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1. Introduction. In this paper we investigate the connection between strong ellipticity
and the regularity of weak solutions to the equations of nonlinear elastostatics and
other nonlinear systems arising from the calculus of variations. The main mathe-
matical tool is a new characterization of continuously differentiable strictly convex
functions. We first describe this characterization, and then explain how it can be
applied to the calculus of variations and to elastostatics.

Let U < R™ be open and convex. A function ¢: U — R is said to be strictly convex if
Ptz + (1 —t)y) < td(x)+ (1 —t)P(y) whenever z,yelU, x+y, and te(0,1). (For
general information on convex functions see Rockafellar (22).) We shall prove (Theorem
1 below) that if ¢ is C, then ¢ is strictly convex if and only if (i) V¢ islocally 1 — 1, and
(ii) ¢ is convex at (at least) one point of U. The necessity of these conditions is obvious,
and it is their sufficiency that is interesting. Geometrically, (i) says that neighbouring
but distinct points of the graph of ¢ have distinct tangent spaces. The role of (ii) is less
obvious. The trivial example U = (0,1) = R!, ¢(x) = —2?, shows that condition (i)
alone does not imply strict convexity; however, one might conjecture that if U = R™,
if (i) holds, and if ¢ is bounded below, then ¢ is strictly convex. This conjecture is false
if n > 1. An example with n = 2 is the function

P(x,y) = ev==*

which is convex at no point of R2.

The main idea in the proof of the sufficiency of (i) and (ii) is to study the asymptotic
behaviour of solutions to various gradient systems of ordinary differential equations
defined on U, and thus, in the spirit of Morse theory (cf. Palais & Smale(19)), to
establish the existence of a non-trivial critical point of a suitable function. To achieve
this we use an idea of Olech(17) and Hartman and Olech(12). Since we assume only
that ¢ is C1, the gradient systems we consider may possess nonunique solutions for
given initial data, and this complicates somewhat the technical details. A much simpler
proof of the strict convexity of ¢ under the stronger hypotheses that Vpis 1 —1in U
and that ¢ satisfies a growth condition, is given in Theorem 2, which applies also to
functions that are convex but not strictly convex.
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We turn now to the applications of Theorem 1. Let Q be an open subset of R”, and
consider the functional

I(u) =f W(Vu(z)) dz, (1-1)
Q
where w: Q—R™. The Euler-Lagrange equations corresponding to (1-1) are
a (oW .

The equilibrium equations of nonlinear elasticity for a homogeneous body under zero
body forces have the form (1-2) withm = n = 3, and in this case W is the stored-energy
function of the material. W is said to be strongly elliptic, and (1-2) to be a strongly
elliptic system, if
2W(F)
oF:oF}

ANy, py > 0 (1-3)

for all F and all nonzero vectors A € R™, u € R™. If equality is allowed then (1-3) is’known
as the Legendre-Hadamard condition. The existence of minimizers for I(u) for various
boundary problems of nonlinear elasticity under hypotheses implying the Legendre-
Hadamard condition has been established in (2, 3), and corresponding results for
arbitrary m, n given in (4). However, even if W is smooth it is not known under what
conditions weak solutions of (1-2) are C! functions. Examples of discontinuous equi-
librium solutions in nonlinear elasticity with W strongly elliptic will be given in (6).
In these examples the discontinuity takes the form of a hole appearing at the centre of a
solid body under tension. (Other examples of discontinuous weak solutions to strongly
elliptic systems with similar singularities have been given by Giusti & Miranda (9) and
Necas (16), but they do not apply to nonlinear elasticity.)

Although strong ellipticity does not prevent the type of singularities mentioned
above, under a mild positivity condition on W it is essentially necessary and sufficient
for there to be no continuous weak solutions % of (1-2) in which the only singularity is a
jump in Vu across a smooth (n— 1)-dimensional surface (taken for simplicity in this
paper to be a hyperplane). This result (Theorem 3 below) is stated precisely and proved
in Section 3, essential use of Theorem 1 being made in the proof. Actually, in the state-
ment of Theorem 3, (1-3) is replaced by the condition that W be strictly rank 1 convez.
Strict rank 1 convexity bears exactly the same relationship to strong ellipticity as does
strict convexity of a function f(t) of a single variable to the condition f” > 0. A fortiori,
Theorem 3 implies that strict rank 1 convexity of W is a necessary condition for all
weak solutions of (1-2) to be C. Despite this, in non-linear elasticity one should not
discard stored-energy functions that are not strictly rank 1 convex, since such functions
may correspond to materials that can undergo phase transitions (Ericksen (7, 8)). For
more information on non-elliptic problems in elasticity see Knowles & Sternberg
(13-15). '

In Section 4 we use Theorem 1 in a different way to deduce information concerning
the nonuniqueness and bifurcation of homogeneous equilibrium states of an elastic
cube subjected to given uniform normal surface tractions.
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2. Necessary and sufficient conditions for strict convexity. Notation: (,) and ||
denote the standard inner product and norm in R™ respectively. If 4 < R” then ¢4

denotes the boundary of A. B(x, ¢€) (resp. B(x, €)) is the open (resp. closed) ball in R”
with centre x and radius e.

Definition. Let U = R™ be open. A function u : U—R" is locally 1 — 1 if every xe U

possesses a neighbourhood in which % is 1—1.
The main result of this section is the following:

THEOREM 1. Let U < R™ be open and convex, and let ¢ € CY(U ). Necessary and sufficient
conditions for ¢ to be strictly convex are that

(i) V¢ islocally 1—1, and

(ii) there exists a locally supporting hyperplane for ¢ at some point of U; i.e. there exist
xo€ U, € > 0, such that

B(x) > P(@,) +{V(xo), 2 — o) (2-1)
if xe B(x,,¢)n U.

The necessity of conditions (i), (ii) is well known; in fact, the following standard
result shows that if ¢ is strictly convex then V@ is 1 —1in U, and that (2-1) holds with
strict inequality whenever z, w,e U, x # w,.

Levma 1. Let U < R* be open and convex, and let ¢pe CY(U). Then the following are
equivalent:

(@) ¢ is strictly convez.

(b) d(x) > d(y)+{(Vd(y),x—y) whenever z,yecU,x *y.
(¢) V¢ is strictly monotone; i.e.

(Vo(x)—V(y),z—y) > 0 whenever x,yecU,x % y.

To prove the sufficiency of conditions (i) and (ii), we will need some auxiliary results.
Let U = R™ be open and convex, and let ¢ € CY(U).

Definitions. Let xe U. We say that ¢ is convex af x if
$(y) > $(z)+(V(x),y —)
for all y in a neighbourhood of z, and that ¢ is strictly convex at z if

$y) > $(x)+(Vé(x), y —2)
for all ¥ + x in a neighbourhood of z.
The following result is elementary.

LeEMMA 2. ¢ is strictly convex if and only if ¢ is strictly convex at x for every xe U.
Proof. The necessity follows immediately from Lemma 1. Conversely, suppose that
¢ is not strictly convex. Then there exist x,ye U, x % y, {,€ (0, 1) such that
Py + (1—1p)y) = o P(2) + (1 —1o) H(y).
Hence the maximum of the function
0(t) = Plix+ (1 —t)y) —tp(x) — (1 -1) $(y)

for te[0, 1]is attained at some interior point 7, and in particular

0'(r) = (Vo(rz+ (1-1)y), x—y) — p(x) + $(y) = 0.
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Thus
it +(1-)y) — 1z +(1-7)y) < (V(rz+(1=7)y), (t—7) @ —y))
for all £€[0, 1], and so ¢ is not strictly convex at oz + (1 —7)y.1
From now on we suppose that V¢ is locally 1 —1,

Leyma 3. Let xe U. The following conditions are equivalent:

(a) ¢ is convexr at x,

(b) ¢ is strictly convex at x,

(¢) a bounded open set E exists containing x such that E < U, V¢ is 1—1in E, and
min ¢(y) — ¢(x) —(Vo(@),y —x) > 0.

yedE
Proof. The implications (b) = (a) = (c) are obvious. Let (c) hold, and suppose that
(b) does not. Then there exists 7€ £, 7 + «, such that

$(F) — p(x) —(Vo(x), - ) < 0.
min ¢(y) — p(x) —(Vo(x),y —x)

veE

Hence

is attained at some interior point z € £ with z # z. Differentiating, we obtain
Vé() = Vé(a).
Since Vg is 1 — 1 in E, z = 2. This is a contradiction.|
Define
S = {xe U: ¢ strictly convex at x}.
LeMMA 4. S is open.

Proof. Let €8, and suppose there exists a sequence {x;} = U\S such that z; >z.
Let E be a bounded open set containing x such that £ < U, V@ is 1 —1in E, and

P(y) — Plx) —(Vo(x),y —2) > 0
if ye dE. By Lemma 3, for each sufficiently large j there exists z; € dE with
‘;5(2;') o= ‘.35(33_-;) = <V¢{xj}v Zj —x;) < 0.

Passing to the limit using a convergent subsequence of {z;} we arrive at a contradiction. |

LemMa 5. Let V be a bounded open subset of R”, and let Yy € C}(V). Let ce V be &
strict local minimizer for ¢ and the only critical point of ¥ in V. Consider the differ-
ential equation

& = — V(). (2-2)

Let A denote the region of attraction of ¢, that is

A = {yeV: if z(t) is any solution of (2-2) satisfying x(0) = y, then x(t)e V for all

t> 0and z(l)>cast—>o00.}

Then A is open, and if w,€24 n V there exists a solution w(t) of (2:2) with w(0) = w,,
and such that for some ¢, € (0, 20),

w(t)—>w,€dV  as =ty

w(t)edd nV for te[0,t,,,), and
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Proof. By hypothesis there exists § > 0 such that B(c,d) = V and such that
Ylx) > Y(e) if 0<|r—c| <.
IJet‘
a = min Y(z) > Y(c).
le—e|=8

Let yoe A and suppose {y,,} = V\4 satisfies y,,—y,. By Hartman ((11) Theorem 3-2,
p. 14) there exist solutions y, of (2-2), ¥,(0) = ¥,,, maximally defined on [0, 7,) and not
tending to ¢ as ¢— o0, such that for a subsequence y,,y,—y uniformly on compact
intervals of [0, 7), where y is a solution of (2-2), (0) = y,, and y is maximally defined on
[0, 7). Furthermore

lim7, > 7.

H—rx

But 7 = co since y,e 4. Let 4, > 0 be such that {(x) < @ whenever |xr—c¢| < §,. Then
there exists 7' > 0 such that |y(t)—¢| < &, for ¢ > T. Thus |y,(T)—¢| < &, for large
enough x, and since ¥ is nonincreasing for solutions of (2-2) it follows that

|yﬂ(t) _C| <d

for all ¢t > T and that 7, = oo, provided y is large enough. For such g it follows from
(2-2) that

J.O |vy?(yg;(£))|2dt < 00,

and hence that Vi) (y (¢;)) — 0 for some sequence t, - co. Since ¢ is the only critical point
of Y in V, y,(t)—c as k—co. Since ¥ is nondecreasing, ¥/(y,(t)) > (c) as {0, and
thus y,(¢) - c as { > co. This contradiction proves that 4 is open.

Let wyedd n V. We construct the required solution w(t) on a small interval [0, 7].
The number 7 > 01is chosen sufficiently small so that every solution of (2-2) with initial
data w, exists and remains in V for t€[0,7]. Since A is open, w,¢ 4, and thus at least
one such solution #(t) exists such that #(t)e V\4 for all {€[0,7]. Let z,,—>w,, z,,€ 4.
Then, by the result in Hartman (11) quoted above, there exist a subsequence z,, and
solutions z,, z of (2-2) defined on [0, 7] such that z,(0) = z,9, 2(0) = wy, z,(t) € A for all
te[0,7], and z,— 2 uniformly on [0, 7]. Thus z(f) € 4 for all £€ [0, 7]. By Kneser’s theo-
rem (cf. Hartman ((11) Theorem 4-1, p. 15)) the set of points {z(r):2(-) a solution of
(2-2) with 2(0) = w,} is closed and connected. It contains one point in 4 and one point
not in 4. Hence it contains a point in 4. Thus there is a solution 2(t) such that
21(0) = w, and 20(1)edA n V. Similarly we construct 22 in two steps so that

29(0) = w,, 20(1/2)€dAnV, 2A(r)eddnV,

and more generally 2 so that z¥(0) = w,, 2®(r7/2¥)edA n V for r = 1,...,2%. The
solutions z® are uniformly bounded and equicontinuous. Hence they converge

. uniformly on [0, 7] to a solution w satisfying w(0) = w, and w(rr/2¥)edA n V for all k

and r = 1,...,2% Thus w(t)ed4 n V for all t€[0,7]. Let w be a maximally extended
solution on [0,t,,) with w(t)ed4A n V for all te[0,f,,,). If £, Were +co then a

max

subsequence w(t,) would tend to a critical point ¢ % ¢ in V as t;,—> 00, by the same
17 PSP 87
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argument used above in the proof that 4 is open. Hence ty, < 0. Butif t, -1, —
then w(t;) is a Cauchy sequence, since

< K|t —t.

J'" Vi(s)ds
3]

[w(t;) —wity)| =

Thus w(t) = w, €0V as t=>tyax.|

LemMA 6. S s closed in U.

Proof. Suppose not. Then there exist 2,€ U\S and a sequence {z;} = 8 with z; > x,.
We claim that there exist a subsequence {x,} and a sequence {y,} = U such thaty, >z,
and

$(,) < P@,) +<{VP(@,), ¥ — - (2-3)
If this were not the case, then there would exist an ¢ > 0 such that
$(y) > Blay) +{VP()), y —xp if |y—=o| <e
Letting j— oo we would then have
B(y) > plao) + V(o) y—xo) if |y—| <e,

contradicting ¢ S.
Let V = B(x,, ), and choose § > 0 small enough so that V<« UandVgis1—1in V.

Choose x large enough so that z,, y,€ V. Define
!ﬁ‘u{m) = (}5(.’.\:} o <V¢(x;.:)! x>'
Then wﬂEOl(I—’), and Vi, (2) = Vé(z) — V(z,). Hence ,, is the only critical point of

Y,inV, and, since z, €8, &, is a local minimizer. Let 4, be the region of attraction of
x, with respect to the equation

& = — Vi, (). (2:4)

Since ¥, is non-increasing for solutions of (2+4), and since (2-3) implies that

'r&-;;(yp) < ![’;;(%),

it follows that y,¢ A . Therefore there exists w,, €A, with |w,o—2z,| < |y,.— xz,|. Let
w, be the solution constructed in Lemma 5. Thus w,(0) = w,, w,(t) € 04 ,forte[0, i)
and |w,(t) — x| >J ast—> Eh

Fix e with 0 < ¢ < 8. For sufficiently large x, l%o‘“%‘ < €, and so there exists a

largest time s, such that |w,(s,) — xz,| = €. From (2-4),

L
b—e < |w, @) —ws) | =] V0,0 dt| < Cihic=s,).  (29)
I

where C is a constant. But since w,(t) € 24 for all t {0, ¢t ] we have that

U lw,0) = Yuw,(8,) = Vulwulbinex) > Vul@,)-

Hence

|
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Hence

8
[ 1900t = 1, 0,000) = 0, 8)) < i) 5

Thus there exists z,€ V with |z,—%,| > €and

IV(e,) = V(@ )I? < 5 [$(00,0) — $(a,)— V(z, ), 10— )

Let .~ o0, and let z be a limit point of z,. Then € < |z2—2,| < § and
[V (2) — Vé(o)|* < 0.
Hence V¢ (z) = Vé(x,), and so z = z,. This is a contradiction. |

Proof of Theorem 1 (Conclusion). Since S is open and closed in U, since U is convex,
and since S is nonempty by hypothesis (ii) and Lemma 3, it follows that S = U. Hence
by Lemma 2, ¢ is strictly convex.|

Remarks. The idea of considering points lying on the boundary of the region of
attraction of a stable critical point is taken from Olech (17) (see also Hartman & Olech
(12), Hartman ((11), pp. 548-554). A possible alternative to the use in the proof of the
ordinary differential equations (2-4), which may in general have non-unique solutions,
might be to use the pseudogradient flows of Palais (18). Of course, once ¢ is known to be
convex uniqueness for (2-4) follows.

The following consequence of Theorem 1 will be used in Section 3.

CorROLLARY 1. Let U = R™ be open and convex, let ¢ € CYU), and suppose that V¢ is
1—114n U but that ¢ is not strictly convex. If E is any bounded open set with E < U, and
if xe B, then

min ¢(y)— $(o) — (V9(e),y =)

18 megative and is attained on OE.

Proof. Let E be bounded and open, E < U, and z€ E. By Theorem 1, ¢ is not strictly
convex at x. The result now follows by the argument used in Lemma 3.1

It is not clear whether there is a natural generalization of Theorem 1 to convex
functions that are not strictly convex. However, we now give a simple global result
that does apply to such functions.

THEOREM 2. Let U = R" be open and convex, and let ¢ € CYU). Suppose that
$(,)
1
) 13T
(2) Vo) is a convex set for every xe U.
Then ¢ is convex.

-0 if z,>zedU or |x,|—>o0,

Proof. Let € U. Consider the problem

mirirgize d(y)— V(=) )

17-2
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On account of (1), the minimum is attained at some point ze U. Differentiating, we
obtain V¢(z) = Vé(z), and hence

$(y) > $(2) +<{V(),y —2)
for all y e U. Thus, since

$(2) — p() = J‘:(Vtﬁ(x +iz—2),z—x)dt
= (Vé(x),z—x),

where we have used (2), it follows that
P(y) > p@)+(Ve(),y—=)
for all ye U. Thus ¢ is convex. |

Note that the same proof establishes the sufficiency part of Theorem 1 under the
stronger assumptions that Vg is 1 —1 in U and that (1) holds.

3. Strong ellipticity and the regularity of weak solutions. Let Q be an open subset of
R™. Let M™xn denote the set of real m x n matrices with the induced topology of R™»,
and let £ be an open subset of M™x», Let W € C(E). Consider the functional

I(u) =In W(Vu(x)) dx, (3-1)

where u: Q— R™. The Euler-Lagrange equations corresponding to (3-1) are
o (eW .
—|—})=0 =il -2
) =0 6= 1om), (32)
where the repeated suffix « indicates summation over & = 1,-.., n. A function » which,
together with its first partial derivatives (in the sense of distributions), is locally
integrable over (), is said to be a weak solution of (3-2) if (3-2) holds in the sense of
distributions, i.e.

f o (Vu(x)) ¢tu(x)da = 0 (3-3)
o au_ia -

for all ¢ € (Cg(Q))™, where the integral in (3-3) exists and in particular Vu(z) € E almost
everywhere in Q. Here C§(Q) denotes the space of infinitely differentiable functions
with compact support in Q.

The equilibrium equations of nonlinear elasticity are of the form (3-2) with
m = n = 3, it being assumed that the material is homogeneous and that there are no
external forces. In this case W(F') is the stored-energy function and u(x) denotes the
position of the particle that occupied the point  in the reference configuration Q. The
equations (3:3) can then be interpreted as a statement of the principle of virtual work;
Antman & Osborn (1) have shown that under certain conditions they are equivalent
to the requirement that the resultant force on an arbitrary sub-body be zero.
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We now consider a basic construction due originally to Hadamard (10). Let € R",
## 0, keR, and consider the hyperplane 7 of R® with equation (x,x) = k. Let
F,GeE. We seek a continuous function % : R*— R™ of the form

(@) =Fzx+a if (x,pu) >k,
. (34)
w(x)=Gx+b if {x,uy <k,

where a,be R™. It is easily verified that such a function exists if and only if

def

F—G=A®ﬂ., (A@ﬂ);=/11ﬂ¢,

for some A€ R™, and that in this case kA = b—a. A simple calculation then shows that
uis a weak solution of (3-2) (for any Q intersected by 77) if and only if the jump condition

ow
] =0
holds, i.e. if and only if
aw ow
(B—F,;-l (G-ﬁ-/‘@ﬂ)—m((;))ﬂa = 0. (3-5)

In nonlinear elasticity this jump condition exactly expresses the fact that in equi-
librium the traction is continuous across 7.
We now suppose that E is rank 1 convez, i.e. that

tF+(1—t)GeE

whenever F,Ge E, F -G = a ® b isamatrix ofrank 1, and t€ [0, 1]. Examples of open,
rank 1 convex, sets are £ = M™* " and, in the case m = n,

E={FeM™n:q < detF < p},
where o, feR U {+ 00, —o0}.
Definition. W: E — R is said to be strictly rank 1 convex if the inequality
W(tF +(1—1) Q) < tW(F)+ (1—t) W(&)

holds whenever F,GeE, F—G@ =a®b + 0, and t€(0, 1).

(Note that this definition makes sense without any regularity assumptions on W,
We repeat, however, that we always assume that WeCYE).) If W is C2, and if W
satisfies the strong ellipticity condition

W (F)
oF. oF}

a'a’b, b, > 0 for all nonzero acR™ beR™,

then W is strictly rank 1 convex, but strict rank 1 convexity does not imply strong

ellipticity. (See (2), section 3, for information and references concerning the relation-

ship between (non-strict) rank 1 convexity and the Legendre-Hadamard condition.)
We can now state the main result of this section.
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THEOREM 3. Necessary and sufficient conditions for W to be strictly rank 1 convex are
that

(i) all weak solutions of (3-2) of the form (3-4) are C1, and

(i) there exist Gye E, uy + 0, € > 0 such that

= ; ow ; ;
W(Go+A® po) = W(G,) + a—FT(Gu) Aipg, if |A] < e

Proof. First note that W is strictly rank 1 convex if and only if the function
A= W(GE+A® p)

is strictly convex for every G e E and x + 0. (Since E is rank 1 convex the domain of
each such function is an open convex subset of R™.)
Let W be strictly rank 1 convex. Since

g = ow
g W(Go+A® fo) e B_PE (Go) ttoa>

it follows from the above remark and Lemma 1 that (i) holds (for every G, € E, p,). Let
u be a weak solution of (3-2) of the form (3-4). Multiplying (3-5) by A* we obtain

NV W(GE+A@ p)—V, W(G), A-0) =0.
By Lemma 1, A® x = 0 and hence F = G. Thus u is C1.
Conversely, suppose that (i) and (ii) hold. We claim that the function

oW

is 1-1 for every Ge E, u % 0. If not there would exist A & A such that

ow - ow
|G G+ T @+ =D © W5 @+3@w)|n = 0.
By (i) and (3-5) this happens only if A = A.

Let K = E x (R*\{0}), and let B = {(G, p)e K: Ar> W(G'+ A ® u) is strictly convex}.
By (i) and Theorem 1, (Gy, #o) € B. Hence B is nonempty. Let (G,, p,) = (G, p) € K with
(@,, 11,) € B for each 7. Choose ¢ > 0 small enough so that G+A®pueEif |A| < e. Then
for sufficiently large r, G, +A ® € E if |A| < ¢, and so

oW :
WG +A®@u,) = H"(G,)+ﬁ7 (G A,  (JA] < €).
Passing to the limit as r— oo we deduce that A= W(G@+A® p) is convex at A = 0,
and hence, by Theorem 1, (&, %) € B. Thus B is closed in K.

Let (@, ) € B and suppose that (G,, u,)— (G, #) with (G, u,) ¢ B for each r. Choose
¢ > 0 small enough so that G+A@ pek if [A| < e. Since A W(G,+A ® p,) is not
strictly convex, Corollary 1 implies that for sufficiently large » there exists A, with
|A,| = € and

WG, 42, ® ) < WG+ T2 (6) Nt (3.6)

Choosing

for S0me
(G,n)eB

Since 1
B=K.I
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Choosing a convergent subsequence A,, and passing to the limit in (3-6) we find that

W(@+X® 1) < W@+ S5 (@) T,
for some A with |A| = e. Thus A W(G'+ A ® ) is not strictly convex, contradicting
(G, )€ B Hence B is open.

Since B is a non-empty, open and closed subset of the connected set K it follows that

B = K. Hence W is strictly rank 1 convex.|

Remarks. (1) That strong ellipticity of W e C*(E) implies (i) was shown by Knowles
and Sternberg (15) (see also (5)).

(2) It follows in particular from Theorem 3 that if (ii) holds then strict rank 1 con-
vexity of W is a necessary condition for all weak solutions of (3-2) to be C*. In nonlinear
elasticity it is usually assumed that there exists a natural state; i.e. that for some G, € E,

W(F)> W(G,) forall FeE.

In this case (ii) holds trivially.

(3) Let S be a smooth (n— 1)-dimensional surface with normal x at the point ze 8.
Suppose that, in a neighbourhood of z, u is continuous across S and C* on either side of
S, and let F', G denote the limits at « of Vu from either side of S. Then the jump con-
dition (3-5) still holds, and hence F' = G if W is strictly rank 1 convex.

(4) An examination of the proof of Theorem 3 shows that condition (i) may be
replaced by the weaker condition (i)’ for every H € E there is a neighbourhood N of H
in M™% such that any weak solution of (3:2) of the form (3-4) with F', Ge N is C*.

4. Equilibrium configurations of an elastic cube. In this section we apply Theorem 1
to the problem of the equilibrium of an elastic cube subjected to given uniform normal
surface tractions.

Consider an elastic body occupying in a reference configuration the unit cube
Q = (0, 1)® of R3. We suppose that the stored-energy function W of the body is homo-
geneous and isotropic. Thus (ef. Truesdell & Noll (24))

W = W(F) = DA, Ag, Ay),

where F is the deformation gradient, the A, are the eigenvalues of \/F7F, and where ®
is symmetric in its arguments. We consider only homogeneous deformations of the
cube given by

u(x) e ()li xl, )tE x2, A& xS)’ L= (‘Tls xﬁ’ xS) € Q:

where the A, are positive constants. In this case

def
F = Vu(z) = diag (A, Ay, A3),

and so the equilibrium equations (3-2) are trivially satisfied. To maintain equilibrium,
equal and opposite normal forces of magnitude T}(i = 1, 2, 3) must be applied to the
two faces of the cube normal to the z* axis. These forces are given in terms of

A = (Al.: )‘2= )‘3)
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by the equations (see Truesdell & Noll((24), p. 317))

_9D(A) _9d(A) _0P(A)
o oA, ’ Ky oAy’ e Ay °
or, more concisely, by
VoQA) =T, (4-1)

where T' = (T}, T,, T';). If we regard T as given, then (4-1) must be solved for A. We note
that (4-1) is the Euler-Lagrange equation corresponding to the function

I(A) = Q) —(T, A).

Let E = {s = (py, ptg, pt3) ER®: pt; > 0, 7 = 1,2, 3}, and suppose that ®eCY(E). (If ® is
defined only on a subset of E then the arguments below still apply with appropriate
modifications.) Suppose further that the reference configuration is a natural state, so

that
O(p) > O(1,1,1) forall uek.

It is known that for natural rubbers @ is not a strictly convex function. (For a dis-
cussion and references see (2, 3).) Supposing, then, that ® is not strictly convex, we
deduce immediately from Theorem 1 that V¢ is not locally 1 — 1. That is, there exist
A* e K and sequences A®— A*, A" > A* with A® & A® for each r, such that
VO(AD) = VO(A®).

This means that (A*, V®(A*)) is a bifurcation point for (4-1). The same argument shows
that there is a bifurcation point in any convex subset of F containing both a point
where @ is convex and a point where ® is not strictly convex. In particular, if any
neighbourhood of A*e F contains points of convexity and points where ® is not
strictly convex, then (A*, VO(A*)) is a bifurcation point.

We can apply our argument to study bifurcation from the solution A = («, ¢, a) in
which all the principal stretches are equal. Suppose, as is not unreasonable, that @ in
convex in a neighbourhood of A = (1, 1, 1) and that @ ,(«, «, «) is a strictly increasing
function of «. Let

a* =inf{e > 1: ® not strictly convex at (a, o, a)}.

Clearly a* > 1. Our argument show that if «* < oo then (A*, Vé(A*)) is a bifurcation
point for A* = (a*,a* a*). Since V®(a,a, ) + VO(S, 8, B) if « & 4, it follows that
there exist bifurcating solutions in which the principal stretches are not all equal. A
similar argument applies in compression. Of course, more detailed information is
special cases can be obtained using standard techniques of bifurcation theory, par-
ticularly under additional smoothness hypotheses on ®; on the other hand using
Theorem 1 does bring out rather clearly the role of strict convexity. In general, bifur-
cations into nonhomogeneous deformations will also occur. Finally, we remark that
for the case of an incompressible neo-Hookean material, an interesting and detailed
study of the set of homogeneous equilibrium solutions has been given by Rivlin
(20, 21). (See also Sawyers & Rivlin (23).)

I would like to thank John Guckenheimer for some stimulating discussions.
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