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1 A user’s guide to Sobolev spaces

In order to give an unambiguous definition of what is meant by a solution of
a system of partial differential equations appropriate function spaces must be
defined. By far the most important of these spaces for variational methods
are the Sobolev spaces based on the classical Lp spaces of functions whose pth
powers are integrable.

The reader not familiar with Banach spaces, Lp spaces and weak convergence
will need to supplement the material given here by reference to standard texts
on Lebesgue integration and functional analysis (see, for example, Brezis [6],
Dunford & Schwartz [12], Rudin [21]).

For general references on Sobolev spaces see Adams & Fournier [1], Brezis
[6], Evans [15], Maz’ya [19].

1.1 Review of Lp spaces

If x ∈ Rn we write x = (x1, ..., xn), where the xi are the coordinates of x with
respect to a fixed orthonormal basis ei of Rn. Let Ln denote n-dimensional
Lebesgue measure; if E ⊂ Rn is Ln-measurable we denote its measure by Ln(E),
writing dLn = dx. If E ⊂ Rn is Ln-measurable and 1 ≤ p ≤ ∞ then Lp(E) is
the space of (equivalence classes of) Ln-measurable functions u : E → R with
‖u‖p <∞, where

‖u‖p =
(∫

E

|u(x)|p dx
) 1

p

, if 1 ≤ p <∞, (1.1)

‖u‖∞ = ess sup
x∈E

|u(x)|. (1.2)

Here two functions u, v are equivalent if u(x) = v(x) Ln almost everywhere
(that is, for all x ∈ E\N where Ln(N) = 0). In (1.2),

ess sup
x∈E

|u(x)| def= inf {α ≥ 0 : |u(x)| ≤ α for a.e. x ∈ E}.

Most of the time we will consider Lp(Ω), where Ω ⊂ Rn is open. Endowed with
the norm ‖ · ‖p, Lp(E) is a Banach space (i.e. a complete normed linear space;
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complete means that each Cauchy sequence converges). The triangle inequality

‖u+ v‖p ≤ ‖u‖p + ‖v‖p

is Minkowski’s inequality. We also have Hölder’s inequality

‖uv‖1 ≤ ‖u‖p‖v‖p′ for all u ∈ Lp(Ω), v ∈ Lp′(Ω), (1.3)

where 1
p + 1

p′ = 1. In particular, since

‖ |u|q‖ ≤ ‖ |u|q‖p/q‖1‖(p/q)′

we have that Lp(E) ⊂ Lq(E) whenever 1 ≤ q ≤ p and Ln(E) <∞.
If 1 ≤ p < ∞ then the dual space Lp(E)∗ of Lp(E) (that is the Banach

space of all continuous linear mappings from Lp(E) to R) can be identified with
Lp′(E). More precisely, if T ∈ Lp(E)∗ there exists a unique ϕ = ϕT in Lp′(E)
such that

〈T, u〉 =
∫

E

uϕdx for all u ∈ Lp(E), (1.4)

and the mapping T 7→ ϕT is an isometric isomorphism of Lp(E)∗ onto Lp′(E)
(i.e. it is 1-1, onto and ‖T‖Lp(E)∗ = ‖φT ‖Lp′ (E)). From this it follows easily
that if 1 < p < ∞ then Lp(E) is reflexive. (Recall that a Banach space X is
reflexive if the natural embedding τ : X → X∗∗ defined by

< τu, T >=< T, u > for all u ∈ X,T ∈ X∗

is onto, so that in particular we can identify X∗∗ with X.)
If 1 ≤ p < ∞ then Lp(Ω) is separable (that is, contains a countable dense

subset); a suitable dense subset is given by finite linear combinations with ra-
tional coefficients of the characteristic functions {χE∩Q}, where Q runs through
all n-cubes of the form Q = q + (0, 1/j)n, the coordinates qi of q = (q1, . . . , qn)
are rational, and j = 1, 2, . . .. But if Ln(E) > 0 then L∞(E) is not separable;for
example if E is open and x ∈ E the uncountable family of functions χQ, where
Q runs through all n-cubes of the form Q = x+(0, a)n, a > 0 sufficiently small,
are all distance 1 apart in L∞(E).

Assume 1 ≤ p < ∞ and et u(j) → u in Lp(Ω). Then there exists a sub-
sequence u(jk) of u(j) which converges to u a.e. in Ω (i.e. u(jk)(x) → u(j)(x)
for all x ∈ E\N , where Ln(N) = 0). More generally, this holds if u(j) → u in
measure i.e. given any ε > 0

lim
j→∞

Ln({x ∈ Ω : |u(j)(x)− u(x)| > ε}) = 0.

1.2 Approximation by smooth functions

Let Ω ⊂ Rn be open, 1 ≤ p < ∞ and u ∈ Lp(Ω). How can we approximate u
by smooth functions?
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Let C∞(Ω) be the space of infinitely differentiable functions ϕ : Ω → R and
denote by C∞0 (Ω) the subset of C∞(Ω) consisting of those ϕ : Ω → R with
compact support in Ω (i.e. such that ϕ(x) = 0 for x ∈ Ω\K, where K ⊂ Ω
is compact; the smallest such K is called the support suppϕ of ϕ. Note that
a nonzero ϕ ∈ C∞0 (Ω) cannot be analytic (i.e. representable as the sum of a
convergent power series), since all the Taylor coefficients are zero for x 6∈ suppϕ;
an example of a nonzero ϕ ∈ C∞0 (Rn) is given by (see Example 1.4)

ϕ(x) =

{
exp

(
1

|x|2−1

)
if |x| < 1,

0 if |x| ≥ 1.
(1.5)

Let ρ ∈ C∞0 (Rn) satisfy

(i) ρ ≥ 0, ρ(x) = 0 if |x| ≥ 1, (1.6)

(ii)
∫
Rn

ρ dx = 1. (1.7)

For ε > 0 define

ρε(x) = ε−nρ
(x
ε

)
. (1.8)

ρε is called a mollifier. Clearly

(i) ρε ≥ 0, ρε(x) = 0 if |x| ≥ ε, (1.9)

(ii)
∫
Rn

ρε(x) dx =
∫
Rn

ρ(y) dy = 1, (1.10)

so that ρε approximates the delta function (see Figure 1). We therefore expect

Figure 1: Approximating the δ function; the functions ρ and ρε.

the convolution

(ρε ∗ u)(x) :=
∫
Rn

ρε(x− y)u(y) dy (1.11)

to approximate u.
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Theorem 1. Let 1 ≤ p < ∞ and u ∈ Lp(Ω). Define u to be zero outside Ω.
Then
(i) ρε ∗ u ∈ C∞(Rn),
(ii) ‖ρε ∗ u‖p ≤ ‖u‖p,
(iii) limε→0 ‖ρε ∗ u− u‖p = 0.
In particular C∞(Ω) is dense in Lp(Ω).

We make use of the following lemma.

Lemma 2. Let 1 ≤ p < ∞, h ∈ C∞0 (Rn) and u ∈  Lp(Rn). Then h ∗ u is
continuously differentiable on Rn and for i = 1, ...n

∂(h ∗ u)
∂xi

(x) =
∫
Rn

∂h

∂xi
(x− y)u(y) dy. (1.12)

Proof. Let xj → x. By definition

(h ∗ u)(xj) =
∫
Rn

h(xj − y)u(y) dy. (1.13)

The integrand vanishes for all j for y outside some bounded set, and is bounded
in absolute value by const.|u(y)|. Hence by the dominated convergence theorem
(h ∗ u)(xj) → (h ∗ u)(x) and so h ∗ u is continuous.

For x ∈ Ω, and |t| ≤ 1 we have

(h ∗ v)(x+ tei)− (h ∗ v)(x)
t

=∫
Rn

(
h(x+ tei − y)− h(x− y)

t

)
v(y) dy.

(1.14)

Since h ∈ C∞0 (Rn) the integrand is bounded by const.|v(y)| and is zero for
y outside some bounded set. Hence by the dominated convergence theorem
∂(h ∗ v)/∂xi exists and is given by (1.12).

By the first part of the argument applied to the kernel ∂h/∂xi we see that
each ∂(h ∗ v)/∂xi is continuous and so by a standard result h ∗ v is continuously
differentiable.

Proof of Theorem 1. (i) This follows by applying Lemma 2 inductively to u
and its partial derivatives.
(ii) We write

ρε(x− y)u(y) = ρε(x− y)
1
p′ ρε(x− y)

1
pu(y).

Thus ∣∣∣∣∫Rn
ρε(x− y)u(y) dy

∣∣∣∣ ≤(∫
Rn

ρε(x− y) dy
) 1

p′
(∫

Rn
ρε(x− y)|u(y)|pdy

) 1
p

,

(1.15)
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and hence, using Fubini’s theorem and
∫

Rn ρε(z) dz = 1,∫
Ω

|ρε ∗ u|pdx ≤
∫
Rn

|u(y)|p
(∫

Ω

ρε(x− y)dx
)
dy

≤
∫

Ω

|u(y)|pdy. (1.16)

(iii) Given τ > 0 there exists a continuous function w of compact support in Ω
with ‖u− w‖p < τ . Since∫

Ω

|(ρε ∗ w)(x)− w(x)|pdx =
∫

Ω

∣∣∣∣∫Rn
ρε(x− y)(w(y)− w(x))dy

∣∣∣∣p dx,
≤ κ(ε)pLn(Nε), (1.17)

where κ(ε) := sup|x−y|<ε |w(x) − w(y)|, and Nε = {x ∈ Rn : dist (x, suppw) ≤
ε}, it follows that

lim
ε→0

‖ρε ∗ w − w‖p = 0. (1.18)

Since

‖ρε ∗ u− u‖p ≤ ‖ρε ∗ w − w‖p + ‖ρε ∗ (u− w)− (u− w)‖p, (1.19)

it follows from (ii) that limε→0 ‖ρε ∗ u − u‖p ≤ 2τ . Since τ is arbitrary this
completes the proof.

1.3 Weak and weak* convergence

Let X be a Banach space with dual space X∗.

Definitions 1. A sequence u(j) converges weakly to u in X (written u(j) ⇀ u
in X ) if

〈T, u(j)〉 → 〈T, u〉 for all T ∈ X∗.

A sequence T (j) converges weak* to T in X∗ (written T (j) ∗
⇀ T ) if

〈T (j), u〉 → 〈T, u〉 for all u ∈ X.

Applying these definitions to X = Lp(E), and using the characterization of
Lp(E)∗ in Section 1.1, we find that if 1 ≤ p < ∞ then u(j) ⇀ u in X = Lp(E)
if and only if∫

E

u(j)ϕdx→
∫

E

ϕdx for all ϕ ∈ Lp′(E), (1.20)

and u(j) ∗
⇀ u in L∞(E) if and only if∫

E

u(j)ϕdx→
∫

Ω

uϕdx for all ϕ ∈ L1(E). (1.21)
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Example 1.1. (Rademacher functions) Let Ω = (0, 1), 0 < λ < 1, a, b ∈ R and
define θ : R → R by

θ(x) =
{
a, 0 < x ≤ λ
b, λ < x ≤ 1 (1.22)

extended to the whole of R as a function of period 1. (See Figure 2(i).) Now

Figure 2: (i) The 1-periodic function θ, (ii) The function θ(j)(x) = θ(jx) for
large j.

define θ(j)(x) = θ(jx), j = 1, 2, . . . . For large j, θ(j) oscillates fast between the
values a and b (see Figure 2 (ii)), taking these values with relative frequency λ
to 1− λ. Let c = λa+ (1− λ)b. Thus we guess that

Proposition 3. θ(j) ∗
⇀ c in L∞(0, 1) as j →∞.

Proof. We first calculate limj→∞
∫ s

r
θ(j) dx for 0 ≤ r < s ≤ 1. We have that∫ s

r

θ(j)(x) dx =
∫ s

r

θ(jx) dx

=
1
j

∫ js

jr

θ(τ) dτ. (1.23)

The interval (jr, js) contains Nj integers, where |Nj − (js− jr)| ≤ 1. Since θ is
1-periodic and

∫ 1

0
θ(τ) dτ = c it follows that∫ js

jr

θ(τ) dτ = (js− jr)c+ εj , (1.24)

where |εj | ≤ constant. Combining (1.23), (1.24) we deduce that

lim
j→∞

∫ s

r

θ(j)(x) dx =
∫ s

r

c dx. (1.25)

It follows from (1.25) that

lim
j→∞

∫ s

r

θ(j)ϕdx =
∫ s

r

cϕ dx (1.26)
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for any step function ϕ (i.e. for any function ϕ with finitely many values, each
taken on an interval). But step functions are dense in L1(0, 1) ; given any
ϕ ∈ L1(0, 1) there exists a sequence ϕ(k) of step functions converging strongly
to ϕ in L1(0, 1). Hence

|
∫ 1

0

θ(j)ϕdx−
∫ 1

0

cϕ dx|

≤ |
∫ 1

0

(θ(j) − c)ϕ(k) dx|+ |
∫ 1

0

(θ(j) − c)(ϕ− ϕ(k)) dx|

≤ |
∫ 1

0

(θ(j) − c)ϕ(k) dx|+K ‖ ϕ(k) − ϕ ‖1, (1.27)

where K is a constant. Letting j →∞ and then k →∞ we deduce that

lim
j→∞

∫ 1

0

θ(j)ϕdx =
∫ 1

0

cϕ dx (1.28)

for all ϕ ∈ L1(0, 1), and thus θ(j) ∗
⇀ c in L∞(0, 1).

A key reason why weak convergence is important for variational methods
is that suitably bounded sequences have weakly (or weak*) convergent subse-
quences.

Theorem 4. Let X be a separable Banach space, and let T (j) be a bounded
sequence in X∗, i.e. supj ‖ T (j) ‖X∗= M <∞. Then there exists a subsequence
T (jk) of T (j) converging weak* to some T in X∗.

Proof. Let {ψi}∞i=1 be a countable dense subset of X. Since

| 〈T (j), ψ1〉 |≤M ‖ ψ1 ‖ (1.29)

the sequence 〈T (j), ψ1〉 of real numbers is bounded. Hence there exists a sub-
sequence T (n1(j)) of T (j) such that limj→∞〈T (n1(j)), ψ1〉 exists. Similarly, the
sequence 〈T (n1(j)), ψ2〉 is bounded, and so there exists a subsequence T (n2(j)) of
T (n1(j)) such that limj→∞〈T (n2(j)), ψ2〉 exists. Proceeding in this way we ob-
tain for each i a subsequence T (ni(j)) of T (ni−1(j)) such that limj→∞〈T (ni(j)), ψi〉
exists. Consider the ‘diagonal sequence’ T (nj(j)). Since {T (nj(j))}∞j=i is a sub-
sequence of {T (ni(j))}∞j=i it follows that limj→∞〈T (nj(j)), ψi〉 exists for each i.

Now let ψ ∈ X be arbitrary. Given ε > 0 there exists I with

‖ ψ − ψI ‖≤
ε

2M
. (1.30)

Then

| 〈T (nj(j)), ψ〉 − 〈T (nk(k)), ψ〉 |≤| 〈T (nj(j)), ψI〉 − 〈T (nk(k)), ψI〉 | +ε (1.31)
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and hence 〈T (nk(k)), ψ〉 is a Cauchy sequence, so that

T (ψ) def= lim
k→∞

〈T (nk(k)), ψ〉 (1.32)

exists. Clearly T is linear in ψ, and since | T (ψ) |≤ M ‖ ψ ‖ it follows that
T ∈ X∗. Thus T (jk) ∗

⇀ T in X∗ with jk = nk(k).

A related result is

Theorem 5 ([12, p68]). A bounded sequence in a reflexive Banach space X has
a weakly convergent subsequence.

Thus a bounded sequence in Lp(E), 1 < p < ∞, has a weakly convergent
subsequence, and a bounded sequence in L∞(E) has a weak* convergent sub-
sequence. A bounded sequence in L1(E) need not have a weakly convergent
subsequence (consider, for example, the case E = (0, 1), u(j) = jχ(0, 1

j )), and an
extra condition is needed to ensure this.

Theorem 6 (de la Vallée Poussin, see [11, p24]). A sequence u(j) in L1(E) has
a weakly convergent sequence if

sup
j

∫
E

Φ(|u(j)|) dx <∞

for some continuous Φ : [0,∞) → [0,∞) with

lim
t→∞

Φ(t)
t

= ∞.

Exercises

1.1. Let B = {x ∈ Rn : |x| < 1}. For α ∈ R define

uα(x) = |x|α.

For which p, 1 ≤ p ≤ ∞, does uα ∈ Lp(B)?

1.2. Let Ω ⊂ Rn be bounded and open. Are the following statements true or
false?

(i) L1(Ω) =
⋃

1<p<∞
Lp(Ω),

(ii) L∞(Ω) =
⋂

1<p<∞
Lp(Ω).

1.3. For j = 1, 2, ... let aj =
∑j

i=1
1
i , and define Ej to be the interval (aj , aj+1)

(mod 1) (i.e. x ∈ Ej if and only if x ∈ (0, 1) and x + m ∈ (aj , aj+1) for some
integer m). Show that u(j) = χEj converges to zero in Lp(0, 1) as j → ∞, but
that u(j) 6→ 0 a.e..
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1.4. Show that the function ϕ given by (1.5) belongs to C∞0 (Rn).
Hint. Prove by induction that for |t| < 1 the nth derivative f (n) of the function
f : R → R defined by

f(t) =

{
exp

(
1

t2−1

)
|t| < 1

0 |t| ≥ 1
(1.33)

has the form

f (n)(t) =
Pn(t)

(t2 − 1)2n
exp

(
1

t2 − 1

)
, |t| < 1, (1.34)

where Pn is a polynomial.

1.5. Let Ω ⊂ Rn be open and 1 ≤ p <∞.
(i) Prove that C∞0 (Ω) is dense in Lp(Ω).
(ii) Is C∞0 (Ω) dense in L∞(Ω)?

1.6. Let θ : R → R be continuous with θ(t) = 0 for |t| ≥ 1, and define θ(j)(x) =
θ(x+ j).
(i) Prove that θ(j) ⇀ 0 in Lp(R) for 1 < p <∞, and that θ(j) ∗

⇀ 0 in L∞(R) as
j →∞.
(ii) Does θ(j) ⇀ 0 in L1(R)?

1.7. Prove the following generalization of Proposition 3. If θ ∈ L∞(R) is 1-
periodic and if θ(j)(x) := θ(jx), then

θ(j)
∗
⇀ θ̄ :=

∫ 1

0

θ(t) dt

in L∞(R) as j →∞.

1.8. Let

u(j)(x) =
{
j for 0 < x < j−1,
0 otherwise

.
(i) If 1 < p <∞ prove that (u(j))

1
p ⇀ 0 in Lp(0, 1) as j →∞.

(ii) Is u(j) weakly convergent in L1(0, 1)?

1.9. Let Ω ⊂ Rn be open, and let f (j) ⇀ f in L1(Ω), f (j) → g a.e. in Ω. Prove
that f = g a.e..
Hint. Use Mazur’s theorem, that if f (j) ⇀ f in a Banach space X then there
exists a sequence {θ(k)} of finite convex combinations of the f (j) converging
strongly to f in X.
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1.4 The multi-index notation for derivatives

It is convenient to have a compact notation for expressing mixed partial deriva-
tives of functions. A multi-index α is an n-tuple α = (α1, ..., αn) of nonnegative
integers αi, and we write |α| = α1 + · · ·+ αn.

Let Ω ⊂ Rn be open and u : Ω → R be smooth. Then we define

Dαu =
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

u =
∂|α|u

∂xα1
1 · · · ∂xαn

n
. (1.35)

For example, if n = 3 and β = (2, 1, 0), then

Dβu =
∂3u

∂x2
1∂x2

. (1.36)

Note that if α, β are multi-indices then so is α+ β = (α1 + β1, ..., αn + βn), and

Dα+βu = DαDβu = DβDαu. (1.37)

We will use the multi-index notation also for weak derivatives as defined in the
next section.

1.5 Weak derivatives

Let Ω ⊂ Rn be open with boundary ∂Ω, and let v ∈ C1(Ω), ϕ ∈ C∞0 (Ω). Then
for any j = 1, ..., n

∂

∂xj
(vϕ) = v

∂ϕ

∂xj
+

∂v

∂xj
ϕ, (1.38)

so that integrating over Ω and using the divergence theorem 1 we have that∫
Ω

v
∂ϕ

∂xj
dx = −

∫
Ω

∂v

∂xj
ϕdx. (1.39)

This can be thought of as the formula for integration by parts in n dimensions.
1The divergence theorem states that if f : Rn → Rn is C1, and if E ⊂ Rn is open and has

sufficiently smooth boundary, thenZ
E

div f dx =

Z
∂E

f · n dS,

where n denotes the unit outward normal to ∂E. To obtain (1.39) we cannot apply the
theorem directly because ∂Ω may not be smooth. Instead, we extend vϕ by zero to the whole
of Rn and apply the theorem with E a large ball containing Ω and f = vϕej . ThenZ

Ω
div f dx =

Z
E

div f dx = 0,

and since

div f =
∂

∂xj
(vϕ)

we obtain (1.39).
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Now let α = (α1, ..., αn) be a multi-index and u ∈ C |α|(Ω). Applying (1.39)
αj times for each j we deduce that∫

Ω

uDαϕdx = (−1)|α|
∫

Ω

Dαu · ϕdx, (1.40)

there being |α| = α1 + · · ·+ αn changes of sign all together.
Define

L1
loc(Ω) = {u : Ω → R : u|E ∈ L1(E) for all bounded open E with Ē ⊂ Ω}.

Definition 1. Let u ∈ L1
loc(Ω) and α be a multi-index. A function v ∈ L1

loc(Ω)
is said to be an αth weak derivative of u if∫

Ω

uDαϕdx = (−1)|α|
∫

Ω

vϕ dx for all ϕ ∈ C∞0 (Ω), (1.41)

and we write v = Dαu.
If v1 and v2 are two αth weak derivatives, their difference w = v1−v2 satisfies∫

Ω

wϕdx = 0 for all ϕ ∈ C∞0 (Ω),

and so by the following lemma v1 = v2. Hence weak derivatives are unique.

Lemma 7. (The fundamental lemma of the calculus of variations.) Let w ∈
L1

loc(Ω) satisfy∫
Ω

wϕdx = 0 for all ϕ ∈ C∞0 (Ω) (1.42)

Then w = 0.

Proof. Let ρε be a mollifier. Let E be bounded and open with E ⊂ Ω. If ε <
dist(E, ∂Ω) then for each x ∈ E the function ϕε,x defined by ϕε,x(y) = ρε(x−y)
belongs to C∞0 (Ω). Hence by (1.42)

(ρε ∗ w)(x) =
∫

Ω

ρε(x− y)w(y) dy = 0 (1.43)

for all x ∈ E. But ρε ∗w → w in L1(E) as ε→ 0, and so w = 0 a.e. in E. Since
E is arbitrary the result follows.

1.6 The Sobolev space Wm,p(Ω)

Definition 2. Let m be a non-negative integer and let 1 ≤ p ≤ ∞. The Sobolev
space Wm,p(Ω) is the linear space of functions u ∈ Lp(Ω) such that for each α,
0 ≤ |α| ≤ m, the weak derivative Dαu exists and belongs to Lp(Ω). We norm
Wm,p(Ω) by

‖u‖m,p =


(∑

0≤|α|≤m ‖Dαu‖p
p

) 1
p

if 1 ≤ p <∞
max0≤|α|≤m ‖Dαu‖∞ if p = ∞.
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If p = 2 an alternative notation is often used, namely

Hm(Ω) = Wm,2(Ω).

Note that W 0,p(Ω) = Lp(Ω), while

W 1,p(Ω) = {u ∈ Lp(Ω) :
∂u

∂xj
∈ Lp(Ω) for i = 1, ..., n}

with norm

‖u‖1,p =

(∫
Ω

|u|pdx+
n∑

i=1

∫
Ω

| ∂u
∂xi

|pdx

) 1
p

, (1.44)

if 1 ≤ p <∞ and

‖u‖1,∞ = max
(
‖u‖∞, ‖

∂u

∂x1
‖∞, ..., ‖

∂u

∂xn
‖∞
)
, (1.45)

where the ∂u/∂xi are weak derivatives.
If (a, b) ⊂ R is an interval we will write Wm,p(a, b) instead of Wm,p((a, b)).

Theorem 8. Wm,p(Ω) is a Banach space.

Proof. Wm,p(Ω) is clearly a normed linear space, and we have to show that it
is complete. Let u(j) be a Cauchy sequence in Wm,p(Ω). Then u(j) is a Cauchy
sequence in Lp(Ω), and since Lp(Ω) is complete u(j) → u in Lp(Ω) as j →∞ for
some u. Similarly, if 0 < |α| ≤ m then Dαu(j) is a Cauchy sequence in Lp(Ω)
and so Dαu(j) → uα in Lp(Ω). But by (1.41)∫

Ω

u(j)Dαϕdx = (−1)|α|
∫

Ω

Dαu(j) · ϕdx (1.46)

for all ϕ ∈ C∞0 (Ω). Passing to the limit j → ∞ using Hölder’s inequality we
obtain∫

Ω

uDαϕdx = (−1)|α|
∫

Ω

uαϕdx, (1.47)

for all ϕ ∈ C∞0 (Ω) so that uα = Dαu. Hence u(j) → u in Wm,p(Ω), so that
Wm,p(Ω) is complete.

Let κ = κ(m,n) denote the number of multi-indices α with 0 ≤ |α| ≤ m,
and consider the product space Lp(Ω)κ with the norm of v = (v1, ..., vκ) given
by

‖v‖p;κ =

{ (∑κ
i=1 ‖vi‖p

p

) 1
p if 1 ≤ p <∞

max1≤i≤κ ‖vi‖∞ if p = ∞.

Then, since Lp(Ω) is a Banach space which is separable if 1 ≤ p < ∞ and
reflexive if 1 < p < ∞, by well-known results of functional analysis the space
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Lp(Ω)κ has the same properties. Choose a definite ordering of the multi-indices
α with 0 ≤ |α| ≤ m. Given u ∈Wm,p(Ω) define Pu ∈ Lp(Ω)κ by

Pu = (Dαu)0≤|α|≤m. (1.48)

Then P is an isometric isomorphism of Wm,p(Ω) onto a linear subspace Z of
Lp(Ω)κ, and by a similar argument to that in the proof of Theorem 8 it is easily
seen that Z is closed. Recalling that a closed subspace of a separable (resp.
reflexive) Banach space is separable (resp. reflexive) we have thus proved

Theorem 9. Wm,p(Ω) is separable if 1 ≤ p <∞ and is reflexive if 1 < p <∞.

1.7 Examples

In this section we give examples of various functions that do or do not belong
to Sobolev spaces, giving proofs from first principles.

1.7.1 Smooth functions

Let u ∈ Cm(Ω) with ‖u‖m,p <∞. Then by (1.40) the weak derivatives Dαu for
0 ≤ |α| ≤ m equal the usual ones, and hence u ∈ Wm,p(Ω). In particular, if Ω
is bounded and u ∈ C∞(Rn) then u|Ω ∈Wm,p(Ω) for all m, p.

1.7.2 Piecewise affine functions

Let n = 1, Ω = (0, 1), and let u be defined by

u(x) =
{
x if 0 < x < 1

2
1− x if 1

2 < x < 1 . (1.49)

Let us show that u ∈ W 1,∞(0, 1) (and hence, since (0,1) is bounded, u ∈
W 1,p(0, 1) for 1 ≤ p ≤ ∞). This looks obvious, since

du

dx
(x) =

{
1 if 0 < x < 1

2
−1 if 1

2 < x < 1 (1.50)

and so ‖u‖∞ = 1
2 , ‖du/dx‖∞ = 1. However, there is a crucial detail to check,

namely that du/dx given by (1.50) is indeed the weak derivative of u. To prove
this we must show that∫ 1

0

u
dϕ

dx
dx = −

∫ 1

0

du

dx
ϕdx for all ϕ ∈ C∞0 (0, 1), (1.51)

where du/dx is given by (1.50). But, integrating by parts on the intervals
(0, 1

2 ), ( 1
2 , 1) we have that∫ 1

0

u
dϕ

dx
dx =

∫ 1
2

0

x
dϕ

dx
dx+

∫ 1

1
2

(1− x)
dϕ

dx
dx

=
1
2
ϕ(

1
2
)−

∫ 1
2

0

dϕ

dx
dx− 1

2
ϕ(

1
2
)−

∫ 1

1
2

dϕ

dx
dx

= −
∫ 1

0

du

dx
ϕdx
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as required. Hence u ∈W 1,∞(0, 1).
A similar proof shows that if u is a piecewise affine function on (0,1) (i.e.

u is continuous on (0,1) and affine on each interval (ai, ai+1), where 0 = a1 <
a2 < ... < an = 1) then u ∈W 1,∞(0, 1).

1.7.3 The Heaviside function

The Heaviside function H is defined by

H(x) =
{

1 x ≥ 0
0 x < 0 . (1.52)

Clearly H ∈ L∞(−1, 1). We ask whether H ∈W 1,p(−1, 1). Since the derivative

dH

dx
(x) = 0 for x ∈ (−1, 0) ∪ (0, 1)

it is tempting to conclude that dH/dx ∈ L∞(−1, 1), so that H ∈W 1,∞(−1, 1).
But this is false. In fact, we have

Proposition 10. H 6∈W 1,p(−1, 1) for any p, 1 ≤ p ≤ ∞.

Proof. Suppose for contradiction thatH ∈W 1,1(−1, 1). Let dH/dx ∈ L1(−1, 1)
denote the weak derivative of H. Then, since H is smooth in (−1, 0) ∪ (0, 1),
dH/dx = 0 a.e. in (−1, 0) ∪ (0, 1) and so dH/dx = 0 a.e. in (-1,1). But by
(1.41)∫ 1

−1

H
dϕ

dx
dx = −

∫ 1

−1

dH

dx
ϕdx, (1.53)

so that∫ 1

−1

H
dϕ

dx
dx =

∫ 1

0

dϕ

dx
dx = −ϕ(0) = 0 (1.54)

for all ϕ ∈ C∞0 (−1, 1), a contradiction.

1.7.4 The function ln |x| on Rn

Let n > 1, B = {x ∈ Rn : |x| < 1}. For x 6= 0 define

u(x) = ln r, r = |x|. (1.55)

We show that u ∈W 1,p(B) if and only if 1 ≤ p < n.

Step 1. Formal calculation. For r > 0, u is smooth and

∂u

∂xi
=

1
r

∂r

∂xi
=
xi

r2
. (1.56)

Hence |∇u|2 = 1
r2 and so∫

B

(|u|p + |∇u|p) dx = ωn−1

∫ 1

0

rn−1(| log r|p + r−p) dr, (1.57)
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where ωn−1 = Hn−1(Sn−1), and this is finite if and only if 1 ≤ p < n.

Step 2. Proof that u has weak derivatives given by ∂u
∂xi

= xi

r2 .
We must show that∫

B

u
∂ϕ

∂xi
dx = −

∫
B

xi

r2
ϕdx (1.58)

for all ϕ ∈ C∞0 (B).Let ε > 0, Bε = B(0, ε). Then∫
B\Bε

u
∂ϕ

∂xi
dx =

∫
B\Bε

(
∂ (ϕu)
∂xi

− ϕ
∂u

∂xi

)
dx

= −
∫

∂Bε

ϕuni dS −
∫

B\Bε

xi

r2
ϕdx. (1.59)

We need to pass to the limit ε → 0. The volume integrals converge to the
obvious limits by dominated convergence; for example, the first integral can be
written as∫

BR

(1− χε(x))u
∂ϕ

∂xi
dx, (1.60)

where χε denotes the characteristic function of Bε, and the integrand in (1.60)
is bounded in absolute value by const.| log r|, which belongs to L1(BR). For the
surface integral we have∣∣∣∣∫

∂Bε

ϕuni dS

∣∣∣∣ ≤ ∫
∂Bε

|ϕ| · | log ε|, dS ≤ const.| log ε|εn−1, (1.61)

which tends to zero as ε→ 0. This proves (1.58).

1.8 Approximation by smooth functions

Let u ∈Wm,p(Ω). Let E ⊂ Ω be open with ε0 := dist (E, ∂Ω) > 0. Let ρε be a
mollifier. Then if 0 < ε ≤ ε0 the mollified function

(ρε ∗ u)(x) =
∫
Rn

ρε(x− y)u(y) dy

=
∫

Ω

ρε(x− y)u(y) dy (1.62)

is well-defined for all x ∈ E. If |α| ≤ m then for x ∈ E

Dα(ρε ∗ u)(x) =
∫

Ω

Dα
xρε(x− y)u(y) dy

= (−1)|α|
∫

Ω

Dα
y ρε(x− y)u(y) dy (1.63)
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where Dα
x , D

α
y denote derivatives with respect to x, y respectively. Let ϕε(y) =

ρε(x− y). Since ϕε ∈ C∞0 (Ω) it follows from the definition of weak derivatives
that for x ∈ E

Dα(ρε ∗ u)(x) =
∫

Ω

ρε(x− y)Dαu(y) dy

= (ρε ∗Dαu)(x), (1.64)

i.e. the derivatives of the mollified function are the mollified derivatives. Ap-
plying Proposition 1 we deduce that if 1 ≤ p <∞ then ρε ∗u→ u in Wm,p(E)
as ε→ 0.

Because of the restriction that dist (E, ∂Ω) > 0 this does not provide an
approximation of u in Wm,p(Ω) by functions in C∞(Ω). However, by a more
careful argument using a partition of unity one can prove

Theorem 11 (Meyers & Serrin). Let 1 ≤ p < ∞. Then C∞(Ω) is dense in
Wm,p(Ω).

For Ω ⊂ Rn open and m = 1, 2, . . . or m = ∞ define

Cm(Ω̄) = {v : Ω → R : there exists w ∈ Cm(Rn) with w|Ω = v}.

Can any u ∈Wm,p(Ω) be approximated by functions in C∞(Ω̄)? In general the
answer is no.

Example 1.2. Let Ω = (−1, 0)∪(0, 1), u(x) = H(x). Then u ∈ C∞(Ω), so that
u ∈ Wm,p(Ω) for any m, p. Suppose that there were a sequence u(j) ∈ C1(R)
with u(j) → u inW 1,p(Ω). Then we may assume by Proposition ?? that u(j) → u
a.e. in Ω. Choosing x− ∈ (−1, 0), x+ ∈ (0, 1) with u(j)(x−) → 0, u(j)(x+) → 1
we have that u(j)(x+)− u(j)(x−) → 1. But

lim
j→∞

(u(j)(x+)− u(j)(x−)) = lim
j→∞

∫ x+

x−

du(j)

dx
dx = 0, (1.65)

a contradiction.

In the example, Ω lies on both sides of the boundary point 0. To prevent
this kind of situation and to deal with boundary values we make the following
definition.

Definition 3. An open set Ω ⊂ Rn has a Cm (respectively Lipschitz) boundary
if given any x̄ ∈ ∂Ω there exist r > 0 and a Cm (respectively Lipschitz) function
a : Rn−1 → R such that, in a suitable Cartesian coordinate system,

Ω ∩B(x̄, r) = {x ∈ Rn : xn > a(x1, ..., xn−1)} ∩B(x̄, r). (1.66)

For brevity we write x′ = (x1, ..., xn−1), so that x = (x′, xn). Notice that
each of the definitions implies that

∂Ω ∩B(x̄, r) = {x ∈ Rn : xn = a(x′)} ∩B(x̄, r), (1.67)

so that the boundary is locally the graph of a Cm (resp. Lipschitz) function.

Theorem 12. Let Ω have C0 boundary, and let 1 ≤ p < ∞. Then the set of
restrictions to Ω of functions in C∞0 (Rn) is dense in Wm,p(Ω). In particular,
C∞(Ω̄) is dense in Wm,p(Ω).
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1.9 Boundary values

Let Ω ⊂ Rn have Lipschitz boundary. How can we define the boundary values
of a function u ∈ W 1,p(Ω)? this is not a trivial matter even if ∂Ω is smooth,
since (a) u is in principle defined only in Ω, (b) even if u could be extended to a
function ũ ∈ W 1,p(Rn) the values of ũ on ∂Ω appear to have no meaning since
Ln(∂Ω) = 0 and ũ may be altered at will on sets of Ln measure zero.

If Ω has Lipschitz boundary we can define Lp(∂Ω) as the space of (equiva-
lence classes of) Hn−1 measurable functions u : ∂Ω → R such that ‖u‖Lp(∂Ω) <
∞, where

‖u‖LP (∂Ω) =

{ (∫
∂Ω
|u(x)|pdHn−1(x)

) 1
p 1 ≤ p <∞,

ess sup x∈Ω |u(x)| p = ∞.

Lp(∂Ω) is a Banach space, and we can use the usual formulae to calculate
integrals, e.g. in a neighbourhood of x̄ ∈ ∂Ω

dHn−1(x) =

(
1 +

n−1∑
i=1

(
∂a

∂xi

)2
) 1

2

dx1 . . . dxn−1.

The key idea for defining boundary values is contained in the following theorem.

Theorem 13. Let Ω ⊂ Rn be bounded and open with Lipschitz boundary, and
let 1 ≤ p <∞. Then there exists a constant c > 0 such that∫

∂Ω

|u|pdHn−1 ≤ c‖u‖p
1,p (1.68)

for all u ∈ C1(Ω̄).

Proof for Ω = (0, 1)n.

u(x′, 1)− u(x′, xn) =
∫ 1

xn

∂u

∂xn
(x′, s) ds.

Hence

|u(x′, 1)|p ≤ c

(
|u(x′, xn)|p +

∫ 1

0

∣∣∣∣ ∂u∂xn
(x′, s)

∣∣∣∣p ds) . (1.69)

Integrate (1.69) with respect to xn ∈ (0, 1) to obtain

|u(x′, 1)|p ≤ c

∫ 1

0

(
|u(x′, xn)|p +

∣∣∣∣ ∂u∂xn
(x′, xn)

∣∣∣∣p) dxn. (1.70)

Then, integrating (1.70) with respect to x′ ∈ (0, 1)n−1 we obtain∫
(0,1)n−1

|u(x′, 1)|pdHn−1 ≤ c‖u‖p
1,p.

Adding up the corresponding estimates for each face of the cube gives the result.
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If u ∈ W 1,p(Ω) there exists a sequence u(j) ∈ C1(Ω̄) with u(j) → u in
W 1,p(Ω). Hence u(j) is a Cauchy sequence in W 1,p(Ω), and by the theorem is
also a Cauchy sequence in Lp(∂Ω). Hence

u(j)|∂Ω → tru in Lp(∂Ω)

for some function tru, the trace of u on ∂Ω. Since we can interlace any two
different approximating sequences u(j), ˜u(j) it easily follows that tru is indepen-
dent of the approximating sequence. The mapping tr : W 1,p(Ω) → Lp(∂Ω) is a
bounded linear operator.

There is an alternative way of describing zero boundary values independent
of the regularity of the boundary. For 1 ≤ p < ∞ denote by Wm,p

0 (Ω) the
closure of C∞0 (Ω) in Wm,p(Ω). If p = ∞ we define Wm,∞

0 (Ω) to be the set
of v ∈ Wm,∞(Ω) that are the a.e. limit of a sequence ϕ(j) ∈ C∞0 (Ω) that is
bounded in Wm,∞(Ω). Wm,p

0 (Ω) is a closed linear subspace of Wm,p(Ω), and
hence is a Banach space with the same norm. We write Hm

0 (Ω) = Wm,2
0 (Ω).

Then we have

Theorem 14. Let Ω ⊂ Rn be open with Lipschitz boundary. Then if 1 ≤ p ≤ ∞

Wm,p
0 (Ω) = {u ∈Wm,p(Ω) : trDαu = 0 if |α| < m}.

Theorem 15. If 1 ≤ p <∞ then Wm,p(Rn) = Wm,p
0 (Rn).

1.10 Lipschitz mappings and W 1,∞.

Theorem 16. A mapping u ∈W 1,∞
loc (Ω; Rm) if and only if u has a representa-

tive that is locally Lipschitz.

Theorem 17. Let Ω ⊂ Rn be bounded and open with Lipschitz boundary. Then
u ∈W 1,∞(Ω; Rm) if and only if u has a representative that is Lipschitz on Ω.

1.11 Embedding theorems

Example 1.3. Let n = 1, −∞ < a < b < ∞. then W 1,1(a, b) is continuously
embedded in C([a, b]) i.e. each equivalence class v of functions in W 1,1(a, b) has
a representative τv ∈ C([a, b]) and there is a constant K > 0 such that

‖τv‖C([a,b]) ≤ K‖v‖1,1.

Proof. Suppose v is smooth. Then

v(y)− v(x) +
∫ y

x

v′(t) dt,

and so

|v(y)) ≤ |v(x)|+
∫ b

a

|v′(t)|) dt.
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Integrating with respect to x we find

(b− a)|v(y)| ≤
∫ b

a

(|v(t)|+ (b− a)|v′(t)|) dt

and so

‖v‖C([a,b]) ≤ K‖v‖1,1. (1.71)

Now let v ∈ W 1,1(a, b). There exists a sequence of smooth functions v(j) with
v(j) → v in W 1,1(a, b). Then v(j) is a Cauchy sequence in W 1,1(a, b) and thus
by (1.71) is a Cauchy sequence in C([a, b]). Hence v(j) → τv in C([a, b]) and
τv = v a.e. with

‖τv‖C([a,b]) ≤ K‖v‖1,1.

Note that the argument also shows that the continuous representative of v
satisfies the fundamental theorem of calculus

v(y) = v(x) +
∫ y

x

v′(t) dt for all x, y ∈ [a, b],

so that v is absolutely continuous.
Now let p > 1, and suppose ‖u(j)‖1,p ≤M <∞. Then by (1.71) ‖u(j)‖C([a,b])

is bounded, and if x ≤ y

|u(j)(x)− u(j)(y)| ≤
∫ y

x

|u(j)′(t)| dt

≤
(∫ y

x

1p′dt

) 1
p′
(∫ y

x

|u(j)′(t)|pdt
) 1

p

≤ m|y − x|
1
p′ .

Hence u(j) is bounded and equicontinuous, so that by the Arzela-Ascoli theorem
u(j) has a convergent subsequence in C([a, b]). So for p > 1 the embedding
W 1,p(a, b) → C([a, b]) is compact (bounded sequences in W 1,1(a, b) are relatively
compact in C([a, b])).

In general we have

Theorem 18 (Sobolev embedding). Let Ω ⊂ Rn be bounded, open with Lips-
chitz boundary, and let 1 ≤ p ≤ ∞.
If mp < n then Wm,p(Ω) ⊂ Lq(Ω), 1

q ≥
1
p −

m
n ,

if mp = n then Wm,p(Ω) ⊂ Lq(Ω), 1 ≤ q <∞,
(if p = 1 and m = n then in addition Wn,1(Ω) ⊂ L∞(Ω)),
if mp > n then Wm,p(Ω) ⊂ C0(Ω̄).

Theorem 19 (Rellich-Kondrachoff). The embedding Wm,p(Ω) ⊂ Lq(Ω) is com-
pact if mp < n, 1

q >
1
p −

m
n or if mp = n, 1 ≤ q <∞.

The embedding Wm,p(Ω) ⊂ C0(Ω̄) is compact if mp > n.
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Example 1.4. Let n = 3,m = 1. Then

H1(Ω) = W 1,2(Ω) ⊂ L6(Ω)

and the embedding W 1,2(Ω) ⊂ L6−ε(Ω) is compact.
W 1,3(Ω) ⊂ Lq(Ω) for 1 ≤ q <∞ but W 1,3(Ω) 6⊂ L∞(Ω).
W 1,p(Ω) ⊂ C0(Ω̄) compact if p > 3.

As an example of use of the embedding theorems we prove

Theorem 20 (Generalized Poincaré inequality). Let Ω ⊂ Rn be a bounded
domain (i.e. open and connected) with Lipschitz boundary, and let 1 < p <∞.
Then there exists a constant C + C(Ω, p) such that∫

Ω

|u|pdx ≤ C

(∣∣∣∣∫
Ω

u dx

∣∣∣∣p +
∫

Ω

|∇u|pdx
)

for all u ∈W 1,p(Ω).

Proof. Suppose not. Then there exist u(j) ∈W 1,p(Ω) with

1 =
∫

Ω

|u(j)|pdx > j

(∣∣∣∣∫
Ω

u(j) dx

∣∣∣∣p +
∫

Ω

|∇u(j)|pdx
)
.

Hence u(j) is bounded in W 1,p(Ω) and we can suppose that u(j) ⇀ u in W 1,p(Ω).
By the compactness of the embedding W 1,p(Ω) ⊂ Lp(Ω) we have

∫
Ω
|u|pdx = 1.

We now use the inequality

|a|p ≥ |b|p + p|b|p−2b · (a− b) for a,b ∈ Rn.

Thus ∫
Ω

|∇u(j)|pdx ≥
∫

Ω

|∇u|pdx+ p

∫
Ω

|∇u|p−2∇u · (∇u(j) −∇u) dx.

Thus

0 = lim
j→∞

(∣∣∣∣∫
Ω

u(j) dx

∣∣∣∣p +
∫

Ω

|∇u(j)|pdx
)

≥
∣∣∣∣∫

Ω

u dx

∣∣∣∣p +
∫

Ω

|∇u|pdx.

(since ∇u(j) ⇀ ∇u in (Lp)n and |∇u|p−2∇u ∈ (Lp′)n). Hence ∇u = 0, so u is
constant and thus u = 0. Contradiction.

Exercises

1.10. Let n > 1, B = {x ∈ Rn : |x| < 1}.

(a) For α ∈ R, α 6= 0, define

uα(x) = |x|α, x 6= 0.
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Prove that if 1 ≤ p < ∞ then uα ∈ W 1,p(B) if and only if n > p(1 − α). For
what α does uα ∈W 1,∞(B)? For what p does uα ∈W 1,p(Rn)?

(b) Prove that the function u defined for x 6= 0 by

u(x) = log log(2|x|−1)

belongs to W 1,n(B) but not to W 1,p(B) for any p > n.

(c) Let u : B → Rn be defined for x 6= 0 by

u(x) =
x

|x|
.

Show that u ∈W 1,p(B)n if and only if 1 ≤ p < n. Interpret u geometrically.

1.11. Let R > ρ > 0. Show that there exists ϕ ∈ C∞0 (Rn) satisfying suppϕ ⊂
B(0, R), ϕ|B(0,ρ) = 1, 0 ≤ ϕ ≤ 1 and |Dϕ| ≤ 2

R−ρ .
Hint. Reduce the problem to the case n = 1 by considering a radial function
ϕ = ϕ(r), r = |x|. Then mollify a suitable piecewise affine function.

1.12. Prove that the ellipsoid Ω = {x ∈ Rn :
∑n

i=1
x2

i

a2
i
< 1}, where ai > 0,

i = 1, ..., n, has C∞ boundary.

2 The one-dimensional calculus of variations

For the one-dimensional calculus of variations see Buttazzo, Giaquinta & Hilde-
brandt [7]. As a general reference for the calculus of variations there is a new
book of Rindler [20].

Consider for −∞ < a < b <∞ the integral functional

I(u) =
∫ b

a

f(x, u(x), ux(x)) dx (2.1)

for f continuous and bounded below. Here u ∈ W 1,1(a, b) = AC[a, b], and
satisfies the boundary conditions:

either u(a) = α, u(b) = β, (2.2)

or u(a) = α. (2.3)

(Note that for such u we may have I(u) = +∞.)

2.1 Existence of minimizers

We begin with some counterexamples.

Example 2.1 (Bolza).

I(u) =
∫ 1

0

[(u2
x − 1)2 + u2] dx, u(0) = u(1) = 0.
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Theorem 21. I does not attain an absolute minimum in W 1,1
0 (0, 1).

Proof. Let u(j) be as shown (Fig. 3), so that u(j)
x (x) = ±1 a.e. and |u(j)(x)| ≤

1
2j . Then

Figure 3: Minimizing sequence for Bolza problem.

I(u(j)) =
∫ 1

0

u(j)2 dx ≤ 1
4j2

→ 0 as j →∞.

Hence infW 1,1
0
I = 0. But I(u) = 0 implies u = 0, hence ux = 0 and I(u) = 1.

Contradiction.

Remarks 1.
1. The same argument works for the boundary conditions u(0) = 0, u(1) free.
2. We can think of there being a minimizer which is a ‘generalized curve’ in
the sense of L.C. Young [22], with track u = 0 and derivative given by the
probability measure ν = 1

2 (δ−1 + δ1).

Example 2.2.

I(u) =
∫ 1

0

x2u2
x dx, u(0) = 0, u(1) = 1.

To show that the minimum is not attained we can take as a minimizing sequence
u(j) as shown in Fig. 4 for which

I(u(j)) =
∫ 1

j

0

x2j2 dx =
1
3j

→ 0,

and note that there is no u ∈W 1,1(0, 1 with u(0) = 0, u(1) = 1 and I(u) = 0.

Example 2.3.

I(u) =
∫ 1

0

(|ux|+ (u− 1)2) dx, u(0) = 0, u(1) = 1.
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Figure 4: Minimizing sequence for Examples 2.2, 2.3.

Then

I(u) ≥
∣∣∣∣∫ 1

0

ux dx

∣∣∣∣+ ∫ 1

0

(u− 1)2 dx = 1 +
∫ 1

0

(u− 1)2dx.

But if u(j) is as in Fig. 4,

I(u(j)) =
∫ 1

j

0

[j + (jx− 1)2] dx→ 1 as j →∞.

Thus inf I = 1 and is not attained.

In Example 2.1 f(x, u, ·) is not convex (recall that a function g : X →
R ∪ {+∞}, X a vector space, is convex if

g(λp+ (1− λ)q) ≤ λg(p) + (1− λ)g(q)

for all p, q ∈ X and λ ∈ [0, 1]), while in Examples 2.2, 2.3 f(x, u, p) does not
have superlinear growth in p.

In order to prove the existence of minimizers we need an appropriate lower
semicontinuity theorem.

Theorem 22 (Berkowitz [4], Cesari [8], Ekeland & Temam [14], Ioffe [18, 17],
Eisen [13], [2] ...). Let Ω ⊂ Rn be bounded open, and let f : Ω×Rs×Rσ → [0,∞]
satisfy:
(i) f(·, z, v) : Ω → [0,∞] is measurable for every z ∈ Rs, v ∈ Rσ,
(ii) f(x, ·, ·) : Rs × Rσ → [0,∞] is continuous for a.e. x ∈ Ω,
(iii) f(x, z, ·) : Rσ → [0,∞] is convex for a.e. x ∈ Ω and all z ∈ Rs.
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Let z(j), z : Ω → Rs be measurable mappings such that z(j) → z a.e., and let
v(j) ⇀ v in L1(Ω; Rσ). Then∫

Ω

f(x, z(x), v(x)) dx ≤ lim inf
j→∞

∫
Ω

f(x, z(j)(x), v(j)(x)) dx.

Proof. We may assume that

lim inf
j→∞

∫
Ω

f(x, z(j)(x), v(j)(x)) dx = a <∞. (2.4)

We first claim that

h(j)(x) = f(x, z(j)(x), v(j)(x))− f(x, z(x), v(j)(x))

converges to zero in measure as j → ∞. If this were false there would exist
ε > 0, δ > 0 and subsequences z(jk), v(jk) such that Ln(Mk) ≥ δ for all k, where

Mk = {x ∈ Ω : |f(x, z(jk)(x), v(jk)(x))− f(x, z(x), v(jk)(x))| ≥ ε

z(jk)(x) → z(x), f(x, ·, ·) continuous }.

Since v(jk) ⇀ v in L1(Ω; Rσ), and by (2.4), there exists K > 0 such that∫
Ω

|v(jk)(x)| dx ≤ K,

∫
Ω

f(x, z(jk)(x), v(jk)(x)) dx ≤ K

for all k, and thus Ln(Nk) ≤ δ
2 , where

Nk =
{
x ∈ Ω : |v(jk)(x)| > 4K

ε
or f(x, z(jk)(x), v(jk)(x)) >

4K
ε

}
.

Let M ′
k = Mk \Nk. Then Ln(M ′

k) ≥ δ
2 for all k. Therefore

Ln

(
lim sup

k→∞
M ′

k

)
≥ δ

2
,

where

lim sup
k→∞

M ′
k :=

∞⋂
l=1

∞⋃
k=l

M ′
k.

For x ∈ lim supk→∞M ′
k we have, for a further subsequence not relabelled,

|v(k)(x)| ≤ 4K
δ
, |f(x, z(jk)(x), v(jk)(x))| ≤ 4K

δ
,

|f(x, z(jk)(x), v(jk)(x))− f(x, z(x), v(jk)(x))| ≥ ε,

z(jk)(x) → z(x), f(x, ·, ·) continuous,

which is impossible (choosing a convergent subsequence of v(jk)(x)), proving the
claim.
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Extracting a subsequence from h(j), we may suppose that h(j)(x) → 0 a.e.
in Ω. By Mazur’s theorem there exist convex combinations ξ(k) =

∑∞
j=k λ

k
j v

(j),
where only finitely many λk

j are nonzero for each k, such that ξ(k) → v(x) a.e.
as k →∞. Since f(x, z(x), ·) is convex,

f(x, z(x), ξ(k)(x)) +
∞∑

j=k

λk
jh

(j)(x) ≤
∞∑

j=k

λk
j f(x, z(j)(x), v(j)(x))

for a.e. x and large enough k.
Integrating over Ω, taking the lim inf as k → ∞, and applying Fatou’s

Lemma, we obtain the result.

Theorem 23 (Tonelli). Let f = f(x, u, p) be convex in p for each x, u and
suppose that

f(x, u, p) ≥ Φ(p) for all x, u

for some continuous Φ with Φ(p)
|p| →∞ as |p| → ∞. Let

A = {v ∈W 1,1(a, b) : v(a) = α, v(b) = β} (2.5)

or

A = {v ∈W 1,1(a, b) : v(a) = α}. (2.6)

Then I attains an absolute minimum on A.

Proof. Let l = infA I. Then ∞ > l > −∞. Let u(j) ∈ A be a minimizing
sequence, so that I(u(j)) → l. Then

sup
j

∫ b

a

Φ(u(j)
x ) dx <∞

and so by Theorem 6 there exists a subsequence, still denoted u(j), such that
v(j) := u

(j)
x ⇀ v in L1(a, b) for some v. Therefore

u(j)(x) = α+
∫ x

a

v(j)(s) ds→ u(x) := α+
∫ x

a

v(s) ds for all x ∈ [a, b].

In particular for the boundary conditions (2.5) we have u(b) = β. By the lower
semicontinuity Theorem 22 below,

l = lim inf
j→∞

I(u(j)) = lim
j→∞

∫ b

a

f(x, u(j)(x), v(j)(x)) dx

≥
∫ b

a

f(x, u(x), v(x)) dx = I(u) ≥ l,

and hence u is a minimizer.
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2.2 Local minimizers

Consider again the integral functional

I(u) =
∫ b

a

f(x, u(x), ux(x)) dx (2.7)

with f continuous and bounded below, with set of admissible functions

A = {u ∈W 1,1(a, b) : u(a) = α, u(b) = β}. (2.8)

Definitions 2. u ∈ A is a weak local minimizer of I if I(u) < ∞ and there
exists ε > 0 such that I(v) ≥ I(u) for all v ∈ A with

ess sup
x∈[a,b]

[|v(x)− u(x)|+ |vx(x)− ux(x)|] < ε.

u ∈ A is a strong local minimizer of I if I(u) < ∞ and there exists ε > 0 such
that I(v) ≥ I(u) for all v ∈ A with

max
x∈[a,b]

|v(x)− u(x)| < ε.

Thus u is a weak (resp. strong) local minimizer if it is a local minimizer with
respect to the W 1,∞ (resp. L∞) norm (see Fig. 5). A strong local minimizer

Figure 5: Schematic of typical function v (in red) in (a) a W 1,∞ neighbourhood
of a smooth function u (in black) (b) an L∞ neighbourhood of u. In the second
case the derivative vx can be arbitrarily large, whereas in the first it must be
close to ux.

is a weak local minimizer, but in general a weak local minimizer need not be a
strong local minimizer.

2.3 Necessary conditions for local minimizers

We now assume for simplicity that f = f(x, u, p) is C3 in its arguments x, u, p.
Let u ∈ A ∩ W 1,∞(a, b) be a weak local minimizer. If ϕ ∈ C∞0 (a, b) then
I(u+ τϕ) has a local minimum at τ = 0, so that d

dτ I(u+ τϕ)|τ=0 = 0, provided
this derivative exists. In fact by the mean-value theorem

I(u+ τϕ)− I(u)
τ

=
∫ b

a

[fu(x, u(x) + τ(x)ϕ(x), ux(x) + τ(x)ϕx(x))ϕ(x)

+fp(x, u(x) + τ(x)ϕ(x), ux(x) + τ(x)ϕx(x))ϕx(x)] dx
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where |τ(x)| ≤ |τ |, so that by the bounded convergence theorem∫ b

a

[fuϕ+ fpϕx] dx = 0 for all ϕ ∈ C∞0 (a, b), (WEL)

i.e. u satisfies the Euler-Lagrange equation

d

dx
fp = fu (EL)

in the sense of distributions. Note that since

fuϕ =
d

dx

(∫ x

a

fu ds · ϕ
)
−
(∫ x

a

fu ds

)
ϕx,

(WEL) is equivalent to∫ b

a

(
fp −

∫ x

a

fu ds

)
ϕx dx = 0 for all ϕ ∈ C∞0 (a, b),

and hence to the integrated Euler-Lagrange equation

fp =
∫ x

a

fu ds+ c, x ∈ [a, b], (IEL)

where c is a constant.
Similarly we have that the second variation

δ2I(u)(ϕ,ϕ) :=
d2

dτ2
I(u+ τϕ) ≥ 0,

that is∫ b

a

[fuuϕ
2 + 2fupϕϕx + fppϕ

2
x] dx ≥ 0 for all ϕ ∈ C∞0 (a, b),

which we abbreviate to

δ2I(u) ≥ 0. (2.9)

Now let u ∈ A ∩W 1,∞(a, b) be a strong local minimizer. For ϕ ∈ C∞0 (a, b)
and |τ | small enough there is a unique smooth increasing solution zτ (x) to
z + τϕ(z) = x for x ∈ [a, b]. Define the inner variation

uτ (x) = u(zτ (x)),

which rearranges the values of u. Then limτ→0 maxx∈[a,b] |uτ (x) − u(x)| = 0,
and so

d

dτ
I(uτ )|τ=0 =

d

dτ

∫ b

a

f(z+τϕ(z), u(z), uz(z)·
1

1 + τϕz(z)
)(1+τϕz(z)) dz|τ=0 = 0,
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giving∫ b

a

[fxϕ+ (f − uxfp)ϕx] dx = 0 for all ϕ ∈ C∞0 (a, b). (WDBR)

That is u satisfies the Du Bois-Reymond equation

d

dx
(f − uxfp) = fx (DBR)

in the sense of distributions. Equivalently, u satisfies the integrated form

f − uxfp =
∫ x

a

fx ds+ c, x ∈ [a, b], (IDBR)

for some constant c.
Note that (WDBR) does not follow from (WEL). In the special case f = f(p)

the ‘broken extremal’

u(x) =
{
qx x ∈ [−1, 0]
rx x ∈ [0, 1]

satisfies (WEL) on [−1, 1] if and only if fp(q) = fp(r), i.e. the tangents to f at
q, r have the same slope. If also (WDBR) holds then

f(q)− qfp(q) = f(r)− rfp(r),

i.e. the tangents at q, r are a common tangent (see Fig. 6).

Figure 6: The broken extremal with slopes q, r satisfies (WEL) if the slopes of
f at q, r are the same, and satisfies also (WDBR) if there is a common tangent
at q, r.

Suppose again that u ∈ A ∩ W 1,∞(a, b) is a strong local minimizer. Let
[c, d] ⊂ (a, b), ψ ∈ W 1,∞

0 (−1, 1) and consider for ε > 0 and x0 ∈ [c, d] the
localized variation

uε(x0, x) = u(x) + εψ
(x− x0

ε

)
.

For ε > 0 sufficiently small (independent of x0) we have that I(uε(x0, ·)) ≥ I(u),
and so∫ x0+ε

x0−ε

(
f(x, u(x) + εψ

(x− x0

ε

)
, ux(x) + ψy

(x− x0

ε

)
) (2.10)

−f(x, u(x), ux(x))
)
dx ≥ 0.
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Let ϕ ∈ C∞0 (c, d), ϕ ≥ 0. Multiplying (2.10) by ϕ(x0), integrating with respect
to x0 over (c, d), and making the change of variables y = x−x0

ε we obtain

ε

∫ b

a

ϕ(x− εy)
(∫ 1

−1

(f(x, u(x) + εψ(y), ux(x) + ψy(y))

−f(x, u(x), ux(x)) dy
)
dx ≥ 0.

Dividing by ε and passing to the limit ε→ 0 we deduce that∫ d

c

ϕ(x)
∫ 1

−1

(
f(x, u(x), ux(x) + ψy(y))− f(x, u(x), ux(x))

)
dy dx ≥ 0,

and since ϕ ≥ 0 is arbitrary it follows that for a.e. x ∈ [c, d], and hence for a.e.
x ∈ (a, b),∫ 1

−1

f(x, u(x), ux(x) + ψy(y)) dy ≥
∫ 1

−1

f(x, u(x), ux(x) dy. (2.11)

(This is quasiconvexity in 1D.)
Define F (p) = f(x, u(x), ux(x) + p), so that (2.11) becomes∫ 1

−1

F (ψy(y)) dy ≥
∫ 1

−1

F (0) dy.

Choosing ψ as shown in Fig 7 we deduce that

Figure 7: Function ψ(y) with slopes p and q = − λ
1−λp, where 0 < λ < 1.

λF (p) + (1− λ)F (− λ

1− λ
p) ≥ F (0).

Hence d
dλ (LHS)|λ=0 ≥ 0, and hence F (p) ≥ F (0) + pFp(0), giving the Weier-

strass necessary condition, that for a.e. x ∈ (a, b),

f(x, u(x), ux(x) + p) ≥ f(x, u(x), ux(x)) + pfp(x, u(x), ux(x)) for all p.

Thus the possible values of ux(x) in a strong local minimizer are those for which
the tangent at ux(x) to the graph of f(x, u(x), ·) does not lie above the graph
(see Fig. 8).
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Figure 8: The Weierstrass condition is that the tangent at ux(x) to the graph
of f(x, u(x), ·) does not lie above the graph.

2.4 Sufficient conditions for local minimizers

By slightly strengthening the necessary conditions we can obtain sufficient con-
ditions for a sufficiently regular u ∈ A to be a weak or strong local minimizer.

For u ∈ A ∩W 1,∞(a, b) write

δ2I(u) > 0 (2.12)

if ∫ b

a

(fuuϕ
2 + 2fupϕϕx + fppϕ

2
x) dx ≥ µ

∫ b

a

(ϕ2 + ϕ2
x) dx (2.13)

for all ϕ ∈ C∞0 (a, b) and some constant µ > 0. Note that (2.13) then holds for
all ϕ ∈W 1,2

0 (a, b) by density. Note also that (2.12) implies the strong Legendre
condition that for a.e. x ∈ (a, b)

fpp(x, u(x), ux(x)) ≥ µ. (2.14)

Indeed, (2.12) implies that ϕ = 0 is a global minimizer for the functional

δ2I(u)(ϕ,ϕ)− µ

∫ b

a

(ϕ2 + ϕ2
x) dx,

so that by the (proof of the) Weierstrass condition τ = 0 is a point of convexity
of the function (fpp(x, u(x), ux(x))− µ)τ2, giving (2.14).

Theorem 24. If u ∈ A∩W 1,∞(a, b) satisfies (WEL) and δ2I(u) > 0 then u is
a strict weak local minimizer (i.e. there exists ε > 0 such that I(v) > I(u) for
all v ∈ A with 0 < ‖v − u‖1,∞ < ε).
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Proof. Let ϕ ∈W 1,∞
0 (a, b). Then setting θ(t) = f(x, u+ tϕ, ux + tϕx) and using

θ(1)− θ(0) = θ′(0) +
∫ 1

0

(1− t)θ′′(t)dt

we obtain

I(u+ ϕ)− I(u) =
���������∫ b

a

(fuϕ+ fpϕx) dx+
1
2
δ2I(u)(ϕ,ϕ) +R(u, ϕ)

where

R(u, ϕ) =
∫ b

a

∫ 1

0

(1− t)[(fuu(x, u+ tϕ, ux + tϕx)− fuu(x, u, ux))ϕ2 + · · · ] dtdx.

For ε > 0 sufficiently small and ‖ϕ‖1,∞ < ε, we have that

R(u, ϕ) ≥ −µ
4

∫ b

a

(ϕ2 + ϕ2
x) dx,

and hence

I(u+ ϕ)− I(u) ≥ µ

4

∫ b

a

(ϕ2 + ϕ2
x) dx,

as required.

We say that u ∈ A∩C1([a, b]) satisfies the strengthened Weierstrass condition
if there exists δ > 0 such that for all x ∈ [a, b] and p ∈ R

f(x, v, p) ≥ f(x, v, q) + (p− q)fp(x, v, q) (2.15)
whenever |v − u(x)| < δ, |q − ux(x)| < δ.

Theorem 25 (Weierstrass). Let u ∈ A ∩ C1([a, b]) satisfy (WEL), δ2I(u) > 0
and the strengthened Weierstrass condition. Then u is a strong local minimizer.
If strict inequality holds in (2.15) for p 6= q then u is a strict strong local
minimizer.

Proof. We sketch a version of Hilbert’s amazing proof of this theorem. The
part we do not do concerns the analysis of the second variation in terms of the
Jacobi equation (the Euler-Lagrange equation of δ2I(u)(ϕ,ϕ)) and conjugate
points (see, for example, [5, 7, 9]). Using δ2I(u) > 0 leads to the conclusion
that u is embedded in a field of extremals, that is there is a one-parameter family

U(x, γ), γ ∈ [−τ, τ ], τ > 0,

of solutions to the Euler-Lagrange equation (EL) for f on [a, b] such that

(i) u(x) = U(x, 0) for all x ∈ [a, b],
(ii) the field simply covers a neighbourhood of the graph of u, i.e. there exists
ε > 0 such that for each x ∈ [a, b], v ∈ R, with |v − u(x)| < ε, there is a unique
γ = γ(x, v) ∈ [−τ, τ ] with U(x, γ) = v (see Fig. 9). We assume that U(·, ·) is



2 THE ONE-DIMENSIONAL CALCULUS OF VARIATIONS 32

Figure 9: A field of extremals simply covering an L∞ neighbourhood of the
graph of u and a typical v ∈ A lying in this neighbourhood.

C2 in (x, γ). We write p(x, v) = Ux(x, γ(x, v)) and call p(·, ·) the slope function
of the field.

Now let v ∈ A with ‖v − u‖∞ sufficiently small. Then we claim that

I(v)− I(u) =
∫ b

a

[f(x, v, vx)− f(x, v, p(x, v)) (2.16)

−fp(x, v, p(x, v))(vx − p(x, v))] dx,

where p(x, v) is the slope function of the field. Thus I(v) ≥ I(u) by the strength-
ened Weierstrass condition.
To prove the claim, we compute

d

dx

∫ γ(x,v(x))

0

fp(x,U(x, γ), Ux(x, γ))Uγ(x, γ) dγ

=
∫ γ(x,v(x))

0

[fu(x,U(x, γ), Ux(x, γ))Uγ(x, γ) +

fp(x,U(x, γ), Ux(x, γ))Uxγ(x, γ)] dγ

+fp(x, v(x), p(x, v(x)))Uγ(x, γ(x, v))
d

dx
γ(x, v)

= f(x,U(x, γ), Ux(x, γ))|γ(x,v)
0 + fp(x, v, p(x, v))(vx − p(x, v))

= f(x, v, p(x, v))− f(x, u, ux) + fp(x, v, p(x, v))(vx − p(x, v)),

where we used that d
dxU(x, γ(x, v)) = vx, and integrating with respect to x we

are done.

Remarks 2.
1. Note that the key computation can be interpreted as showing that

L(x, v, vx) = f(x, v, p(x, v)) + fp(x, v, p(x, v))(vx − p(x, v))
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is a null Lagrangian, i.e. the corresponding Euler-Lagrange equation reduces to
0 = 0.
2. Another completely different method is due to Hestenes [16].

2.5 Regularity and the Lavrentiev phenomenon

We assumed above that u ∈ C1([a, b]). But when is this true? A first regularity
result is:

Theorem 26. Suppose that f ∈ C2 and that fpp(x, v, p) > 0 for all x, v, p. If
u ∈ A ∩W 1,∞(a, b) solves (WEL) then u ∈ C2([a, b]) and

uxx = F (x, u, ux) for all x ∈ [a, b],

where
F =

fu − fxp − fupp

fpp
.

Proof. Step 1. We prove that u ∈ C1([a, b]). Choose the continuous representa-
tive of u. We have that |ux(x)| ≤M <∞ and

fp(x, u(x), ux(x)) = c+
∫ x

a

fu dy (IEL)

for all x ∈ E, where measE = b− a. Suppose x ∈ [a, b]. We claim that

p(x) := lim
z→x,z∈E

ux(z) exists.

Suppose not, Then ux(xj) → p1, ux(yj) → p2 for sequences xj → x, yj → x,
with xj , yj ∈ E, p1 6= p2. But from (IEL) we deduce that

fp(x, u(x), p1) = fp(x, u(x), p2).

Since fpp > 0 this is a contradiction.

Step 2. We prove that u ∈ C2([a, b]). For each x ∈ [a, b] we have that

lim
h→0

fp(x+ h, u(x+ h), ux(x+ h))− fp(x, u(x), ux(x))
h

= fu(x, u(x), ux(x)).
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But the LHS equals

lim
h→0

[
fp(x+ h, u(x+ h), ux(x+ h))− fp(x, u(x+ h), ux(x+ h))

h

+
fp(x, u(x+ h), ux(x+ h))− fp(x, u(x), ux(x+ h))

h

+
fp(x, u(x), ux(x+ h))− fp(x, u(x), ux(x))

h

]
.

= fxp(x, u(x), ux(x)) + fup(x, u(x), ux(x))ux(x)

+ lim
h→0

1
h

∫ ux(x+h)

ux(x)

fpp(x, u(x), τ) dτ

= fxp+ fup + lim
h→0

ux(x+ h)− ux(x)
h

fpp,

and since fpp > 0 we get that ux is differentiable with uxx = F (x, u, ux).

Remark 1. Another way to do Step 2 is to note that p(x) = ux(x) solves
G(x, p) = 0, where

G(x, p) = fp(x, u(x), p)−
∫ x

a

fu dy − c,

and use the implicit function theorem.

But does the global minimizer u given by Theorem 23 belong to W 1,∞(a, b)
or satisfy (WEL)?

Example 2.4 (adapted from [3]). Let

I(u) =
∫ 1

−1

[(u5 − x3)2u20
x + εu2

x] dx,

where ε > 0 is sufficiently small, and

A = {v ∈W 1,1(−1, 1) : v(−1) = −1, v(1) = 1}.

Note that f(x, u, p) = (u5 − x3)2p20 + εp2 is a polynomial with fpp ≥ 2ε > 0,
and that f has superlinear growth in p, so that f satisfies the hypotheses of
Theorem 23. Hence there exists an absolute minimizer u∗.

We claim that if u ∈ A ∩W 1,∞(−1, 1) then

I(u) ≥ 214

320
. (2.17)

To prove the claim, suppose that u(0) ≤ 0. If u(0) = 0 then |u(x)| ≤ Cx for
x ∈ [−1, 1] and a constant C > 0. Hence there exist 0 ≤ x0 < x1 < 1 with

0 < u(x) <
(

x3

2

) 1
5

for x ∈ (x0, x1), u(x0) = 0, u(x1) =
(

x3
1
2

) 1
5

(see Fig. 10).
Hence
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Figure 10: Argument for establishing the Lavrentiev phenomenon.

I(u) ≥
∫ x1

x0

(u5 − x3)2u20
x dx

≥
∫ x1

x0

u10u20
x dx

=
∫ x1

x0

(u
1
2ux)20 dx.

Since t20 is convex in t by Jensen’s inequality

I(u) ≥ (x1 − x0)
(

1
x1 − x0

∫ x1

x0

u
1
2ux dx

)20

=
1

(x1 − x0)19

[
2
3

(
u(x1)

3
2 − u(x0)

3
2

)]20

=

(
2
3

)20 (x3
1
2

)6

(x1 − x0)19

≥ 214

320
· 1
x1

≥ 214

320
.

If u(0) ≥ 0 we argue similarly. Hence

inf
A∩W 1,∞(−1,1)

I ≥ 214

320
. (2.18)
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But choosing u = |x| 35 signx we have that

inf
A
I ≤ 2ε

∫ 1

0

(
3

5x−
2
5

)2

dx = 2ε · 9
5
.

Hence if ε < ε0 := 5
18 ·

214

320 we have that

inf
A∩W 1,∞

I > inf
A
I !!! (2.19)

This is the Lavrentiev phenomenon, that the infimum can be different in different
function spaces.

Now let u∗ be a global minimizer of I in A. We claim that if 0 < ε < ε0
then u∗(0) = 0 and fp(x, u∗, u∗x) is unbounded in the neighbourhood of x = 0.
In particular (IEL) does not hold. Indeed if u∗(0) 6= 0 we get I(u∗) ≥ 214

320 >

I(|x| 35 signx) ≥ I(u∗), a contradiction. If |u∗x| ≤ C in a neighbourhood of 0, and
u∗(0) = 0 we get the same contradiction. Hence u∗x is unbounded near 0 and
hence so is |fp| = |20(u5 − x3)2u∗19x + 2εu∗x| ≥ 2ε|u∗x|.

Figure 11: A strong local minimizer has |u′(x)| = ∞ on its Tonelli set E.

Remarks 3.
1. The example shows that an elliptic regularization (adding εu2

x to a degenerate
elliptic problem) may not smooth minimizers.
2. If ϕ ∈ C∞0 (−1, 1), ϕ(0) 6= 0, then I(u∗ + tϕ) = ∞ for all t 6= 0, since
I(u∗ + tϕ) ≥ δ

∫ r

−r
u∗20x dx = ∞.

3. The Lavrentiev phenomenon shows that typical finite element schemes for
minimizing I among piecewise affine functions may not converge to a minimizer.
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Theorem 27 (Tonelli’s Partial Regularity Theorem). Let f be C3 with fpp > 0.
If u ∈ A is a strong local minimizer of I in A, then there is a closed set E ⊂ [a, b]
with measE = 0 such that u is a C3 solution of EL on [a, b] \ E. Furthermore
the derivative

u′(x) := lim
h→0

u(x+ h)− u(x)
h

exists for all x ∈ [a, b] as an element of R̄ (one-sided limits if x = a or x = b),
and u′ : [a, b] → R̄ is continuous with E = {x ∈ [a, b] : |u′(x)| = ∞}.

See Fig. 11. The theorem is optimal [10].

Exercises

2.1. Consider the integral

I(u) =
∫ b

a

f(ux) dx,

where f is continuous and bounded below, defined for the set of admissible
functions

A = {u ∈W 1,1(a, b) : u(a) = α, u(b) = β},

where α, β are given.

(i) Show that if
f(p)
|p|

→ ∞ as |p| → ∞ (†)

then I attains a minimum on A.

(Hint. Consider the convex envelope of f , i.e. the sup of all linear functions
rp+ s ≤ f(p) for all p.)

(ii) Is the minimum in general attained if (†) does not hold?

2.2. (i) Let

I(u) =
∫ 1

0

[u4
x − 4u2

x + x2ux + u2] dx,

A = {u ∈W 1,1(0, 1) : u(0) = 0, u(1) = 1}.

Show that ū(x) = x is a weak local minimizer of I in A. Is ū a strong local
minimizer?

(ii) Let

I(u) =
∫ 1

0

[(u2
x − 1)2 + u2] dx.

Show that there is no strong local minimizer of I in

A = {u ∈W 1,1(0, 1) : u(0) = u(1) = 0}.
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(Hint. Consider the maximum and minimum of a possible strong local mini-
mizer.)

2.3. Let

I(u) =
∫ b

a

f(x, u(x), ux(x)) dx,

A = {u ∈W 1,1(a, b) : u(a) = α},
where −∞ < a < b <∞, α ∈ R, and f is C1 and bounded below.
(i) Show that if u ∈ A ∩W 1,∞(a, b) is a weak local minimizer of I in A (i.e. a
local minimizer in A ∩W 1,∞(a, b)) then

fp(x, u(x), ux(x)) =
∫ x

b

fu(y, u(y), uy(y)) dy for a.e. x ∈ [a, b].

(ii) Show that if u ∈ A∩W 1,∞(a, b) is a strong local minimizer of I in A (i.e. a
local minimizer in A ∩ L∞(a, b)), and if u is C1 in a neighbourhood of b, then
f(b, u(b), p) is minimized at p = ux(b).

(iii) Is the minimum of

I(u) =
∫ 1

0

(u2
x + u2) dx

among u ∈ C1([0, 1]) satisfying u(0) = 0, ux(1) = 1 attained?

2.4. Let

I(u) =
∫ 1

0

(u5 − x)2u4
x dx,

A = {u ∈W 1,1(0, 1) : u(0) = 0, u(1) = 1}.

(i) Prove that the unique minimizer of I in A is ū(x) = x
1
5 .

(ii) Prove that if p ≥ 5
4 then

inf
u∈A∩W 1,p(0,1)

I(u) > 0 = I(ū).

(iii) Prove the repulsion property, that if u(j) ∈W 1, 5
4 (0, 1) and limj→∞ u(j)(ξk) =

ū(ξk) for some sequence ξk > 0 with ξk → 0, then limj→∞ I(u(j)) = ∞.
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