 connected matrices that 
lie on distinct energy wells describe the possible twinning deformations in the material [2]. For example, if 
A = R U 1  for some rotation matrix R ,  then there are precisely two matrices, B1 = R I U z  and B2 = R2U2,  
on S0(3)U2 that are rank-1 connected to A,  and these describe the reciprocal twins. Explicit formulas for 
the rotations R1 and R2 are given in [4]. 

To be definite, consider a loading path a1 = const. > 0 and 0 2  increasing from zero. If a 2  > 0 is 
small, variant 1 is stable (according to the minimum energy calculation (6)), and a homogeneous deformation 
closely given by y(x) = R U l x ,  R E S0(3) ,  is observed in the experiments (It was difficult comparing 
the predicted value of the rotation matrix R based on (6) with observations, because of the difficulty of 
establishing a reference for measuring angles). For each value of a 2  > 0 there is a unique rotation matrix 
R(a2) that minimizes -T - RU1. The deformation y(x) = R(a2)Ulx is the absolute minimizer of the 
energy until (a l ,  a2) reaches the dashed line of Figure 2. Now continue increasing a 2  so that (al, a2) is a little 
past the dashed line. Then variant 1 no longer minimizes the energy, and there is a rotation matrix ~ ( a z )  such 
that y (x) = ~ ( a 2 ) u z x  has minimum energy. In fact, there is a small set S of matrices containing R ( O ~ ) U ~  
such that the associated deformations have less energy than y (x) = R(a2)Ulx. One can calculate explicitly 
these matrices and one finds by direct calculation that R(a2)Ul is not rank-1 connected to any of them. In 
summary, we are at a pair (al, a2)  a little to the right of the dashed line in Figure 2, we are considering the 
metastablility of the deformation y(x) = R(u2)Ulx, there is a small set S of 3 x 3 matrices on the other 
well S0(3)U2 that have a smaller value of the energy density than R(a2)U1, and none of the matrices in S 
is rank-1 connected to R(a2)U1. 

Now suppose we consider a small disturbance of the deformation y(x) = R(a2)Ulx. By "small" we 
have in mind that the deformation of the disturbed state remains close to y(x) = R(a2)U1x. but that its 
deformation gradient may be far from R(u2)U1 (TO keep the deformation of the disturbed state close to 
y(x) = R ( u ~ ) U l x ,  it follows necessarily that its deformation gradient Can only stray far from R(a2)U1 on 
a small part of the specimen). Thus, the problem of metastability is to show that all such small disturbances 
have more energy than the given state. This is quite plausible, in that there are no rank-l connections between 
S and R(a2)U1. Indeed it is shown in [4] that all such sufficiently small disturbances have more energy 
than y(x) = R(a2)Ulx (See [4] for the precise statement). The idea behind the argument is the following: 
any sGal1 region with deformation gradient B y  E S necessarily must be surrounded by a transition layer on 
which V y  is far from both wells, due to the lack of rank-1 connections, and one "pays" more in energy for the 
transition layer than one gains by having V y  E S (see [I I] for an earlier version of this kind of argument). 
The argument is tricky because the lack of rank-1 connections between deformation gradients does not in itself 
prevent microstructures being constructed from them (see [6]) but, in this case, because all the deformation 
gradients in question are near just two matrices that are not rank-l connected, such microstuctures are ruled 
out. The argument does not adopt a particular "shape" of the disturbance, and there is a version of it that 
applies when interfacial energy contributions are also included. 

Unfortunately, our methods are not yet sufficiently refined to say precisely where metastability is lost, 
but only say that if (al ,  a2) is a little to the right of the dashed line, the state y(x) = R(a2)Ulx  remains 
metastable. 

4. THE SCHMID LAW AND THE EFFECT OF SHAPE 

While we are not yet able to predict a precise "size of the hysteresis," it is easy to get an upper bound. Again, 
for definitness, we consider the loading path described above with a1 fixed. As we increase a 2  to the right of 
the dashed line in Figure 2, the set S of matrices (with energy density less than R(u2)U1) grows. Eventually, 
we reach a first stress ( ~ g  = a; such that for a 2  > a,* S contains a matrix that is rank-1 connected to R(a;)U1 
(Recall that R(a;)U1 is rank-1 connected to exactly 2 matrices on the well S0(3)U2).  Let B* be rank-1 
connected to R(a2)U1 for a 2  slightly greater than a;, B* - R(a2)U1 = a 8 n. Now make the following 
elementary construction shown in Figure 4: a deformation with a thin twin band with normal n and having 
the deformation gradient B* . 
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Figure 4. A deformation that yields an upper bound to the size of the hysteresis when az >a; 

By construction, this deformation can be made as close to y (x) = R(u2)U1x as desired (by making the twin 
band thin), it lowers the energy, and it is compatible. Hence, y(x) = R(a2)Ulx fails to be metastable for 
a2 > a,*. Combining the conditions that B* be rank-1 connected to R(a2)U1 and that B* have a smaller 
energy density than R(a2)U1, we have 

But this last inequality is just the Schmid Law (with Schmid constant 0). This establishes a direct relation 
between the Schmid law and metastability, which we believe represents the physical basis of this law for 
variant rearrangement. The condition that defines a;, i.e., a . Tn = 0, can also be plotted for various 
orientations using forward and reverse loading paths. This compares reasonably well with the experimental 
values of the size of the hysteresis based on the incremental tests, but underestimates the size of the hysteresis 
shown above in Figure 3 (See [4] for a detailed comparison). If we also include interfacial energy, our essential 
argument would remain unchanged: a construction like Figure 4 would also give a Schmid law, but with a 
positive constant. Note that with finite deformations considered, as in the present study, a Schmid constant of 
0 still gives hysteresis. 

The Schmid Law gives an upper bound for metastability, but could it be a sharp upper bound? In 
general, the answer is no within the present framework. If the specimen has an appropriate sharp corner, 
then, surprizingly, more complicated deformations lower the energy before a,* is reached. The details can be 

found in [4], and are framed in the context of a slight generalization of the constrained theory which allows 
for transition layers. The argument relies on the compatible microstructure pictured in Figure 5. The idea is 
that the deformation gradient C is "well-inside" the region S and strongly lowers the energy but need not be 
rank-1 connected to R(a2)U1 because of the intermediary laminate. 

Figure 5. Microstructure that lowers the energy at stresses below the Schmid stresses for a pointed specimen. 

This argument, which needs further study, suggests that one might lower the hysteresis by placing on the 
specimen certain outward pointing sharp comers. Paradoxically, in ferromagnetism, certain inward pointing 



comers drastically reduce the M vs. H hysteresis; however, this is apparently closely related to the behavior 
of the magnetic field near such comers. 
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