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STRONGLY CONTINUOUS SEMIGROUPS,
WEAK SOLUTIONS, AND
THE VARIATION OF CONSTANTS FORMULA

J. M. BALL

ABSTRACT. Let A be a densely defined closed linear operator on a Banach
space X, and let f € L'(0,7;X). A definition of weak solutions of the
equation ¥ = Au + f(#) is given. It is shown that a necessary and sufficient
condition for the existence of unique weak solutions for every initial data in
X is that A generate a strongly continuous semigroup on X, and that in this
case the solution is given by the variation of constants formula.

Let A be a densely defined closed linear operator on a real or complex
Banach space X, let 7 > 0 and let f € LY0,7;X). Let D(A) C X denote the
domain of A4. It is well known (cf. Kato [3, p. 486]) that if A is the generator
of a strongly continuous semigroup of bounded linear operators {T(¢)},7 >
0, on X, and if x € D(A), f € C([0,7]; X), then the equation

1) (1) = Au(t) + f(1), 1t €(0r],

has a unique continuous solution satisfying #(0) = x, and that  is given by

@) u(r) = T(H)x +f'T(z — 5 f(s)ds,  tE[0r].
0

When x € X is arbitrary, then unless {7(7)} and f have special properties
(e.g. { T (1)} holomorphic and f Holder continuous), u(r) given by (2) will not,
in general, belong to D (A) for ¢ € (0,7], so that (1) does not even make sense.
The purpose of this note is to establish an abstract equivalence between
functions u given by (2) and weak solutions, suitably defined, of (1), and to
give a related characterization of strongly continuous semigroups. Although
the proof of the theorem is simple, there seems to be no statement of it in the
literature even in the case f= 0. An application to a class of nonlinear
operator equations including certain nonlinear wave equations appears in [1].

Let A* denote the adjoint of A and {, ) the pairing between X and its dual
space X*.

DEFINITION. A function u € C([0,7]; X) is a weak solution of (1) if and only
if for every v € D (A*) the function {u(r),v) is absolutely continuous on [0,7]
and
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© L (u(yo) = () A*0) + (f(1).0)
for almost all ¢ € [0,7].

THEOREM. There exists for each x € X a unique weak solution u(t) of (1)
satisfying u(0) = x if and only if A is the generator of a strongly continuous
semigroup {T (1)} of bounded linear operators on X, and in this case u(t) is
given by (2).

We need the following lemma (cf. Goldberg [2, p. 127)).

LEMMA. Let x, z € X satisfy {z,0) = {(x,A*v) for all v € D(A*). Then
x € D(A) and z = Ax.

PrOOF. Let G(4) C X X X denote the graph of A4, which is closed by
assumption. By the Hahn-Banach theorem there exist v, v* € X*, such that
{Ax,0) + {x,0*) = 0 for all x € D(A), and {z,v) + {(x,0*)> # 0. Thus v €
D(A4*), v* = — A*v and {(z,0) # {x,A*v), which is a contradiction.

PROOF OF THEOREM. Let A generate the strongly continuous semigroup
{T(1)}. There exists a constant M such that |7 (¢)|| < M for ¢ € [0,7]. First
note that if x € X and v € D(4*) then (T (f)x,v) is differentiable with
respect to ¢ with derivative (T (f)x,4*v). This is obvious if x € D(A4), and
holds for arbitrary x € X because D(A) is dense and {7(¢)} strongly
continuous. Let u be given by (2). It is easily shown that u € C ([0,7];X). For
everyv € D(A*) and ¢ € [0,7],

Cu(r),0) = (T(1)x,0) +f0’< T(t — 5)f(s),0) ds.

Suppose that f € C([0,7];X). Since (f,x) > T(¢)x is jointly continuous on
[0,7] X X it follows that

di, fot<T(t = 5)f(s),v) ds= {f(t),0) +/(-)’<T(t — 5)f(s),A*v) ds,

so that (u(f),v) is differentiable for ¢ € [0,7] and satisfies (3). If f €
L'(0,7;X), let f, € C([0,7;X) for n=12,..., with f,— fin L'0,7;X)
and define

()= T + [T~ 9)fy(5) ds, s €[0r].
Then
Jin() = Ol < M [, () = S]]
so that 4, — u in C ([0,7];X). But by the above, for each v € D (4*),
G (o) = (oo + [[((.4%0) + (f(sho)] s, 1 €[0r]

Passing to the limit we see that u is a weak solution of (1).
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Next we prove that u(7) is the only weak solution of (1) satisfying u(0) = x.
Let u(t) be another such weak solution and set w = u — u. Then

o0y = { [wis) ds a%o)

for all v € D (4*), 1 € [0,7], so that by the lemma, z(¢) =%{w(s) ds belongs
to D(A) and 7 = Az. By [3, p.481]z = O and hence u = u.

Suppose that 4 is such that (1) has, for each x € X, a unique weak solution
u(t) satisfying u(0) = x. For ¢ € [0,7] define T (f)x = u(t) — uy(?), where u,
is the weak solution of (1) satisfying u,(0) = 0. If # > 0 let t = n7 + 5, where
n is a nonnegative integer and s € [0,7), and define T(f)x = T(s)T(7)"x.
The map 0: X — C([0,7];X) defined by 8 (x) = T(-)x has closed graph and,
hence, T() is a strongly continuous semigroup. Let B be the generator of
T(-) and let x € D(B). For any v € D(4%),

% (T()x,0)] _,= (Bx,v) = {x,A*v).

It follows from the lemma that x € D(4) and Bx = Ax. In particular,
D(B) C D(A). The proof of the theorem is completed by showing that
D(A) C D(B).

Let x € D (A). Using the lemma we see that for each ¢ € [0,7] the integrals
J4T (s)x ds and [§T (s)Ax ds belong to D (A4) and

“) T(f)x = x + Af'T(s)x ds,
0

©) T())dx = Ax + A [ 'T(s)Ax ds
()
Consider the function

t t
z(t)=| T(s)Ax ds— A | T(s)x ds.
0 =7 L
It follows from (4) that z € C([0,7];X). Clearly z(0) = 0. Let v € D(4%).
Using (4) and (5) we see that
4 (2(pw) = (z(tpAa*o),  1E[Or].

But it follows from our assumptions that the equation z = Az, z(0) = 0, has
only the zero weak solution. Hence

fO'T(s)Ax ds= AfO'T(s)x ds, 1e[0r]

Therefore by (4),
1 _
'E{)n+ n [T(n)x x] = Ax
and, hence, x € D (B).
NOTE ADDED IN PROOF. The ‘if’ part of the above theorem is stated and
proved by a somewhat different method in the recent book by Balakrishnan
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[4, Theorem 4.8.3] under the assumption that X is a Hilbert space.
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