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1. Introduction. In this paper we investigate the connection between strong ellipticity
and the regularity of weak solutions to the equations of nonlinear elastostatics and
other nonlinear systems arising from the calculus of variations. The main mathe-
matical tool is a new characterization of continuously differentiable strictly convex
functions. We first describe this characterization, and then explain how it can be
applied to the calculus of variations and to elastostatics.

Let U c IRnbe open and convex. A function ifJ: U -+ IRis said to be strictly convex if
ifJ(tx+(l-t)y) <tifJ(x)+(l-t)ifJ(y) whenever X,YEU, x=I=y, and tE(O,l). (For
general information on convex functions see Rockafellar (22).)We shall prove (Theorem
1below) that if ifJis Ct, then ifJis strictly convex if and only if (i) 'VifJis locally 1-1, and
(ii) ifJis convex at (at least) one point of U. The necessity ofthese conditions is obvious,
and it is their sufficiency that is interesting. Geometrically, (i) says that neighbouring
but distinct points of the graph of ifJhave distinct tangent spaces. The role of (ii) is less
obvious. The trivial example U = (0,1) c /Rt, ifJ(x)= _X2, shows that condition (i)
alone does not imply strict convexity; however, one might conjecture that'if U = /Rn,
if (i)holds, and if ifJ is bounded below,then ifJ is strictly convex. This conjecture is false
if n > 1. An example with n = 2 is the function

ifJ(x, y) = e'U-zl

which is convex at no point of /R2.
The main idea in the proof of the sufficiency of (i) and (ii) is to study the asymptotic

behaviour of solutions to various gradient systems of ordinary differential equations
defined on U, and thus, in the spirit of Morse theory (cf. Palais & Smale(19»), to
establish the existence of a non-trivial critical point of a suitable function. To achieve
this we use an idea of Olech(17) and Hartman and Olech(12). Since we assume only
that ifJ is Cl, the gradient systems we consider may possess nonunique solutions for
given initial data, and this complicates somewhat the technical details. A much simpler
proof of the strict convexity of ifJunder the stronger hypotheses that 'VifJ~s 1- 1in U
and that ifJsatisfies a growth condition, is given in Theorem 2, which applies also to
functions that are convex but not strictly convex.

* On leave from Heriot.Watt University, Edinburgh EH14 4AS. Research partially supported
by U.S. Army Contract no. DAAG29-79.C.OO86.
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We turn now to the applications of Theorelll1. Let Q be an open subset of IRn,and
consider the functional

I(u) =f 11 W(Vu(x)) dx,

where u: Q-;.-lRm.The Euler-Lagrange equations corresponding to (1.1) are

(1'1)

~:;J-=-O~i-=-l~,m~;

The equilibrium equations of nonlinear elasticity for a homogeneous body under zero
body forces have the form (1'2) with m = n = 3, and in this case W is the stored-energy
function of the material. W is said to be strongly elliptic, and (1'2) to be a strongly
elliptic system, if

-P---2)

B2W(F) "\P;
BFi BF; /l /l fta-ftp > 0a- p

for all F and all nonzero vectors AE IRm,ft E IRn.If equality is allowed then (1.3) is'known
as the Legendre-Hadamard condition. The existence of minimizers for I(u) for various
boundary problems of nonlinear elasticity under hypotheses implying the Legendre-
Hadamard condition has been established in (2, 3), and corresponding results for
arbitrary m, n given in (4).However, even if W is smooth it is not known under what
conditions weak solutions of (1'2) are 01 functions. Examples of discontinuous equi-
librium solutions in nonlinear elasticity with W strongly elliptic will be given in (6).
In these examples the discontinuity takes the form of a hole appearing at the centre of a
solid body under tension. (Other examples of discontinuous weak solutions to strongly
elliptic systems with similar singularities have been given by Giusti & Miranda(9) and
Necas(16), but they do not apply to nonlinear elasticity.)

Although strong ellipticity does not prevent the type of singularities mentioned
above, under a mild positivity condition on W it is essentially necessary and sufficient
for there to be no continuous weak solutions u of (1' 2) in which the only singularity is a
jump in Vu across a smooth (n-1)-dimensional surface (taken for simplicity in this
paper to be a hyperplane). This result (Theorem 3below) is stated precisely and proved
in Section 3, essential use of Theorem 1 being made in the proof. Actually, in the state-
ment of Theorem 3, (1'3) is replaced by the condition that W be strictly rank 1 convex.
Strict rank 1convexity bears exactly the same relationship to strong ellipticity as does
strict convexity of a functionf(t) of a single variable to the condition!" > O.A fortiori,
Theorem 3 implies that strict rank 1 convexity of W is a necessary condition for all
weak solutions of (1.2) to be 01. Despite this, in non-linear elasticity one should not
discard stored-energy functions that are not strictly rank 1convex, since such functions
may correspond to materials that can undergo phase transitions (Ericksen (7,8)). For
more information on non-elliptic problems in elasticity see Knowles & Sternberg
(13-15).

In Section 4 we use Theorem 1 in a different way to deduce information concerning
the nonuniqueness and bifurcation of homogeneous equilibrium states of an elastic
cube subjected to given uniform normal surface tractions.
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2. Necessary and sufficient conditions for strict convexity. Notation: <,) and' \'j
denote the standard inner product and norm in IRnrespectively. If A c IRnthen eA
denotes the boundary of A. B(x, e) (resp. B(x, e)) is the open (resp. closed) ball in IRn
with centre x and radius e.

Definition. Let U c IRnbe open. A function u : U -+ IRnis locally 1- 1 if every x E U
possesses a neighbourhood in which u is 1- 1.
The main result-uf-this-section-isthe-following.

THEOREM1.Let U c IRnbeopen and convex, and let rjJECl( U). Necessary and sufficient
conditions for rjJto be strictly convex are that

(i) VrjJis locally 1-1, and
(ii) there exists a locally supporting hyperplanefor rjJat some point of U; i.e. there exist

XoEU, e > 0, such that
rjJ(x) ~ rjJ(xo)+(VrjJ(xo),x-xo) (2'1)

ifxEB(xo,e) nU.
The necessity of conditions (i), (ii) is well known; in fact, the following standard

result shows that if rjJis strictly convex then VrjJis 1-1 in U, and that (2'1) holds with
strict inequality whenever x, XoE U, x =1=xO'

LEMMA1. Let U c IRnbe open and convex, and let rjJECl( U). Then the following are
equivalent:

(a) rjJis strictly convex.
(b) rjJ(x)> rjJ(y)+ (VrjJ(y),x-y) whenever X,YEU,x=l=Y.
(c) VrjJis strictly monotone; i.e.

(VrjJ(x)-VrjJ(y),x-y) > 0 whenever X,YEU,X=1= y.

To prove the sufficiency of conditions (i) and (ii), we will need some auxiliary results.
Let U c IRnbe open and convex, and let rjJECl(U).

Definitions. Let XE U. We say that rjJis convex at x if

rjJ(y)~ rjJ(x)+(VrjJ(x),y-x)

for all y in a neighbourhood of x, and that rjJis strictly convex at x if

rjJ(y)> rjJ(x)+ (VrjJ(x),y-x)

i for all y =1=x in a neighbourhood of x.

: The following result is elementary.
I LEMMA 2. rjJis strictly convex if and only if rjJis strictly convex at x for every x E U.,

I

Proof. The necessity follows immediately from Lemma 1. Conversely, suppose that
rjJis not strictly convex. Then there exist x, yE U, x =1=y, toE (0, 1) such that

J
j rjJ(tox+(l-to)Y) ~ torjJ(x)+ (1-to) rjJ(y).

, Hence the maximum of the function
i
!

O(t) = rjJ(tx+(l-t)y) -trjJ(x)- (l-t)rjJ(y)

1 fort E[0, 1] is attained at some interior point T, and in particular

O'(T) = (VrjJ(Tx+(l-T)y),x-y)-rjJ(x)+rjJ(y) = o.

--- -- - - - - -- -------------------
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Thus

<jJ(tx+(1-t)y)-<jJ(TX+ (1-T)Y) ~ ('V<jJ(TX+(1-T)Y), (t-T) (x-y)

for all t E[0,1], and so <jJis not strictly convex at TX+ (1- T)y.1
From now on we suppose that 'V<jJis locally 1-1.

LEMMA3. Let XE U. The following conditions are equivalent:
{ar)-<jJ-is-ronvex-at-x ,

(b) <jJis,strictly convex at x,

(c) a bounded open set E exists containing x such that lE c U, 'V<jJis 1-1 in E, and

min <jJ(y)-<jJ(x)-('V<jJ(x),y-x) ~ O.
YEiJE

Proof. The implications (b) =?(a) =?(c) are obvious. Let (c) hold, and suppose that
(b) does not. Then there exists YEE, Y =Fx, such that

Hence
<jJ(y)-<jJ(x)-('V<jJ(x),y-x) ~ O.

m~ <jJ(y)-<jJ(x)-('V<jJ(x),y-x)
YEE

is attained at some interior point ZE E with Z =Fx. Differentiating, we obtain

'V<jJ(z)= 'V<jJ(x).

Since 'V<jJis 1- 1 in E, z = x. This is a contradiction. I
Define

S = {XE U: <jJstrictly convex at x}.

LEMMA4. S is open.

Proof. Let XES, and suppose there exists a sequence {xJ c U\S such that Xj-+x.
Let, E be a bounded open set containing x such that lE c U, 'V<jJis 1- 1 in E, and

<jJ(y)-<jJ(x)-('V<jJ(x),y-x) > 0

if yE oE. By Lemma 3, for each sufficiently large j there exists ZjEoE with

<jJ(Zj)-<jJ(Xj)-('V<jJ(Xj),Zj-Xj) < O.

Passing to the limit using a convergent subsequence of {Zj}we arrive at a contradiction.'

LEMMA5. Let V be a bounded open subset of IRn,and let 1frECl(V). Let CEV be a
st,rict local minimizer for 1frand the only critical point of 1frin V. Consider the differ-
ential equation

x = - 'V1fr(x). (2'2)

Let A denote the region of attraction of c, that is
A = {YEV: if x(t) is any solution of (2'2) satisfying x(O) = y, then X(t)E V for all

t ~ 0 and x(t)-+c as t-+oo.}
Then A is open, and if WoEoA n V there exists a solution w(t) of (2'2) with w(O) = wo'
and such that for some tmaxE (0, 00),

w(t)EoA n V for tE[O,tmax)' and W(t)-+WIEOV as t-+tmax'

-----------
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Proof. By hypothesis there exists IJ> 0 such that B(c, IJ)c V and such that

1jf(x)> 1jf(c) if 0 < Ix- cl :::;o.

a = min 1jf(x)> 1jf(c).
Ix-cl=8

505

. Let YoEA and suppose {Yro}c V\A satisfies Yro~YO' By Hartman(l1) Theorem 3,2,
t-p~-41-there-exist-solutiom'Yrof-(2-2t-y;:({)t=-y;:o,-maximaH y-defined-on-[ 0;r;:-)--and-not

tending to c as t~oo, such that for a subsequence y",Yp~Y uniformly on compact
; intervals of [0, T), where yis a solution of(2.2), y(O) = Yo,andyis maximallydefined on

[0, T). Furthermore

limTp ~ T.
1'-+00

I But T = 00 since YoEA. Let 01> 0 be such that 1jf(x) < a whenever lx-cl < 01' Then
i there exists T > 0 such that Iy(t)-cl < 01 for t ~ T. Thus IYp(T)-cl < 01 for large
, enough,u, and since 1jfis nonincreasing for solutions of (2'2) it followsthat
;

IYp(t)-cl < 0

for all t ~ T and that TI' = 00, provided ,u is large enough. For such ,u it follows from
, (2.2) that

f~ IV1jf(Yp(t))i2dt < 00,

\ and hence that V1jf(yp(tk)) ~ 0 for some sequence tk ~ 00. Since c is the only critical point

, of 1jf in V, Yp(tk)~C as k~oo. Since 1jf is nondecreasing, 1jf(Yp(t))~1jf(c) as t~oo, and
1

1

.. thus Yp(t)~c as t~oo. This contradiction proves that A is open.

. Let woEoAn V. We construct the required solution w(t) on a small interval [O,T].
The number T > 0 is chosen sufficiently small so that every solution of (2.2) with initial

j data Woexists and remains in V for tE [0, T]. Since A is open, wof/:A, and thus at least

lone such solution U>(t)exists such that w(t) E V\A for all tE [0,T].Let zrO~wo'zroEA.
j Then, by the result in Hartman (11)quoted above, ~here exist a subsequence zpoand
j solutions z'" z of (2'2) defined on [0, T] such that zp(O)= zpo,z(O) = wo' zp(t) EA for all
j t E[0,T],and zp~ z uniformly on [0,T].Thus z(t)EA for all t E[0,T].By Kneser's theo-
: rem (cf. Hartman((11) Theorem 4,1, p. 15)) the set of points {X(T):X(') a solution of
t (2'2) with x(O) = wo} is closed and connected. It contains one point in A and one point

1 not in A. Hence it contains a point in oA. Thus there is a solution z(l)(t) such that
j z(l)(O) = Woand Z{I)(T)EoA n V. Similarly we construct Z(2)in two steps so that
j

Z(2)(0) = wo' Z(2)(T/2)EOAn V, Z(2)(T)EOAn V,

and more generally Z{k)so that z{k)(O)= wo' z{k)(rT/2k)EOAn V for r = 1, ...,2k. The
solutions z{k) are uniformly bounded and equicontinuous. Hence they converge
uniformly on [0, T] to a solution w satisfying w(O) = Woand w(rT /2k) E oA n V for all k

and r = 1, ..., 2k. Thus w(t)EoA n V for all tE[O,T]. Let w be a maxim ally extended
solution on [0,tmax)with w(t)EoA n V for all tE [0, tmax)' If tmu were + 00 then a
subsequence w(tk) would tend to a critical point c 9=c in V as tk~oo, by the same

17 PSP87
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.~ f~Cf

~\

\

J

Hence
argument used above in the proof that A is open. Hence tmax < 00. But if tk-+ tmax-
then w(tk) is a Cauchy sequence, since

Iw(tj)- w(tkH = If::Vtfr(s)ds I ~ K Itk- tjl.

Tlius W(t)-+Wl ~OV'J;s-f=rlmax.1 ----

Thus ther

LEMMA6. S is closed in U.

Proof. Suppose not. Then there exist XoEU\S and a sequence {xi} C S with xi-+xO'
We claim that there exist a subsequence {xp} and a sequence {Yp}c U such thatyp-+xo
and

Let p-+iX

ifJ(yp)< ifJ(Xp)+ (VifJ(xp),yp-xp)' (2'3)

Hence V1

Proof ~
and since

by LemII
If this were not the case, then there would exist an e > 0 such that

ifJ(y)~ ifJ(Xi)+ (vifJ(xi)' y -xi) if Iy-xo\ ~ e. Remar,
attractioJ
(12),Hart
ordinary
might be
convex u

The fo

Lettingj-+oo we would then have

ifJ(y)~ ifJ(xo) +(V ifJ(xo),y - xo) if Iy- xol ~ e,

contradicting XortS.
Let V = B(xo,8), and choose8> 0 small enough so that V c U and VifJis 1-1 in V.

Choose p large enough so that xpoypE V. Define

tfrp(x) = ifJ(x)-(VifJ(xp),x).

Then tfrpEC1(V), and Vtfrix) = VifJ(x)- VifJ(xp)' Hence xp is the only critical point of
tfrp in V, and, since xpES, Xp is a local minimizer. Let A p be the region of attraction of
xp with respect to the equation

COROL
1- 1 in l

if xEE, I

1; = - Vtfrp(x). (2.4)
is negati1

Since tfrp is non-increasing for solutions of (2.4), and since (2'3) implies that

tfrp(yp) < tfrp(xp)'

Proof.
convex 2

It is r
function
that doeit follows that yprtAp' Therefore there exists wpoEoAp with IWpo-xpl ~ IYp-xpl. Let

wp be the solution constructed in Lemma 5. Thuswp(O) = wpo, wp(t) E oApfortE [0, t~~x)

and IWp(t)-xol-+8ast-+t~~r
Fix e with 0 < e < 8. For sufficiently large p, IWpo-xol < e, and so there exists a

largest time sp such that Iwp(sp)-xol = e. From (2'4),

If
tCUI

I8-e ~ Iwp(t~~x)-Wp(S,J I= ~""Vtfrp(wp(t))dt ~ C(t~~x-sp)'

where C is a constant. But since wp(t) EoA for all t E[0, t~~x] we have that

(2.5)

THEOJ

(1) j1-
(2) Vt
Then

Proof

tfrp(Wpo)~ tfrp(wp(sp))~ tfrp(wp(t~~x))~ tfrixp)'
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Hence

It(P)

oDa% IVIfrp(wp(t» /2dt = Ifrp(wp(sp» -Ifr p(wp(t~~x» ~ Ifrp(wpO)-Ifr p(Xp).
Bp

Thus there exists zp E V with Izp- xol ~ 6 and

C
IVqS(zp) - VqS(Xp)12 ~ 8-6 [qS(WpoL- qS(xp) - (VqS(xp),wpo-xp)].

Let #-+00, and let z be a limit point of z}l"Then 6 ~ Iz-Xol ~ 8 and

IVqS(z) - VqS(xo)12~ o.

Hence VqS(z)= VqS(xo),and so z = Xo. This is a contradiction. 1

Proof of Theorem 1 (Conclusion). Since S is open and closed in U, since U is convex,
and since S is nonempty by hypothesis (ii) and Lemma 3, it follows that S = U. Hence
by Lemma 2, qSis strictly convex. 1

Remarks. The idea of considering points lying on the boundary of the region of
attraction of a stable critical point is taken from Olech (17)(see also Hartman & Olech
(12),Hartman ((11),pp. 548-554). A possible alternative to the use in the proof of the
ordinary differential equations (2'4), which may in general have non-unique solutions,
might be to use the pseudogradient flows of Palais (18).Of course, o"nceqSis known to be
convex uniqueness for (2.4) follows.

The following consequence of Theorem 1 will be used in Section 3.

COROLLARY1. Let U c IRnbe open and convex, let qSECl( U), and suppose that VqSis
1- 1 in U but that qSis not strictly convex.If E is any boundedopensetwith JJj c U,and
if xEE, then

mip. qS(y)-qS(x)-(VqS(x),y-x)
yeE

is negative and is attained on oE.

Proof. Let E be bounded and open, JJj c U, and x EE. By Theorem 1, qSis not strictly
convex at x. The result now follows by the argument used in Lemma 3.1

It is not clear whether there is a natural generalization of Theorem 1 to convex
functions that are not strictly convex. However, we now give a simple global result
that does apply to such functions.

THEOREM2. Let U c IRnbe open and convex, and let qSEC1(U). Suppose that

(1) 1~i~r'-+oo if Xr-+XEOU or IXrl-+oo,
(2) VqS-l(X) is a convex set for every XE U.
Then qSis convex.

Proof. Let XE U. Consider the problem

minimize qS(y) - (VqS(x),y).
lIEU

17-2
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-

I

I

I

I

i

Si

We now,
,u~O, kEIJ;
F,GEE. W

On account of (1), the minimum is attained at some point ZE U. Differentiating, we
obtain VifJ(z}= VifJ(x),and hence

ifJ(y) ~ ifJ(z}+(VifJ(x},y-z)

for all YE U. Thus, since
.

ft

ifJ(z)-ifJ(x) = 7~(x+t(z-x},z-x>-dt

= (VifJ(x},z-x),
where a, b E

where we have used (2), it follows that

ifJ(y}~ ifJ(x)+ (VifJ(x},y-x)

for all YE U. Thus ifJis convex. I

for some A E

uis aweak~

Note that the same proof establishes the sufficiency part of Theorem 1 under the
stronger assumptions that VifJis 1-1 in U and that (1) holds. holds, i.e. i

3. Strong ellipticity and the regularity of weak solutions. Let .0 be an open subset of
jRn.Let Mmxn denote the set of real m x n matrices with the induced topology of jRmn,
and let E be an open subset of Mmxn. Let W ECl(E). Consider the functional

I(u) =f n W(Vu(x)}dx,
(3'1)

In nonlinel
librium the

We now

where u:.Q-+ jRm.The Euler-Lagrange equations corresponding to (3'1) are

a~(:: ) = 0 (i = 1,...,m),
,ex

(3'2)

whenever J
rank 1 con'

where the repeated suffix a indicates summation over a = 1,"...,n. A function u which,
together with its first partial derivatives (in the sense of distributions), is locally
integrable over .0, is said to be a weak solution of (3'2) if (3.2) holds in the sense of
distributions, i.e.

where a, ft'
Definitio

f aw
nOu;ex(Vu(x)}ifJ;ex(x)dx= 0

(3.3)

for all ifJE (CO'(.Q))m,where the integral in (3.3) exists and in particular Vu(x) EE almost
everywhere in .0. Here 00'(.0) denotes the space of infinitely differentiable functions
with compact support in .0.

The equilibrium equations of nonlinear elasticity are of the form (3.2) with
m = n = 3, it being assumed that the material is homogeneous and that there are no

external forces. In this case W(F) is the stored-energy function and u(x) denotes the
position of the particle that occupied the point x in the reference configuration .0. The
equations (3.3) can then be interpreted as a statement of the principle of virtual work;
Antman & Osborn (1) have shown that under certain conditions they are equivalent
to the requirement that the resultant force on an arbitrary sub-body be zero.

holds when

(Note th
We repeat
satisfies th,

then W is :

ellipticity.
ship betwe

We can]



u(x) = Fx+a if (x,p) > k:l-u(:i)-=--Gx4-JL_jf_(x,,u-l- < k -
(3.4)

jiating, we
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We now consider a basic construction due originally to Hadamard(10). Let pE IRn,
P 9=0, kEIR, and consider the hyperplane 1Tof IRn with equation (x,p) = k. Let
F, GEE. We seek a continuous function u : IRn-+ IRmof the form

where a, b EIRm.It is easily verified that such a function exists if and only if

F-G = A@p,
def

(A @ p)~ = Aipa'

for some A EIRm,and that in this case kA = b - a. A simple calculation then shows that
u is a weak solution of (3.2) (for any Q intersected by 1T)if and only if the jump condition

l under the [:~Pa]= 0
holds, Le. if and only if

m subset of

ogy of IRmn,
!lal

(
oW oW

)oF~(G+A@p)-oF~(G) Pa=O. (3'5)

(3'1)

In nonlinear elasticity this jump condition exactly expresses the fact that in equi-
librium the traction is continuous across 1T.

We now suppose that E is rank 1 convex, Le. that

~re
tF+(l-t)GEE

(3.2)

whenever F, GEE,F-G = a@ b is a matrix of rank 1,andtE[O, 1].Examples of open,
rank 1 convex, sets are E = MmXnand, in the case m = n,

ion u which,
;), is locally
the sense of

E = {FEMnXn:a < detF < jJ},

where a,jJEIR U{+oo, -oo}.

Definition. W: E -+ IRis said to be strictly rank 1 convex if the inequality

(3'3)

W(tF+(l-t)G) < tW(F)+(l-t) W(G)

holds whenever F, GEE, F-G = a@b 9=0, and tE(O, 1).
(Note that this definition makes sense without any regularity assumptions on W.

We repeat, however, that we always assume that WEOl(E).) If W is 02, and if W
satisfies the strong ellipticity condition

1:)EE almost
)le functions

1 (3.2)with
there are no
I denotes the
-ation Q. The

virtual work;
.'e equivalent
zero.

o2W(F) .
oF~ oF~ataJba bp > 0 for all nonzero a E IRm,b EIRn,

then W is strictly rank 1 convex, but strict rank 1 convexity does not imply strong
eIIipticity. (See (2), section 3, for information and references concerning the relation-
ship between (non-strict) rank 1 convexity and the Legendre-Hadamard condition.)

We can now state the main result of this section.
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THEOREM 3. Necessary and sufficient conditions for W to be strictly rank 1 convex are

~ I
(i) all u'eak solutions of (3.2) of the form (3'4) are 01, and I
(ii) thereexist GoEE, P,o=1=0, e > 0 such that

-

- ~:~I
for some

W(Go+i\<8>P,o)~ W(Go)+ :;: (Go)i\ip,Oa. if 1i\1~ e. (G'f1:)EBa. - -mce--l-

Proof. First note that W is strictly rank 1 convex if and only if the function B = K. J

i\ H W(G + i\ <8>p,)
I

Remar,
, and Sten
I

(2) It:
vexityof
elasticity

Choosing

is strictly convex for every GEE and p, =1=O. (Since E is rank 1 convex the domain of
each such function is an open convex subset of IRm.)

Let W be strictly rank 1 convex. Since

8~i W(Go+i\<8>p,o)L.=o= :~(Go)P,oa.,

it follows from the above remark and Lemma 1 that (ii) holds (for every GoEE, P,o).Let
u be a weak solution of (3.2) of the form (3.4). Multiplying (3'5) by i\i we obtain

(V',\W(G+i\<8>p,)-V',\ W(G), i\-O) = O.

By Lemma 1, i\ <8>p, = 0 and hence F = G. Thus u is 01.

Conversely, suppose that (i) and (ii) hold. We claim that the function

8W
i\Hax- (G+i\ <8>p,)

is 1-1 for every GEE, p, =1=O. If not there would exist i\ =1=Xsuch that

In this Cf

(3) Le'
Suppose'
S, and le'
dition (3.

(4) An
replaced
in MmXn :

[

8W aw
]aF~ (G+X<8>P,+(i\-X)<8>P,)-8F~ (G+X<8>p,) P,a.= O.

By (i) and (3'5) this happens only if i\ = X.
Let K = Ex (IRn\{o}),and let B = {(G,p,)E K: i\H W(G+ i\ <8>p,) is strictly convex}.

By (ii) and Theorem 1, (Go,P,o)EB. Hence B is nonempty. Let (Gr,P,r)-+(G,p,) EK with
(Gr' P,r)E B for each r. Choose e > 0 small enough so that G + i\ <8>p, E E if Ii\1~ e. Then
for sufficiently large r, Gr+ i\ <8>fhrEE if 1i\1~ e, and so

aw .
W(Gr+ i\ <8>P,r)~ W(Gr) + 8Fi (Gr)i\tp,ra. (1i\1~ e).a.

4. Equ
to the pr<
surface tJ

Consid

0 = (0, 1
geneous f

where F i

is symme
cube give

Passing to the limit as r-+oo we deduce that i\H W(G+i\<8>p,) is convex at i\ = 0,
and hence, by Theorem 1, (G,p,)EB. Thus B is closed in K.

Let (G,p,) EB and suppose that (Gr,P,rk? (G,p,) with (Gr,P,r)f/=Bfor each r. Choose
e> 0 small enough so that G+i\fi)p,EE if 1i\1~ e. Since i\H W(Gr+i\<8>P,r)is not

strictly convex, Corollary 1 implies that for sufficiently large r there exists i\r with
Ii\rl = eand

where thE

and so th,

equal anc
two faces

aw '

W(Gr+i\r<8>P,r)< W(Gr) + aFi(Gr)i\~P,ra.'a.
(3.6)
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Choosing a convergent subsequence Arkand passing to the limit in (3.6) we find that

- oW "'
W(G+A@,u) ~ W(G) + oFi (G)l\ip,(%(%

.omain of

for some Xwith IXI = 6. Thus ,11-+W(G+A @,u) is not strictly convex, contradicting
{G-"u}-e--13~Hence-B--is-open.

Since B is a non-empty, open and closed subset of the connected set K it follows that
B = K. Hence W is strictly rank 1 convex.I

Remarks. (1) That strong ellipticity of WE C2(E) implies (i) was shown by Knowles
and Sternberg (15)(see also (5)).

(2) It follows in particular from Theorem 3 that if (ii) holds then strict rank 1 con-
vexity of W is a necessary condition for all weak solutions of (3'2) to be Cl. In nonlinear
elasticity it is usually assumed that there exists a natural state; i.e. that for some GoEE,

~,,uo)'Let
,in

W(F) ~ W(Go) for all FEE.

In this case (ii) holds trivially.
(3) Let S be a smooth (n-1)-dimensional surface with normal,u at the point XES.

Suppose that, in a neighbourhood of x, u is continuous across S and CIon either side of
S, and let F, G denote the limits at x of Vu from either side of S. Then the jump con-
dition (3'5) still holds, and hence F = G if W is strictly rank 1 convex.

(4) An examination of the proof of Theorem 3 shows that condition (i) may be
replaced by the weaker condition (i)' for every HE E there is a neighbourhood N of H
in MmXn such that any weak solution of (3'2) of the form (3'4) with F, GEN is Cl.

, convex}.
.)EKwith
~ 6.Then

4. Equilibrium configurations of an elastic cube. In this section we apply Theorem 1
to the problem of the equilibrium of an elastic cube subjected to given uniform normal
surface tractions.

Consider an elastic body occupying in a reference configuration the unit cube
Q = (0, l)a of IRa.We suppose that the stored-energy function W of the body is homo-
geneous and isotropic. Thus (cf. Truesdell & Noli (24))

W = W(F) = $(,1,1',1,2'Aa),

where F is the deformation gradient, the Ai are the eigenvalues of .jFTF, and where $
is symmetric in its arguments. We consider only homogeneous deformations of the
cube given by

: at A = 0,

u(X) = (AIXl, A2x2, Aaxa), x = (XI,x2,x3)EQ,

where the Aiare positive constants. In this case

r. Choose

~,ur) is not
Its Ar with

def

F = Vu(x) = diag (AI' ,12'Aa),

and so the equilibrium equations (3.2) are trivially satisfied. To maintain equilibrium,
equal and opposite normal forces of magnitude ~(i = 1,2,3) must be applied to the
two faces of the cube normal to the xi axis. These forces are given in terms of

(3.6) A = (AI' ,12'Aa)
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by the equations (see Truesdell & NolI «24), p. 317))

Tl = 8<1>(A)
8Al '

T. = 8<1>(A)
2 ax- '2

T.= 8<1>(A)
3 ax- .a

or, more concisely, by
Y~(A}_:"LX, (4.1)

where T = (Tv T2,Ta). If we regard T as given, then (4'1) must be solved for A. We note
that (4'1) is the Euler-Lagrange equation corresponding to the function

I(A) = <I>(A) - (T, A).

Let E = {p = (PvP2,Pa) E ~a:Pi > 0, i = 1,2, 3}, and suppose that <I>E Cl(E). (If <I>is

defined only on a subset of E then the arguments below still apply with appropriate
modifications.) Suppose further that the reference configuration is a natural state, so
that

<I>{p)~ <1>(1,1,1) for all pEE.

It is known that for natural rubbers <I>is not a strictly convex function. (For a dis-
cussion and references see (2, 3).) Supposing, then, that <I>is not strictly convex, we
deduce immediately from Theorem 1 that Vfj>is not locally 1-1. That is, there exist
A*EE and sequences i\.<r)-?A*,X(r)-?A*, with i\.<r)=1=X(r)for each r, such that

V<I>(i\.<r») = V<I>(X(r»).

This means that (A*,V<I>(A*))is a bifurcationpointfor (4.1). The same argument shows
that there is a bifurcation point in any convex subset of E containing both a point
where <I>is convex and a point where <I>is not strictly convex. In particular, if any
neighbourhood of A*EE contains points of convexity and points where <I>is not
strictly convex, then (A*, V<I>(A*)) is a bifurcation point.

We can apply our argument to study bifurcation from the solution A = (a, a, a) in
which all the principal stretches are equal. Suppose, as is not unreasonable, that <I>in
convex in a neighbourhood of A = (1,1,1) and that <I>,l(a,a, a) is a strictly increasing
function of a. Let

a* = inf {a > 1: <I> not strictly convex at (a, a, an.

Clearly a* ~ 1. Our argument show that if a* < 00 then (A*,Vfj>(A*))is a bifurcation
point for A*= (a*,a*,a*). Since V<I>(a,a,a) =1=V<I>(fJ,fJ,fJ) if a =1=fJ, it follows that
there exist bifurcating solutions in which the principal stretches are not all equal. A
similar argument applies in compression. Of course, more detailed information is
special cases can be obtained using standard techniques of bifurcation theory, par-
ticularly under additional smoothness hypotheses on <1>;on the other hand using
Theorem 1 does bring out rather clearly the role of strict convexity. In general, bifur-
cations into nonhomogeneous deformations will also occur. Finally, we remark that
for the case of an incompressible neo-Hookean material, an interesting and detailed
study of the set of homogeneous equilibrium solutions has been given by Rivlin
(20,21). (See also Sawyers & Rivlin (23).)

I would like to thank John Guckenheimer for some stimulating discussions.
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