
Categoricity Results for Exponential Maps of

1-Dimensional Algebraic Groups

&

Schanuel Conjectures for Powers and the CIT

Martin Bays

Christ Church

Oxford University

A thesis submitted for the degree of

Doctor of Philosophy

December 16, 2009





To my mother and my father





Abstract

In the first part of this thesis, we show that the universal cover of a complex
elliptic curve has a natural categorical Lω1,ω axiomatisation, extending work
of Gavrilovich and answering a question of Zilber. Following Zilber [Zil02a],
we approach this via the model-theoretic criterion of excellence; this reduces
the categoricity problem to the validity of certain versions of the Mordell-Weil
theorem and of Kummer theory lifted to fields arising from certain independent
configurations of algebraically closed fields, an example of such a field being
Q(L1, L2) where L1 and L2 are algebraically closed and linearly disjoint over Q.
We show that these lifted theorems do indeed hold, and conclude the categoricity
via a direct algebraic argument.

In the second part of this thesis, we consider another locus of interaction
between model theory and number theory, the Conjecture on Intersections with
Tori. We show that it can be viewed as a conjecture of Schanuel type, for raising
to non-standard integer powers. We then use this idea to prove a constrained
version of the conjecture, via results on the truth of the Schanuel conjecture for
raising to generic powers in exponential fields.
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0.1. OVERVIEW 1

0.1 Overview

This thesis aims to contribute to the model theoretic study of complex analytic

structure. In keeping with the basic philosophy of the model theoretic approach

to mathematics, this proceeds by considering certain narrowly defined parts of

the wider theory and studying them in isolation. For example, we might isolate

the field structure 〈C; +, ·〉 on the complex numbers; in so doing, we forget

about every other aspect of the complex numbers as we may usually think

about them, in a way strongly analoguous to the passage from the complex

analytic topology on C to the much coarser Zariski topology. The complex field

is a canonical example of a model-theoretically tractable structure - its theory

is uncountably categorical, and in particular stable, has quantifier elimination

in the field language, and is decidable.

Now consider adding a little more complex analytic structure, for example

the complex exponential map. The resulting structure Cexp := 〈C; +, ·, exp〉

encodes the interaction of complex exponentiation with algebraic geometry, and

nothing more. However, it is already severely non-tractable from the point of

view of traditional finitary first-order logic - it interprets arithmetic, and so its

first-order theory is certainly neither decidable nor stable. Nonetheless, it is the

thesis of Boris Zilber that Cexp, amongst other structures arising from complex

analysis, should be treatable with the methods of stability theory - or even with

categoricity theory. The existence of a countably infinite definable set, such as

the kernel of exp, is a characteristic feature of (non-compact) complex analytic

structure, and this already contradicts categoricity of the first-order theory. So

we see that we must look beyond the confines of traditional first-order logic.

Zilber’s approach is to look to infinitary logics, such as Lω1,ω, which extends

usual first-order logic by allowing countably infinite conjunctions and disjunc-

tions, or Lω1,ω(Q) which further adds a quantifier for ”there exist countably

many”. Analogues of first-order classification theory have been partially devel-

oped for these logics, chiefly by Shelah. In particular, Shelah isolated sufficient
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and (at least under certain set theoretic hypotheses) necessary conditions for

categoricity in uncountable cardinalities. Chief among these is the condition

of ”excellence”. A key idea in non-elementary classification theory is that un-

countable models are built up from their countable elementary submodels, and

so can be classified by looking at how these countable submodels are arranged.

Excellence is a condition implying severe constraints on what configurations

of countable submodels can occur; roughly, it states that any finite system of

independently placed countable elementary submodels has a unique least inde-

pendent amalgam.

Using these ideas, Zilber finds [Zil05a] an Lω1,ω(Q)-theory in the vocabu-

lary of exponential fields, the theory of pseudo-exponentiation, which has unique

models in all uncountable powers and whose unique model of cardinality con-

tinuum is not known not to be isomorphic to Cexp. In proving this categoricity,

he effectively shows that it reduces to proving categoricity of a substantially

weaker theory: that of the universal cover of the multiplicative group.

The complex exponential map is the universal group covering map exp :

C → C× of C×, by which we mean that it satisfies the following universal

property: for any group cover ρ : G → C× with G a connected topological

group, where a group cover is a covering map of topological spaces which is

also a group homomorphism, there exists a unique group cover θ : C→ G such

that exp = ρ ◦ θ. In the structure Cexp, the domain and codomain of this map

exp are identified. If instead we separate them out as two sorts, it is natural

to consider the domain as simply a group, while the codomain should retain

the full field-algebraic structure. The resulting structure 〈(C; +); (C; +, ·); exp〉

is a weak reduct of Cexp, which in fact is quite simple from the point of view

of first-order model theory - its first order theory TGm is superstable, and has

quantifier elimination once division-by-m maps are added to the covering sort.

However, ker(exp) ∼= Z is countably infinite, and so TGm is not uncountably

categorical. Working in Lω1,ω this is not a problem, as we can add an axiom

(ker(exp) ∼= Z) fixing the isomorphism type of the kernel. Indeed, the class of
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models of TGm ∪ {(ker(exp) ∼= Z)} turns out to be uncountably categorical; the

proof is in [Zil06, BZ07, Zil05b], and we will have more to say about it.

The property of uncountable categoricity in these cases splits naturally into

three properties:

(A) Existence of a prime model, i.e. a countable model C0 which embeds ele-

mentarily into any model.

(B) Homogeneity for countable submodels: if C � C ′ with C and C ′ countable

models, then whenever C embeds elementarily into an uncountable model

M , C ′ embeds elementarily into M over C.

(C) Excellence.

Since a model of cardinality ℵ1 is the direct limit of a chain of countable sub-

models and elementary embeddings, (A) and (B) suffice to prove ℵ1-categoricity

by a back-and-forth argument.

We have been considering complex exponentiation as the universal covering

map of the multiplicative group Gm. This is a rather special case of a universal

cover of a complex variety. In his thesis [Gav06], Misha Gavrilovich considers the

model theory of the universal cover of an arbitrary projective complex variety,

with a structure taking into account both the algebraic structure on the variety

and some homotopy theoretic information. In certain cases, in particular for

abelian varieties, he finds an Lω1,ω-axiomatisation in a countable vocabulary

which satisfies (B). The class of models extending a fixed countable model is

therefore ℵ1-categorical.

In the case of a 1-dimensional abelian variety, i.e. an elliptic curve E, he finds

that this structure reduces to a structure 〈C; E(C); exp〉 analogous to the two-

sorted structure of complex exponentiation considered above. Here exp is now

the universal group cover exp : C → E(C), the covering sort C is considered in

a weak linear language - namely as an End(E)-module where End(E) is the ring

of algebraic endomorphisms of E - and E(C) is considered with the full algebraic

structure, i.e. with a predicate for every Zariski k0-closed subset of En where
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k0 ≤ C is the field of definition of E. The Lω1,ω theory in question is again just

the first-order theory along with an axiom (ker(exp) ∼= Z2) specifying the kernel

of exp. Gavrilovich finds not only that this theory is model homogeneous, but

that (perhaps after a mild extension of the theory) there is a prime model. So

he proves ℵ1-categoricity in this case.

We might hope that full uncountable categoricity holds, firstly because this

would provide further evidence for Zilber’s thesis that non-elementary stability

theory is relevant to the study of natural objects of complex analysis, secondly

because we would like to be able to conclude that we have found a categorical

axiomatisation of 〈C; E(C); exp〉 without assuming the continuum hypothesis,

and thirdly because it would pave the way to a study of the Weierstrass map of

an elliptic curve in analogy with Zilber’s study of Cexp discussed above. What

we lack for this, then, is the excellence condition. As the main result of the

first Part of the present work, we prove (chapters 1-4) this excellence condition

and deduce uncountable categoricity of this theory of the universal cover of an

elliptic curve E, under the assumptions that E is defined over a number field

and has no complex multiplication.

Our methods are essentially algebraic and arithmetic in nature. In fact,

we opt to give a fully self-contained proof of the categoricity result without

direct appeal to the general model theoretic theory of excellence. The approach

mirrors the proof referred to above for the case of the multiplicative group,

and in fact we give a uniform proof which works both for the multiplicative

group and for elliptic curves. The main differences between these two cases

are firstly that the necessary Kummer theory is rather more subtle for elliptic

curves, and secondly that the non-trivial Galois cohomology of elliptic curves

adds some complications. Chapter 1 opens with a more detailed introduction

to the categoricity statement and its proof.

The second Part of this thesis concerns itself with another aspect of the

model theoretic study of exponentiation. We talked above about the structure

Cexp and about pseudo-exponentiation. A crucial idea behind that work is that
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it might be possible to regard Cexp as being a Hrushovski-Fraissé amalgam with

respect to the predimension function on finite tuples of elements:

δexp(x) := trd(x, exp(x))− ldQ(x).

This means firstly that δexp is always non-negative on C, and secondly that if

A is a subset and the relativised predimension

δexp
A (x) := trd(x, exp(x)/A)− ldQ(x/A)

is always non-negative on C, then any quantifier free formula over A consistent

with δexp
A being non-negative is realised in C over A.

The first condition, that δexp is always non-negative, is precisely Schanuel’s

famous conjecture on the transcendence theory of complex exponentiation.

Now let K ≤ C be an arbitrary subfield, and consider the structure CK :=

〈(C; +, (k·)k∈K); (C; +, ·); exp〉, intermediate in expressive power between Cexp

and the universal cover of Gm, which retains the K-vector space structure on the

cover rather than just the group structure. The image under exp of the graph of

multiplication by k ∈ K is the graph of the many-valued analytic operation of

raising to power k, so we think of CK as the structure of raising to K-powers. In

[Zil03], Zilber again considers that such structures might be Hrushovski-Fraissé

amalgams with respect to embeddings respecting a predimension function; in

this case, slightly simplifying his analysis, we can consider the function:

δK(x) := ldK(x/ ker) + trd(exp(x))− ldQ(x/ ker),

defined on the cover sort, where ker := ker(exp).

We will refer to the condition

∀x.δK(x) ≥ 0
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as the K-powers Schanuel inequality.

In contrast to the case of Cexp, for some values of K it is actually possible to

prove that CK satisfies the K-powers Schanuel inequality and is a Hrushovski-

Fraissé amalgam with respect to δK . Indeed, a consequence of the main result

Theorem 1.3 of [BKW08] (which is also Theorem 7.1.3 of this thesis) is that for

λ ∈ Rn exponentially algebraically independent in Cexp, δQ(λ) is non-negative

on C. Meanwhile, Zilber showed ([Zil02b, Theorem 5] and [Zil03, Fact 3]) using

results of Khovanskii that the corresponding existential closedness holds for any

K ⊆ R for which the K-powers Schanuel inequality holds.

Also in contrast to the case of Cexp, there is no obvious obstruction to CK

having a tame first-order theory. Moreover, the general theory of Hrushovski

constructions indicates that if the K-powers Schanuel inequality and the existen-

tial closedness are first-order axiomatisable, then the theory they axiomatise will

be near-model-complete and superstable. Consider the problem of axiomatising

the K-powers Schanuel inequality. We would like to be able to say, for each d,

“if ldK(x/ ker) + trd(exp(x)) ≤ d, then ldQ(x/ ker) ≤ d”. Now ldQ(x/ ker) ≤ d

iff exp(x) is contained in an algebraic subgroup of Gn
m of dimension ≤ d. For

d < n, there are infinitely many such subgroups, and they do not form a de-

finable family. So some sort of finiteness condition is needed so the right hand

side of the implication can be written as a finite disjunction over subgroups.

Motivated by this problem, Zilber formulated the Conjecture on Intersection

with Tori:

Conjecture (CIT). Let W be a subvariety of Gn
m defined over Q. There exists a

finite set τ(W ) of algebraic subgroups of Gn
m such that if T ≤ Gn

m is an algebraic

subgroup and S is an irreducible component of T ∩W such that

codim(S) < codim(T ) + codim(W )

(where codim(V ) := codimGnm(V ) = n − dim(V )), then S ⊆ T ′ for some T ′ ∈

τ(W ).
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In [Zil03] he concludes the axiomatisability of the K-powers Schanuel in-

equality, leading to the result that CQ(λ) has superstable near-model-complete

theory, under the assumption of the CIT. In fact, in a later preprint [Zil04] he

performs a finer analysis which leads to an unconditional proof. Nonetheless,

the CIT and related conjectures remain of great interest. Some progress towards

it has been made in recent work by number theorists and arithmetic geometers

- Bombieri, Masser, Zannier, Habegger and collaborators - who came indepen-

dently to consider essentially the same conjecture [BMZ99, BMZ07]. Work from

this direction continues; however, the full conjecture appears out of reach for

now.

The CIT can itself be seen as a Schanuel conjecture for powers. We give

precise statements and proofs for this in Chapter 6. Roughly, the idea is to find

a structure in which the family of algebraic subgroups of Gn
m, which correspond

to kernels of integer matrices acting by raising to powers, is a definable family.

The most direct and unsubtle way to do this is simply to take the ring of integers

Z as a sort, along with its action on Gm. Taking a (fairly) saturated model and

considering linear independence with respect to the interpretation ∗Z of this

sort then takes into account varying families of subgroups, and in this way we

find that the CIT corresponds to a ∗Z-powers Schanuel conjecture of roughly

the same form as those above.

This suggests a model-theoretic approach to attacking the CIT. If we can find

an expansion of a field in which there is a definable set P containing the integers

and for which raising to P -powers is uniformly definable, i.e. (x, p) 7→ xp is

definable, then a Schanuel inequality for P -powers in arbitrary models will have

CIT consequences, since in elementary extensions the interpretation of P will

effectively contain non-standard integers. In one well-known example of this due

to Zilber and Poizat, Ax’s theorem can be seen to imply a Schanuel inequality

for raising to constant powers in a differential field, yielding a ”function-field

version” of the CIT known as the Weak CIT.

Another version of this idea is presented in Chapter 7, this time using the
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real exponential field Rexp rather than a differential field. Exponentiation allows

powers to be defined uniformly, and Theorem 7.1.3 mentioned above (which in

fact ultimately derives from Ax’s theorem), combined with celebrated results

of Wilkie on the model theory of Rexp, provides certain versions of the powers

Schanuel inequality for non-standard real powers. Along with some analysis of

a Diophantine type, we can deduce some limited approximations to CIT on the

reals, Theorems 7.2.2 and 7.2.3 with which the thesis closes. These methods

can surely be pushed further, and I hope to explore this in future work.

0.2 Outline of this thesis

In Chapter 1, we give a more technical and less model-theoretic introduction to

the categoricity result which is the focus of Chapters 1-4, and then set up some

assumptions, conventions and notations for Part I; we then discuss independent

systems of algebraically closed fields, making definitions and drawing some basic

results for use throughout the proof of the categoricity result. In Chapter 2, we

consider the group structure of E(k) for certain relevant fields k. In Chapter 3,

we obtain some results on Kummer theory for elliptic curves over independent

systems. Chapter 4 brings together these results to prove our main categoricity

theorems.

The remaining chapters describe other work, related to varying extents to

that of Chapters 1-4. Chapter 5 shows how results important to categoricity

serve to analyse a natural topological structure on covers of semi-abelian curves.

In Chapters 6 and 7, which form a Part of their own, we change tack to discuss

Zilber’s Conjecture on Intersections with Tori and its relation to Schanuel con-

jectures for non-standard integer powers. Chapter 6 gives precise statements of

these connections, and Chapter 7 then uses this idea to tackle some restricted

parts of the CIT.

Finally, the Appendices contain various lemmas and Facts which it seemed

best to relegate to them.
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Chapter 1

Introduction and

Preliminaries

1.1 Introduction

Let E be an elliptic curve over C. Considered as a complex Lie group, E(C)

is isomorphic to a complex torus C/Λ, for some lattice Λ ∼= Z2. If a ∈ E(C),

for n ∈ N there are therefore n2 possible choices of n-division point an ∈ E(C),

nan = a. A division system above a is a system (an)n∈N of agreeing choices an

of an n-division point of a, agreeing in the sense that amn is an m-division point

of an (∀m,n ∈ N). A choice of a division system above a corresponds to a path

in a finite-branching tree of countable depth, so there are continuum many such

choices.

Denote by V̂ = V̂ (C) the group of all division systems above points of E(C),

with the obvious group structure

(an)n + (bn)n := (an + bn)n.

Equivalently, V̂ is the inverse limit of copies of the group E(C) with respect to

11
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the multiplication-by-m maps [m]:

V̂ (C) = lim←−
N;|

([m] : E(C)→ E(C)) .

V̂ is a divisible abelian group. Define π̂ as the map picking out the point above

which a division system lies, π̂ : V̂ → E; (an)n 7→ a1.

We denote by T the kernel of π̂, the group of all division systems above 0;

these consist entirely of torsion elements of E. The set of all division systems

above a ∈ E(C) is a coset of T .

Now, E(C) comes equipped with the complex topology. Some division sys-

tems (an)n converge to 0 ∈ E(C) in the limit n→∞, the others do not converge.

Let us consider the set Van ⊆ V̂ of those division systems which do converge.

This set is most easily understood by considering the complex Lie exponential

map. There exists a complex analytic homomorphism exp and a lattice Λ ≤ C

such that we have an exact sequence

0 // Λ // C
exp

// E(C) // 0 .

Now any α ∈ C induces the division system (exp(αn ))n. Since exp is a local

homeomorphism at the identity, the convergent division systems are precisely

those of this form.

So Van is a divisible subgroup of V̂ , and Van∩T ∼= Λ ∼= Z2; in particular, there

are only countably many convergent division systems above a given a ∈ E(C).

In this way, the complex topology has picked out a small class of distin-

guished division systems. Now forget the complex analytic structure, and con-

sider C just as a field, and E(C) just as an algebraic group, leaving the choice

of the distinguished set Van ≤ V̂ of division systems as the only trace of the

analytic structure. We ask: how does this choice of Van ≤ V̂ interact with the

algebraic structure? Can we give a description of a “purely algebraic” nature

which determines the situation up to isomorphism?
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To simplify some aspects of the discussion, let us assume that E is defined

over Q. Let us also assume that E has no complex multiplication. With some

minor modifications which will be discussed in the body of the text, our results

go through for E defined over an arbitrary number field; the restriction on

complex multiplication, on the other hand, will remain throughout (this is a

limitation of the present work, and probably is not a necessary restriction - see

Section 4.5).

To formalise the question, consider the two-sorted structure 〈C;Van;π〉, where

the first sort is the complex field (C; +, ·), the second sort is Van considered as

a Q-vector space (Van; +, (q·)q∈Q), and π is the restriction π̂�Van : Van → E(C).

This choice of language means that a second structure 〈K;V ′;π′〉 is isomor-

phic to 〈C;Van;π〉 iff there is a field isomorphism σ : C → K and a group

isomorphism τ : Van → V ′ such that π′ ◦ τ = σ ◦ π.

If 〈K;V ′;π′〉 ∼= 〈C;Van;π〉, it follows:

(I) K is isomorphic as a field to C

(II) V ′ is a divisible torsion-free abelian group

(III) π′ : V ′ → E(K) is a surjective homomorphism

(IV) ker(π′) ∼= Z2 as groups.

We can ask whether these necessary conditions are also sufficient, i.e. whether

this description (I)-(IV) of the structure 〈C;Van;π〉 suffices to determine it up

to isomorphism.

Before we answer this question, let us rephrase it in a more intuitive and

manageable form by noting that we can work entirely in V̂ . Let 〈K;V ′;π′〉

satisfy (I)-(IV). By (I), we lose nothing by assuming K = C. Let V ≤ V̂ be the

group of division systems on E(C) induced by V ′ and π′ - explicitly:

V := {(π′( v′/n))n | v′ ∈ V ′} ≤ V̂ .

Then 〈C;V ′;π′〉 ∼= 〈C;V ; π̂�V 〉.
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Let us refer to divisible subgroups V ≤ V̂ such that π̂(V ) = E(C) and

V ∩ T ∼= Z2 as standard subgroups V ≤ V̂ . So we see that any structure sat-

isfying (I)-(IV) is isomorphic to 〈C;V ; π̂�V 〉 for some standard V ≤ V̂ , and

conversely any such satisfies (I)-(IV). Now for standard V ≤ V̂ , 〈C;Van;π〉 ∼=

〈C;V ; π̂�V 〉 iff there exists a field automorphism σ ∈ Aut(C) such that σ(Van) =

V , where we define σ on V̂ by σ((an)n) := (σ(an))n.

So we see that describing the isomorphism type of the structure 〈C;Van;π〉

is equivalent to describing the orbit of Van in V̂ under the action of Aut(C). In

particular, (I)-(IV) describe 〈C;Van;π〉 uniquely up to isomorphism iff the set of

standard V ≤ V̂ forms a single orbit under the action of Aut(C). We will find

that this is indeed the case (under our simplifying assumption that E is defined

over Q - more generally, there are finitely many orbits).

This has a purely arithmetic aspect: if we replace everywhere in the above

discussion C with Q̄, we are left with questions about the action of Gal(Q̄/Q)

on E(Q̄), which turn out to correspond to well-known results of Serre on Galois

representations, of Bashmakov on Kummer theory for elliptic curves, and of

Mordell-Weil on the structure of E(F ) for F a finitely generated extension of

Q. This part of the story was worked out by Gavrilovich in his thesis [Gav06].

To get up from Q̄ to C, however, we require ideas of an essentially different

character.

In terms of mathematical logic, to ask whether (I)-(IV) determine 〈C;Van;π〉

uniquely up to isomorphism is to ask whether they comprise a categorical ax-

iomatisation. We can express (II)-(IV) as an axiom in the infinitary formal

language Lω1,ω which allows countably infinite conjunctions; if we add to this

the first order condition that K is an algebraically closed field of characteristic

0, we obtain an infinitary sentence σ which, together with the condition that

K is of cardinality continuum, is equivalent to (I)-(IV). So in model theoretic

terms, our question is that of categoricity in cardinality continuum of the Lω1,ω

sentence σ. As discussed in the introduction to the thesis, Shelah gave [She83a]

[She83b] abstract conditions for such categoricity. Key to this is the condition
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of “excellence”, which roughly states that any system of independently placed

countable models has a unique least independent amalgam.

Specialising these ideas to our context, we find that we must generalise the

arithmetic results to cases where the base field is a compositum of algebraically

closed fields placed in a certain independent configuration (L− in Definition 1.3.1

below). In particular, we require structure theorems in the style of Mordell-Weil

for the groups of F -rational points of E for F a finitely generated extension of

a such a field, and a version of Kummer theory which works for such bases.

The sufficiency and, in a certain sense, necessity of these conditions for

categoricity was expounded by Zilber in [Zil02a]. The contribution of the present

work is to show that these conditions do indeed hold. The proofs, and proper

statements, are contained in Chapters 1-3. We also give, in Chapter 4, a self-

contained, purely algebraic proof of categoricity from them.

1.2 Setup and notation

We now begin the formal presentation of the results sketched above.

We work in characteristic 0 except where otherwise stated.

C denotes a large algebraically closed characteristic 0 field; unless otherwise

specified, all fields are assumed to be subfields of C.

G is either the multiplicative group Gm or an elliptic curve E defined over a

number field k0. We write the group structure additively. In the case G = Gm,

we let k0 := Q. In the case that G = E is an elliptic curve, we assume that

the elliptic curve has no complex multiplication, i.e. that End(G), the ring of

algebraic endomorphisms (i.e. of endomorphisms with closed graph), contains

only the obvious multiplication-by-m endomorphisms [m]; i.e. End(G) ∼= Z.

The remainder of this section sets some notation and mentions some basic

facts. This is mostly all standard or obvious, or else was already explained in

the introduction. The hurried reader is advised to skim the remainder of this

section, and return as necessary.
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Gm := ker([m]) ≤ G(C) denotes the absolute m-torsion. G∞ := ∪nGn is the

full torsion group, and for l a prime, Gl∞ := ∪nGln is the l-power torsion.

As discussed above, for K algebraically closed containing k0, we define

V̂ (K) := lim←−N;|([m] : G(K) → G(K)), the inverse limit of copies of G(K) with

respect to the multiplication-by-m maps [m]; we define π̂n : V̂ (K) → G(K) to

be the corresponding maps, so

[m] ◦ π̂nm = π̂n,

and let π̂ := π̂1.

A field automorphism σ ∈ Aut(K/k0) acts on G(K) and hence on V̂ (K):

σ((am)m∈N) := (σ(am)m∈N).

Set

T := ker(π̂) = lim←−
n|m

([m/n] : Gm → Gn);

we consider T with the profinite topology induced by this inverse limit.

Similarly, for l a prime we define the l-adic Tate module

Tl := lim←−
n≤m

([lm−n] : Glm → Gln),

considered as a profinite group and as a Zl-module.

Fact 1.2.1. Gm ∼= ( Z/mZ)d, where d = 1 if G = Gm and d = 2 if G = E.

It follows that T ∼= Ẑd and Tl ∼= Zdl .

Definition 1.2.1. For k a field containing k0 such that G∞ ≤ G(k), define the

k̄/k-Kummer-Tate pairing :

〈·, ·〉k̄/k∞ : Gal(k̄/k)×G(k) → T

; (σ, a) 7→ σα− α (any α ∈ π̂−1(a)).

Since G∞ ≤ G(k), 〈·, ·〉k̄/k∞ is well-defined and bilinear. For any a ∈ G(k),
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〈·, a〉k̄/k∞ is continuous.

For a tuple a ∈ G(k)n, we write 〈·, a〉k̄/k∞ for the map defined co-ordinatewise,

〈·, a〉k̄/k∞ : Gal(k̄/k) → Tn

; σ 7→ (〈·, ai〉k̄/k∞ )i.

We set some notation and conventions for talking about places:

Definition 1.2.2.

• A place is a partial ring homomorphism of fields π : K → k which is

maximally defined, i.e. is such that Oπ := dom(π) ≤ K is a valuation ring

in K. π is then the residue map of the valued field K, and we denote

by mπ := kerπ, Γπ := K×/Oπ× , and vπ : K× → Γπ the corresponding

maximal ideal, value group, and valuation.

• If k ≤ K, we write π : K →k k if π� k = idk. Such a place is sometimes

known as a (partial) specialisation of K to k, though we will not use this

terminology.

• A place π : K → k induces a total map on the projective spaces, π :

Pn(K) → Pn(k), defined on homogeneous co-ordinates by π([a0 : . . . :

an]) := [π(a0/aM ) : . . . : π(an/aM )], where M is such that vπ(aM ) is least

among (vπ(ai))i.

• If k ≤ K and V ≤ Pn is a projective variety defined over k, π restricts to

a total map π : V (K)→ V (k).

For subfields F, F ′ of an algebraically closed field K, F ∨F ′ is the definable

closure in K of F ∪ F ′, i.e. the perfect closure of the compositum of F and F ′.

F ∧ F ′ := F ∩ F ′. F ∨ a is the definable closure in K of F ∪ {a1, ..., an}.

If A ⊆ G(C) and k0 ≤ k ≤ C, by k(A) we mean the field generated over

k by the elements of A, i.e. by the co-ordinates of the elements of A in some

k0-closed affine subvariety of G. To be concrete, we could consider Gm as the
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plane affine variety xy = 1, and E as the projective closure of a plane curve

y2 = f(x) with f ∈ k0[X] cubic. The model-theoretic reader may like to think

of G as an imaginary sort (once parameters are added for k0), in which case

(the perfect closure of) k(A) is the trace on the field sort of dcleq(k ∪A).

Similarly, by G(k) we mean those points of G(C) which can be taken with

co-ordinates in k; for perfect k, this is the fixed set of the action of Aut(C/k)

on G(C) (or equivalently of the action of Gal(k̄/k) on G(k̄) ⊆ G(C)), which is

precisely the trace on the sort G of dcleq(k).

(From a model-theoretic point of view, the reason for referencing the field

sort all the time is that it has elimination of imaginaries and so Galois theory

works there.)

For A a set, A<ω is the set of all finite tuples from A, i.e. A<ω =
⋃
n∈N A

n.

We use the same notation for A a definable set.

If G is an abelian group and Γ ≤ G is a subgroup, pureHullG (Γ) is the

relatively divisible subgroup {γ ∈ G | ∃m ∈ N. mγ ∈ Γ}. If G is torsion-free,

a tuple γ ∈ Gn is simple iff γ is a Z-basis for pureHullG (〈γ〉). For arbitrary

abelian G, γ ∈ Gn is simple iff γ/Tor(G) is simple in the torsion-free abelian

group G/Tor(G).

1.3 Independent systems of algebraically closed

fields

Independent systems of algebraically closed fields will play a key rôle in our

arguments. The concept of an independent system of models was first isolated

by Shelah in his work on classification theory for models of an Lω1,ω theory

([She83a], [She83b]). Here we deal with a specialisation of these ideas to the

rather particular case of the theory ACFp of algebraically closed fields of a fixed

characteristic. The remarks in [Hru06, Section 3] are relevant here, and our

presentation owes something to that work.
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Definition 1.3.1. Write N for {0, . . . , N − 1}.

A system (Ls|s ⊆ N) of algebraically closed subfields of an algebraically

closed field C is called an independent N -system iff

(i) for all s, t: if s ⊆ t then Ls ≤ Lt;

(ii) for all s, t: Ls is algebraically independent from Lt over Ls∩t;

(iii) for all s:

Ls = acl(
⋃
i∈s

(L{i})).

The system is finitary iff each Ls is of finite transcendence degree over L∅.

Given an independent N -system (Ls)s, we define: L(i) := LN\{i}, L(i,j) :=

LN\{i,j} etc, and L− := dclLN (
⋃
i(L(i))).

We further define λ{i} to be an (arbitrary) transcendence basis of L{i} over

L∅, and let λs :=
⋃
i∈s(λ{i}).

Remarks 1.3.1. • λs is a transcendence basis of Ls over L∅.

• Since λs∩t = λs ∩ λt, we can reconstruct the system from (λ(i))i.

• It is also possible to give a definition of an independent system without

assumption (iii); see [She90, XII.2.1].

1.3.1 Independent systems and places

In this subsection, we prove in Lemma 1.3.3 that an independent N -system

(Ls)s can be “collapsed” by a place down to L(0) in a certain controlled fashion.

For example, for N = 4, picturing the system as a tetrahedron we show that it

can be collapsed to the triangle at its base in such a way that the faces of the

tetrahedron map to the corresponding edges of the triangle, and moreover that

the definable closure of the faces maps to the definable closure of the edges.

We make use of the Newton-Puiseux theorem and the following generalisa-

tion to arbitrary characteristic:
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Fact 1.3.1 (Raynor [Ray68], cited in [Ked01]). Let L be an algebraically closed

field of characteristic p. Let L((tQ)) be the field of generalised power series in

t with coefficients in L and rational exponents, and let L{{t}} ≤ L((tQ)) be the

subfield consisting of those power series with support S satisfying:

• (p = 0) there exists m ∈ N such that mS ⊆ Z;

• (p 6= 0) there exists m ∈ N such that mS ⊆ Z[ 1
p ] := {mps|m, s ∈ Z}.

Then L{{t}} is an algebraically closed field.

Lemma 1.3.2. Let L be an algebraically closed subfield of an algebraically closed

field C; suppose L contains algebraically closed subfields ki, i ∈ {1, . . . n}; let λ ∈

C be transcendental over L; let K := aclC(L(λ)) ≥ L, and let k′i := aclC(ki(λ)).

Further, let k0 ≤ L be a perfect subfield, and let k′0 := k0.

Then for any place π : K →L L such that π(λ) ∈
⋂
i>0 ki,

π(
∨
i≥0

k′i) =
∨
i≥0

ki.

Proof. Since replacing λ with λ− π(λ) does not alter K or k′i, and λ− π(λ) is

also transcendental over L, we may assume that π(λ) = 0.

Let L{{λ}} be the field of generalised Puiseux series, as defined in Fact 1.3.1.

Let π′ : L{{λ}} → L be the standard power series residue map.

π′ agrees with π on L(λ), so by the Conjugation Theorem [EP05, 3.2.15] we

may embed K into L{{λ}} in such a way that π agrees with π′.

Now for i > 0, ki{{λ}} ≤ L{{λ}}, the subfield of power series with co-

efficients from ki, is algebraically closed and contains ki(λ), so contains k′i.

Similarly, k′0 = k0 ≤ k0{{λ}}.
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Now

π(
∨
i

k′i) ≤ π′(
∨
i

(ki{{λ}}))

≤ π′((
∨
i

ki){{λ}})

=
∨
i

ki

Lemma 1.3.3. Suppose (Ls)s⊆N is a finitary independent N -system of alge-

braically closed fields. Let C be a perfect subfield of L(0).

Then there exists a place π : LN →L(0) L(0) such that π(C ∨
∨
i>0 L(i)) =

C ∨
∨
i>0 L(0,i).

Furthermore, for any b ∈ (LN×)n, π can be chosen such that π(b) ∈ (L(0)
×)n.

Proof. Let λ0 be a basis for L{0} over L∅.

Let fi,j(λ0) ∈ L(0)[λ0] be the non-zero coefficients of a minimal polynomial

in L(0)[λ0][X] for bi over L(0)(λ0). Let a ∈ L∅ such that fi,j(a) 6= 0 for all i, j.

Inductively, we may assume that λ0 = λ
′
0λ0, correspondingly a = a′a, and

that we have π′ : L′N →L(0) L(0) such that π′(λ
′
0) = a′ and π′(C ∨

∨
i>0 L

′
(i)) =

C ∨
∨
i>0 L(0,i), where for s 3 0, L′s := acl(Ls\{0}(λ

′
0)).

Apply Lemma 1.3.2 to obtain π′′ : LN →L′N
L′N with π(λ0) = a and π′′(C ∨∨

i>0 L(i)) = C ∨
∨
i>0 L

′
(i); the composition π := π′ ◦π′′ is then as required.

1.3.2 N-uniqueness

Unassuming though it may seem, the following lemma plays a crucial rôle:

Lemma 1.3.4. Let N ≥ 2; let (Ls)s, be a finitary independent N -system of

algebraically closed fields. For i ∈ N , let σ(i) ∈ Aut(L(i)) and suppose they

agree on intersections, σ(i)�L(i,j)= σ(j)�L(i,j) .

Then the σ(i) are consistent, i.e.
⋃
i σ(i) extends to σN ∈ Aut(LN ).
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Proof. As a consequence of 1.3.3 with C = ∅, we have that

L(0) ∩
∨
i>0

L(i) =
∨
i>0

L(0,i) =: B.

That the lemma follows from this was noted in a more general context in

[Hru06, Section 3]; we give a proof here. If N = 2, the result is clear, so suppose

N > 2. For s ⊆ N \ {0}, let L′s := Ls∪0. (L′s)s is then a finitary independent

(N − 1)-system; by induction,
⋃
i>0 σ(i) extends to σ′ ∈ Aut(

∨
i>0 L(i)). Now

σ′ agrees with σ(0) on the intersection B of their domains, and L(0) = acl(B).

By Galois theory, specifically [Lan02, VI Thm 1.12], it follows that σ′ and σ(0)

are consistent, and extend to σN as required.

Remark 1.3.2. In fact, Lemma 1.3.4 is known to hold in much greater generality

- [dPKM06, 1.6(2)] proves that n-uniqueness holds over a model in arbitrary

stable theories, which implies Lemma 1.3.4. The model theoretic notion of

a coheir substitutes ([dPKM06, 1.5(2)]) for the specialisation argument used

above.



Chapter 2

Local freeness

2.1 Statement

In this chapter, we prove:

Theorem 2.1.1. In each of the following situations, G(k)/H is locally free as

an abelian group:

(i) k = k′(G∞), where k′ is a finitely generated extension of k0, and H = G∞.

(ii) k ≥ k′ is a finitely generated regular extension of a field k′ ≥ k0, and

H = G(k′).

(iii) (Ls)s⊆N is a finitary independent N -system of algebraically closed fields,

N ≥ 1, k is a finitely generated extension of L−, and H := ΣiG(L(i)).

(Section B.3 contains the basic definitions and results on local freeness.)

Remark 2.1.1. For the case G = Gm, essentially the same statement was proved

in [Zil06, BZ07]. The presentation here in this case differs substantially from

that in [Zil06] for part (i), and cosmetically from that in [BZ07] for (ii) and (iii).

23
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2.2 Proof of Theorem 2.1.1(i)

For k ≥ k0, we have the embedding

�G∞ : Gal(k(G∞)/k) � � // Aut(G∞) ,

where Aut(G∞) is the group of automorphisms of the abelian group G∞.

Theorem 2.2.1. There exists m such that every automorphism of G∞ which

fixes Gm is induced by some field automorphism fixing k0; i.e.

�G∞ (Gal(k0(G∞)/k0)) ≥ Aut(G∞/Gm)

Proof. For G = E, this is a theorem of Serre - see Corollary B.1.1.1.

For G = Gm, it is a standard result of the theory of cyclotomic extensions

that this holds with m = 0 [Lan02, VI.3.1].

Corollary 2.2.1.1. Let k be a finitely generated extension of k0. Then there

exists m such that

�G∞ (Gal(k(G∞)/k)) ≥ Aut(G∞/Gm)

Proof. Let F := k ∩ k0(G∞). F is an algebraic subextension of a finitely gen-

erated extension, and so F is finite over k0. So F ≤ k0(Gt) for some t ∈ N. By

Theorem 2.2.1, there exists m0 such that

�G∞ (Gal(k0(G∞)/k0)) ≥ Aut(G∞/Gm0).

Let m := lcm(m0, t). Then

�G∞ (Gal(k(G∞)/k)) =�G∞ (Gal(k0(G∞)/F ))

≥�G∞ (Gal(k0(G∞)/k0(Gt)))

≥ Aut(G∞/Gm).
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Theorem 2.2.2. Let k be a finitely generated extension of k0. Then G(k)/G(k)∩G∞

is free, and is finitely generated if G = E.

Proof. G = E: this is the Mordell-Weil theorem [Lan83, Theorem 6:1].

G = Gm: This is part of [Zil06, Lemma 2.1] - the following is a reproduction

of the proof there.

Let k′ := k∩Q̄. k ≥ k′ is then a regular extension, so by Proposition 2.1.1(ii)

we may assume that k = k′.

k is then a number field; let Ok be its ring of integers. By Dirichlet’s Unit

theorem, Ok× is finitely generated. Recall that Ok is a Dedekind domain and

the fractional ideals, Id(Ok), form a free abelian group with generators the prime

ideals. θ(x) := xOk provides an exact sequence

Ok×
� � // k×

θ // Id(Ok) .

It follows from elementary results on free abelian groups that k× is free

modulo torsion, as required.

Theorem 2.2.3. Let k be a finitely generated extension of k0. Then G(k(G∞))/G∞

is free.

Proof. This argument uses ideas from the argument in [Lan78, V:5].

Claim 2.2.3.1. Let n ∈ N. There exists m such that

m · pureHullG(k(G∞)) (G(k(Gn))) ≤ G(k(Gn)) +G∞. (2.1)

Proof. By Corollary 2.2.1.1, let m be such that

�G∞ (Gal(k(G∞)/k(Gn))) ≥ Aut(G∞/Gm).

We assume, by doubling m if necessary, that 2|m.
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Let µ1 := Πl|mGl∞ , µ2 := Πl-mGl∞ , where l ranges over the primes. So

G∞ ∼= µ1 × µ2, and we have a corresponding isomorphism

θ : End(µ1)× End(µ2)
∼= // End(G∞) .

Let α1 := m + 1 ∈ Z(Aut(µ1)), let α2 := 2 ∈ Z(Aut(µ2)), and let

α := θ(α1, α2). Note then that α ∈ Z(Aut(G∞/Gm)). So say τ ∈

Gal(k(G∞)/k(Gn)) induces α. τ is central in Gal(k(G∞)/k(Gn)) since

α is central.

We will use the Kummer pairing

〈·, ·〉 : Gal(k(G∞)/k(Gn))× pureHullG(k(G∞)) (G(k(Gn)))→ G∞

; (σ,Q) 7→ σ(Q)−Q

Let Q ∈ pureHullG(k(G∞)) (G(k(Gn))), and let σ ∈ Gal(k(G∞)/k(Gn))

〈σ, θ(1,m) 〈τ,Q〉〉 = θ(1,m)((στQ− σQ)− (τQ−Q))

= θ(1,m)(τ − 1) 〈σ,Q〉

= θ(1,m)(α− 1) 〈σ,Q〉

= θ(1,m)θ(m, 1) 〈σ,Q〉

= m 〈σ,Q〉

= 〈σ,mQ〉 .

This holds for any σ, so mQ− θ(1,m) 〈τ,Q〉 ∈ k(Gn). But 〈τ,Q〉 ∈ G∞, so

mQ ∈ k(Gn) +G∞ as required.

Now G(k(G∞)) =
⋃
n G(k(Gn)). For each n, k(Gn) is finitely generated over

k0, so by Theorem 2.2.2 G(k(Gn))/G∞ ≤ G(k(G∞))/G∞ is free. By the Claim, there

exists m depending on n such that the pure hull of G(k(Gn))/G∞ in G(k(G∞))/G∞

is contained in 1/m · G(k(Gn))/G∞ and so is free.

G(k(G∞))/G∞ is therefore the union of a chain of pure free subgroups, and
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hence is locally free.

It follows from Pontryagin’s Theorem (B.3.1) that G(k(G∞))/G∞ is free.

2.3 Proof of Theorem 2.1.1(ii)

Theorem (2.1.1(ii)). Let k ≥ k′ be a finitely generated regular extension of a

field k′ ≥ k0. Then G(k)/G(k′) is locally free.

Proof. For G = E, it follows from the function field version of the Mordell-Weil

theorem, which is due to Lang-Néron [Lan83, Theorem 6:2], that G(k)/G(k′)

is finitely generated, and so certainly locally free. To justify the application

of this theorem, note that E is defined over the constant field k′, and any

homomorphism over k of elliptic curves over k′ is actually over k ∩ acl(k′) = k′,

so the k/k′-trace of E is just id : E→ E.

For G = Gm, we appeal to the theory of normalisation and divisors. The

proof is parallel to the proof of Theorem 2.2.2 above. First suppose that k′ is

algebraically closed. There exists a projective normal variety X such that k is

isomorphic over k′ to the function field k′(X) [Mum88, III:8 Theorems 3 and

4]. The theory of Weil divisors then applies. To each prime divisor Y ⊆ X, we

have the valuation vY : k′(X)× → Z. For any f ∈ k′(X), vY (f) = 0 for all

but finitely many Y . Let D be the free abelian group generated by the prime

divisors, and let div : k′(X)× → D; f 7→ ΣY vY (f)Y . If vY (f) = 0 for all Y , f

is regular on the complete variety X and hence is constant, i.e. f ∈ k′×. So we

have an exact sequence:

k′
× � � // k′(X)×

div // D .

It follows that k×/k′× ∼= k′(X)×/k′× is free. This concludes in the case that

k′ is algebraically closed. For the general case, say k = k′(x) ≥ k′ is a regular

extension, and note that the the embedding k′ ≤ k′(x) induces an embedding

k×/k′× ≤ k′alg(x)
×
/k′alg× , and the latter is free by the previous argument. In
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particular, it is locally free as required.

2.4 Proof of Theorem 2.1.1(iii)

Lemma 2.4.1. Let K ≥ L be algebraically closed fields, and let π : K →L L be

a place. Let k0 ≤ K be a perfect subfield such that π(k0) ≤ k0. Let k1 ≥ k0 be

a finite extension.

Then there exists a finite extension k′ ≥ k1, with k′ ≤ L(k1), such that

π(k′) ≤ k′.

Proof. We may assume that k1/k0 is Galois.

For i ≥ 1, define ki+1 := ki ∨ πki.

Normality of a finite field extension implies [EP05, 3.2.16(2)] normality of

the corresponding extension of residue fields; it follows inductively that for all

i ≥ 0, the extensions ki+1/ki and πki+1/πki are Galois.

Now [ki+2 : ki+1] ≤ [πki+1 : πki] ≤ [ki+1 : ki]. So after some n, the degrees

reach their minimum level, say

d = [πkn+2 : πkn+1] = [kn+2 : kn+1] = [πkn+1 : πkn] = [kn+1 : kn].

By the fundamental inequality of valuation theory [EP05, 3.3.4],

(I) any σ ∈ Gal(kn+1/kn) preserves Oπ ∩ kn+1;

(II) any σ ∈ Gal(kn+2/kn+1) preserves Oπ ∩ kn+2.

Now πkn+1 = (πkn)(πβ) say, some β ∈ kn+1. Let β = β1, β2, . . . , βs be the

kn-conjugates of β. By (I), βi ∈ Oπ for all i. Reducing the minimum polynomial

Πi(x−βi), we see that s = d and the (πkn)-conjugates of πβ are precisely (πβi)i.

Now suppose for a contradiction that σ ∈ Gal(kn+2/kn+1) \ {id}. kn+2 =

kn+1(πβ), so σ(πβ) = πβi some i > 1.

Now β− πβ ∈ mπ ∩ kn+1, but σ(β− πβ) = β− σπβ = β− πβi /∈ mπ ∩ kn+1.

This contradicts (II).
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So d = 1, and so πkn ≤ kn.

Lemma 2.4.2. Suppose k is a field of characteristic 0 such that G∞ ≤ G(k), L

is an algebraically closed subfield of k̄, L = acl(k ∩ L), and there exists a place

π : k̄ →L L such that π(k) ⊆ (k ∩ L).

Then

(i) For all m ∈ N,

mG(kL) ∩G(k) = mG(k) + (G(k) ∩G(L)).

(ii)

pureHullG(kL) (G(k)) = pureHullG(k)+G(L) (G(k)) .

Proof. Let C := k ∩ L.

(i) The ⊇ direction follows from divisibility of G(L).

For the other direction: let α ∈ G(kL) such that x := mα ∈ G(k); we

show that x ∈ mG(k) + G(C).

Define
〈·, α〉 : Gal(k̄/k) → Gm

; τ 7→ τ(α)− α.

But L is Galois over C and C = k ∩ L, so we have an exact sequence:

1 // Gal(k̄/kL) // Gal(k̄/k)
�L // Gal(L/C) // 1 ;

so 〈·, α〉 induces a well-defined homomorphism

θ : Gal(L/C) → Gm

; σ 7→ 〈τ, α〉

where τ�L= σ.
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This now becomes a question of Galois cohomology. See Section B.2 for

relevant definitions.

Claim 2.4.2.1. θ is a continuous L/C-1-cocycle.

Proof. θ is a 1-cocycle since G∞ ≤ G(k ∩ L).

Let Γ := θ−1(0) =�L (Gal(k̄/k(α))) = Gal(L/L ∩ k(α)).

L ∩ k(α) ≥ L ∩ k = C is an algebraic subextension of a finitely

generated extension, so is a finite extension. So Γ is an open subgroup

of Gal(L/C); it follows that θ is continuous.

Claim 2.4.2.2. There exists αL ∈ G(L) such that

∀σ ∈ Gal(L/C). θ(σ) = 〈σ, αL〉 := σαL − αL.

Proof.

• G = Gm: By Hilbert 90, Fact B.2.1, θ is a L/C-1-coboundary;

in other words, there exists αL ∈ G(L) as required.

• G = E: By Fact B.2.2, there exists a C-torsor T such that for any

β′ ∈ T(L), 〈·, β′〉 is L/C-cohomologous to θ. So say α′ ∈ E(L)

is such that 〈·, β′〉 + 〈·, α′〉 = θ. Let β := β′ + α′ ∈ T(L); then

〈·, β〉 = θ.

Now for all σ ∈ Gal(k̄/k),

〈σ, β〉 = 〈σ�L, β〉

= θ(σ�L)

= 〈σ, α〉 ,

so β − α ∈ T(k), witnessing k̄/k-triviality of T.

Now π(k) ⊆ k, so γ := π(β − α) ∈ T(k ∩ L) = T(C), witnessing

L/C-triviality of T.
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So αL := β − γ ∈ G(L) is as required.

Now for all σ ∈ Gal(k̄/k),

〈σ, αL〉 = 〈σ�L, αL〉

= θ(σ�L)

= 〈σ, α〉 ,

so α− αL ∈ G(k).

mαL = mα−m(α−αL) ∈ G(k), and so x = m(α−αL)+mαL ∈ mG(k)+

G(k) ∩G(L).

(ii) Let α ∈ pureHullG(kL) (G(k)); say mα ∈ G(k). By (i), mα ∈ mG(k) +

G(k) ∩ G(L); G(L) is divisible and Gm ≤ G(L), so it follows that α ∈

G(k) + G(L).

Theorem (2.1.1(iii)). Let (Ls)s⊆N be a finitary independent N -system of alge-

braically closed fields, N ≥ 1.

Let H := ΣiG(L(i)).

Then for any finitely generated extension L−(β) ≥ L−,

G(L−(β))/H

is a locally free abelian group.

Proof. A finitely generated separable field extension decomposes into a finite

extension followed by a finitely generated regular extension, so by Theorem

2.1.1(ii) and Lemma B.3.2, we may suppose that L−(β) ≥ L− is a finite exten-

sion.
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We proceed by induction on N . The case N = 1 is immediate, since a finite

extension of an algebraically closed field is trivial. So suppose N > 1.

Let L := L(0), and let P := L(1) . . . L(N−1). Let H ′ := Σi>0G(L(i)), so

H = H ′ + G(L).

We proceed to show that G(L−(β))/H is locally free. So let b ∈ G(L−(β))<ω;

we have to show that

pureHull G(L−(β))/H

(〈
b/H

〉)

is free.

Let λ be a transcendence basis for L over L∅.

By Lemma 1.3.3, there exists a place π : LN →L L such that π(P (λ)) ⊆

(P ∩ L)(λ), and π(β, b) ⊆ Gn(L).

By Lemma 2.4.1, there exists a finite extension k of P (λ)(β, b) such that

π(k) ⊆ k and kL = L−(β).

k is a finitely generated extension of P , so it follows from the induction

hypothesis that G(k)/H′ is locally free.

Now

pureHullG(k)+G(L)(〈b〉)/H ≤ pureHullG(k)(〈b,π(b)〉)/H .

Indeed, suppose α ∈ G(k) + G(L), say α = αk + αL, and mα ∈
〈
b
〉
. If G = E,

π is total, and so we have immediately that α − π(α) = αk − π(αk) ∈ G(k). If

G = Gm, we have to watch for finiteness - but indeed, π(mα) and hence π(α)

are in Gm, and so π(αk) = π(α − αL) = π(α) − αL ∈ Gm(k), and so again

α− π(α) = αk − π(αk) ∈ Gm(k).

We use below the easy fact that for C ≤ B abelian groups and a divisi-

ble subgroup A ≤ B containing the torsion subgroup of B, pureHullB(C)/A =

pureHullB/A
(
C/A

)
.

Now by Lemma 2.4.2(ii):
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pureHull G(L−(β))/H

(〈
b/H

〉)
= pureHullG(L−(β))(〈b〉)/H

= pureHullG(k)+G(L)(〈b〉)/H

≤ pureHullG(k)(〈b,π(b)〉)/H

= F/G(L),

where

F := pureHullG(k)(〈b,π(b)〉)/H′ ,

which is finitely generated by local freeness of G(k)/H′ .

So pureHull G(L−(β))/H

(〈
b/H

〉)
is a subgroup of a quotient of a finitely

generated group, and so is finitely generated, and in particular is free as required.

Question 2.4.1. For N = 1, and G = E, G(L−(β))/H is not just locally free

but actually finitely generated - this is part of the Lang-Néron theorem, as

in the proof of Theorem 2.1.1(ii) above. Local freeness is all we require for

the application in Chapter 4, but it is natural to ask: is G(L−(β))/H finitely

generated for N > 1? It seems that a more subtle analysis than the one we have

given would be required to answer this question.

For the multiplicative group, G(L−(β))/H certainly won’t be finitely generated

in general. But in the N = 1 case, it is free rather than merely locally free.

Again, it is natural to ask whether this holds for N > 1.
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Chapter 3

Kummer theory

3.1 Canonical bases in algebraically closed fields

All fields mentioned in this section are considered as subfields of a fixed alge-

braically closed field C of characteristic p, which may be 0. We need not make

the common assumption that the fields be ”small” relative to C. We make oc-

casional use of model theoretic terminology, for the sake of neatness; we are

referring then to the theory of C, i.e. ACFp.

Definition 3.1.1. Let F be a perfect field, and let F (a) be a finitely generated

extension.

Auta(F ) is the group of field automorphisms of F which are consistent with

fixing a, i.e.

Auta(F ) := {σ ∈ Aut(F )|∃τ ∈ Aut(F (a)/a). σ = τ�F }.

The locus of a over F is the intersection locus(a/F ) of all F -closed subsets

of An containing a.

By the DCC for the F -Zariski topology, locus(a/F ) is itself F -closed.

Define the canonical base of (the type of) a over F , Cb(a/F ) ≤ F , to be the

perfect closure of the minimal field of definition of locus(a/F ).

35



36 CHAPTER 3. KUMMER THEORY

Remark 3.1.1. (i) Cb(a/F ) is therefore the perfect closure of a finitely gen-

erated extension of the prime field - see [Lan72, Theorem III.7] and the

subsequent discussion, or (iii) of this remark.

(ii) The above definition makes sense in particular when a ∈ acl(F ), in which

case V is finite.

(iii) In model-theoretic terms, tp(a/F ) is not necessarily stationary. So Cb(a/F )

is the canonical base in the sense of [Pil96, 7.1.16] (which is denoted there

by Cb1). It is precisely the definable closure of a canonical parameter for

locus(a/F ).

Lemma 3.1.1. Let F ≤ C be a perfect field, let a ∈ C<ω be a tuple. Let

V := locus(a/F ).

Let σ : F → F be partial elementary. Then the following are equivalent:

(i) σ fixes Cb(a/F );

(ii) V = V σ;

(iii) σ(tp(a/F )) = tp(a/F ) (where σ acts formula-by-formula on the type);

(iv) σ extends to a partial elementary map σ : F (a)→ F (a) fixing a.

Therefore

Auta(F ) = Aut(F/Cb(a/F )).

Proof. (i) ⇐⇒ (ii) By definitions.

(ii) =⇒ (iii) We have V = V σ. By quantifier elimination, it suffices to

show that if W ⊆ An+m is a ∅-definable closed subset and (a, f) ∈ W ,

then (a, σ(f)) ∈W . But indeed, (a, f) ∈W iff V ⊆W (f) iff V σ ⊆W (f)σ

iff V ⊆W (σ(f)) iff (a, σ(f)) ∈W .

(iii) =⇒ (ii) a ∈ V σ, so V ⊆ V σ; similarly, V σ ⊆ V .

(iii) ⇐⇒ (iv) By definitions.
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We apply these ideas to prove in the following Proposition that a tuple over

L− of an independent system is essentially based in a number field; the proof is

a matter of cascading finite bases down through the system to Q̄.

Proposition 3.1.2. Let N ≥ 0, and let (Ls)s⊆N be a finitary independent N -

system of characteristic 0 algebraically closed fields. Let C0 := L− if N ≥ 1; let

C0 := k0(G∞) if N = 0.

Let a ∈ C<ω, and define k := C0(a). Then there exists a number field F

such that any σ ∈ Gal(Q̄/F ) extends to some σ′ ∈ Aut(k̄/a) which restricts to

an automorphism of k.

Proof. If N = 0, we are done by setting F := k0(Cb(a/C0)).

Now suppose N ≥ 1.

Let bi ∈ L<ω(i) be such that Cb(a/C0) = dcl(
⋃
i bi).

Suppose that we have defined bt ∈ L<ωt for all t s.t. |t| = n. For each such

t, let St := {s < t||s| = n − 1}, and let b
t

s ∈ L<ωs for s ∈ St be such that

Cb(bt/
∨
s∈St(Ls) = dcl(

⋃
s∈St(b

t

s)). Let bs :=
⋃
{t⊃s : |t|=n}(b

t

s).

Let F := Cb(b∅/Q̄).

Let σ ∈ Gal(Q̄/F ). Then by Lemma 3.1.1, σ extends to L∅ fixing b∅.

Suppose by induction that we have extended σ to agreeing partial elementary

maps σs : Ls → Ls for |s| ≤ n− 1 with σs fixing bs.

Let t ⊆ N such that |t| = n. Let σ′t :=
⋃
s∈St(σs), which is partial elementary

by Lemma 1.3.4 applied to the independent system (Ls|s ≤ t). σ′t fixes b
t

s for

all s ∈ St, so extends to σt : Lt → Lt fixing bt.

At stage N − 1 we obtain partial elementary σ′N :=
∨
i σ(i) : C0 → C0 fixing⋃

i bi, which then extends to σ′ ∈ Aut(C0(a)/a).
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3.2 Bashmakov’s theorem over independent sys-

tems

Theorem 3.2.1. Let N ≥ 0 and let (Ls)s⊆N be a finitary independent system of

algebraically closed subfields of C. Let H := Σi∈NG(L(i)) if N > 0; let H := G∞

if N = 0.

Let a ∈ G(C)n let k := k0(H, a), and suppose a is simple in G(k).

Then the left image of the k̄/k-Kummer-Tate pairing,

Z :=
〈
Gal(k̄/k), a

〉k̄/k
∞ ≤ Tn,

is of finite index in Tn.

If G = Gm, Theorem 3.2.1 holds by classical Kummer theory, even without

the assumptions on k.

So suppose G = E.

The number field case of Theorem 3.2.1, i.e. the case N = 0 and a ∈ G(Q̄)n,

is a result due to Bashmakov which makes essential use of Serre’s theorem B.1.1

on the image of the absolute automorphism group of a number field on the

automorphism groups of the Tate modules. For the general case, we first apply

Proposition 3.1.2 to show that the situation is “finitely based”, providing a

number field to which Serre’s theorem will apply:

Lemma 3.2.2. There exists a number field k1 ≥ k0 such that Z is Aut(Q̄/k1)-

invariant.

Proof. Let F be as in Lemma 3.1.2, and let k1 := k0(F ). Let σ ∈ Gal(k̄/k),

and let τ ∈ Aut(Q̄/k1).

By choice of F , τ extends to τ ′ ∈ Aut(k̄/k0(a)) such that τ ′ restricts to an
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automorphism of k. So στ
′−1

= τ ′στ ′−1 ∈ Gal(k̄/k), and

〈
στ
′
, a
〉k̄/k
∞

= τ ′στ ′−1α− α (some arbitrary α ∈ π̂−1(a))

= τ ′(στ ′−1α− τ ′−1α)

= τ ′ 〈σ, a〉k̄/k∞ (since τ ′−1α ∈ π̂−1(a))

= τ 〈σ, a〉k̄/k∞ .

Theorem 3.2.1 follows by the arguments used in the proof of Bashmakov’s

theorem with Lemma 3.2.2 allowing the use of Serre’s theorem. For complete-

ness, and because the specificity of our situation simplifies some of the argu-

ments, we give this proof below, adapting the proof presented in [Lan78] and

hopefully not introducing too many errors.

For l a prime and s ∈ N, define Aut(Tl/Els) to be the kernel of the natural

reduction map Aut(Tl)→ Aut(Els).

For s ∈ N and l a prime, let Zs resp. Zl∞ be the projections of Z to Ens resp.

Tnl . Note that Zl∞ is a closed subgroup and hence a Zl-submodule of Tnl .

Fact 3.2.3. 1. If s and t are coprime, then Aut(Est) = Aut(Es)×Aut(Et).

If further s′|s and t′|t, then Aut(Est/Es′t′) = Aut(Es/Es′)×Aut(Et/Et′).

2. For l prime and t′ ≥ t ≥ s ∈ N, the restriction map �Elt : Aut(Elt′/Els)→

Aut(Elt/Els) is surjective.

3. So for t, s ∈ N, �Et : Aut(E∞/Es)→ Aut(Et/Et ∩ Es) is surjective.

So by Lemma 3.2.2 and Fact B.1.1, for all but finitely many primes l, Zl

is invariant under Aut(El) ∼= GL2( Z/lZ), and for the remaining finitely many

primes l there is s = sl ∈ N such that Zl∞ is Aut(Tl/Els)-invariant.

Fact 3.2.4. Let l be a prime.

1. The only endomorphisms of El which are Aut(El)-invariant are the scalars;

i.e. EndAut(El)(El) ∼= Z/lZ
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2. for any s ∈ N, EndAut(Tl/Els )(Tl) ∼= Zl.

3. If N is a closed subgroup of Tnl such that πl(N) = Enl , then N = Tnl .

Lemma 3.2.5. Let S be a simple R-module. Then the submodules of Sn are

precisely those of the form

{x|
∧
i

Σjηi,jxi = 0},

where ηi,j ∈ EndR(S).

Proof. We show by induction that such a submodule N ≤ Sn is the graph of an

R-linear map η : Sd → Sn−d from some d of the co-ordinates to the rest - since

such a map is easily given by a matrix with entries from EndR(S), the lemma

follows.

This is clear for n = 1. Suppose it holds for n, let N ≤ Sn+1 be a sub-

R-module. Let π : N → Sn be the projection map. By induction, im(π) is

the graph of an R-linear map η. If ker(π) = S, η provides the map Sd+1 →

Sn−d. Else, by simplicity ker(π) = {0}, and so N is the graph of an R-module

homomorphism η′ : im(π) → S. So N is the graph of θ : Sd → Sn−d+1;x 7→

(ηx, η′(x, ηx)).

Proof of Theorem 3.2.1.

Step I Let l be one of the all but finitely many primes such that Zl is Aut(El)-

invariant. Suppose that Zl 6= Enl .

El is simple as a Z[Aut(El)]-module, so by Fact 3.2.4(i) and the Lemma 3.2.5,

for some ni ∈ Z/lZ ∼= EndAut(El)(El) not all zero,

∀ζ ∈ Zl. Σniζi = 0.

But then if lβi = ai, β := Σniβi is fixed by all σ ∈ Gal(k̄/k):

σ(β)− β = Σni(σ(βi)− βi) = 0,
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since σ(βi)− βi ∈ Zl. So β ∈ G(k) \ 〈a〉, contradicting simplicity of a.

So Zl = Enl , so by Fact 3.2.4(iii)

Zl∞ = Tnl .

Step II Now let l be one of the finitely many remaining primes for which we only

have that Zl∞ is Aut(Tl/Els)-invariant for some s.

Define the divisible hulls Xl := Zl∞ ⊗Zl Ql and Vl := Tl⊗Zl Ql. Note that

Xl is an R := Ql[Aut(Tl/Els)]-submodule of V nl .

Vl is simple as an R-module and (by Fact 3.2.4(ii)) EndR(Vl) = Ql.

So again, if Xl 6= V nl then Xl is contained in a proper subgroup of form

{Σnixi = 0}, ni ∈ Ql not all 0. Clearing denominators, we may suppose

ni ∈ Zl; say not all ni are 0 mod lt - then letting n′i := πlt(ni) ∈ Z/ltZ we

see that

∀ζ ∈ Zls . Σn′iζi = 0,

which contradicts simplicity as above.

So Xl = V nl , and so Zl∞ is of finite index in Tnl .

Step III We have shown that Zl∞ is equal to Tnl for all but finitely many primes,

and is of finite index in Tnl for the others. Since the corresponding exten-

sions are of coprime order and hence disjoint, we see that Z = ΠlZl∞ ≤

ΠlT
n
l = Tn. So Z is of finite index in Tn, as required.
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Chapter 4

Categoricity results

In this chapter, we give purely algebraic statements and proofs of the main

categoricity results, as discussed in Section 1.1, and draw as corollaries the

model theoretic statements outlined in Section 0.1. The proofs here are in

essence stripped down versions of those in the theory of Quasi-Minimal Excel-

lence [Zil05b].

4.1 Orbits of standard V ≤ V̂

Let K be an algebraically closed extension of k0.

Definition 4.1.1. A divisible subgroup V ≤ V̂ (K) is standard iff

• π̂(V ) = G(K)

• V ∩ T is isomorphic as an abelian group to Zd, where d = 1 if G = Gm

and d = 2 if G = E.

The automorphism group Aut(K/k0) acts on the set of standard V ≤ V̂ ;

Theorem 4.1.1 below, which is in effect the main theorem of this Part, analyses

the orbits of this action.

We say that standard V1, V2 ≤ V̂ (K) are Aut(K/k0)-conjugate iff there

exists σ ∈ Aut(K/k0) such that V2 = σ(V1).
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Assumptions are as in Section 1.2; in particular, note that we are assuming

no complex multiplication and that k0 is a number field.

We now give the full statement of our main theorem describing the orbits,

although the second part of the statement uses definitions made in Section 4.3

below.

Theorem 4.1.1. The action of Aut(K/k0) on the set of standard V ≤ V̂ is

transitive if G = Gm, and has finitely many orbits if G = E.

Moreover, in the latter case the orbit is determined by the algebraic type over

k0 of wm(Λ)/±, for m such that �E∞ : Gal(Q̄/k0) // // Aut(E∞/Em) .

The proof of Theorem 4.1.1 proceeds in two steps. First, in Theorem 4.2.3,

we prove that standard V ≤ V̂ which coincide on T are conjugate. This re-

duces the problem to that of analysing the orbits on T ; Theorem 4.3.2 then

characterises these orbits.

4.2 Categoricity over T

We deduce from Theorem 3.2.1 and Theorem 2.1.1 the following key lemma:

Lemma 4.2.1. Let N ≥ 0 and let (Ls)s⊆N be a finitary independent system of

countable algebraically closed subfields of C. Let H := Σi∈NG(L(i)) if N > 0;

let H := G∞ if N = 0.

Let a ∈ G(C)n be linearly independent over H, let k be a finitely generated

extension of k0(H, a).

Let Z be the left image of the k̄/k-Kummer-Tate pairing,

Z :=
〈
Gal(k̄/k), a

〉k̄/k
∞ ≤ Tn.

Then

(i) Z is of finite index in Tn.
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(ii) If V ≤ V̂ is standard, Λ := V ∩ T , then

Z + Λn = Tn.

(iii) There exists m ∈ N such that if a′ is an m-division point of a, then for all

n ∈ N all n-division points of a′ are Gal(k̄/k(a′))-conjugate.

Proof. (i) a is linearly independent over H, and G∞ ≤ H ≤ G(k). So the

quotient map restricts to an isomorphism:

pureHull G(k)/G∞

(〈
a/G∞

〉)
→ pureHull G(k)/H

(〈
a/H
〉)

Σiqiai/G∞ 7→ Σiqiai/H

By Theorem 2.1.1, G(k)/H is locally free. So say a′ ∈ G(k)n is such that

a′/G∞ is a basis for pureHull G(k)/G∞

(〈
a/G∞

〉)
. a = Aa′ + z for some

integral matrix A ∈ Matn,n(Z) and some z ∈ Gn∞, and A is invertible as a

rational matrix.

Now 〈·, ·〉k̄/k∞ is linear on the right, and G∞ ⊆ G(k), so

〈
Gal(k̄/k), a

〉k̄/k
∞ = A

〈
Gal(k̄/k), a′

〉k̄/k
∞ .

Now a′ is simple in G(k), so by Theorem 3.2.1, the latter is of finite index

in Tn. A has Smith normal form PBQ with P and Q invertible integer

matrices and B diagonal with no entry 0, so

〈
Gal(k̄/k), a

〉k̄/k
∞ = PBQ

〈
Gal(k̄/k), a′

〉k̄/k
∞ = B

〈
Gal(k̄/k), a′

〉k̄/k
∞ ,

which is of finite index in Tn.

(ii) Z is a finite index closed subgroup of Tn, so contains mTn for some m ∈ N.

Define

θ : T → Gm; ζ 7→ π̂

(
ζ

m

)
.
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ker θ = mT , so it suffices to show that θ(Λ) = Em; but indeed, this follows

from surjectivity of π̂�V .

(iii) Again, let m be such that mTn ≤ Z. The result is then immediate from

definitions.

Remark 4.2.1. Versions of Lemma 4.2.1(iii) have occured in the literature, some-

times under the name of “the Thumbtack Lemma” (e.g. [Bal04]). In particular,

it appears in [Zil06] and [BZ07] for the case of G = Gm.

Definition 4.2.1. For V ≤ V̂ (C) standard and D ≤ G(C) divisible, define

V �D:= V ∩ π̂−1(D).

Lemma 4.2.2. Let H be as in the statement of Lemma 4.2.1.

Let D ≤ G(C) be a divisible extension of H such that D/H is of finite rank.

Let V1, V2 ≤ V̂ (C) be standard.

Suppose σ ∈ Aut(C/H) and

σ(V1�D) = V2�D .

Let D′ := G(acl(k0(D))).

Then there exists σ′ ∈ Aut(C/H) such that σ′�D= σ�D and

σ′(V1�D′) = V2�D′ .

Proof. Say D = pureHullG(C)
(〈
Hd
〉)

with d linearly independent over H.

D′/H is of countable Q-linear dimension, so by back-and-forth it suffices to

show that if d ∈ D′ \ D and D1 := pureHullG(C)
(〈
Hdd

〉)
, then there exists

σ1 ∈ Aut(C/H) such that σ1�D= σ�D and σ1(V1�D1) = V2�D1).

Let d
′

:= dd. Let α′1 = α1α1 ∈ π̂−1(dd) ∩ V n+1
1 , and let α′2 = α2α2 ∈

π̂−1(σ(dd)) ∩ V n+1
2 where α2 = σα1 ∈ V n2 .
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Now α2 = σα1 + ζ for some ζ ∈ T . Let Λ := V1 ∩ T = V2 ∩ T . By Lemma

4.2.1 with k := k0(H, d
′
),

〈
Gal(k̄/k), d

′〉k̄/k
∞

+ Λn+1 = Tn+1.

In particular, looking at the last variable, we have

〈
Gal(k̄/k), d

′〉k̄/k
∞
∩ {0} × T + {0} × Λ = {0} × T.

So say τ ∈ Gal(k̄/k) and λ ∈ Λ are such that τ(α1) = α1 and

ζ = (τα1 − α1) + λ = τ(α1 + λ)− α1.

So let σ1 := σ ◦ τ ;

σ1(α1(α1 + λ)) = α2(σα1 + ζ) = α2α2,

so σ1 is as required.

Theorem 4.2.3. Let K be an algebraically closed field extending k0. Let

V1, V2 ≤ V̂ := V̂ (K) be standard. Suppose V1 ∩ T = V2 ∩ T .

Then there exists σ ∈ Aut(K/k0(G∞)) such that σ(V1) = V2.

Proof. By Lemma 4.2.2 withD := H := G∞, there exists σ−1 ∈ Gal(Q̄/k0(G∞))

such that σ−1(V1�G(Q̄)) = V2�G(Q̄).

So we may assume that V1�G(Q̄)= V2�G(Q̄).

Let (λi)i∈I be a transcendence basis of K. For s ⊆ I, let Ls := aclK({λi|i ∈

s}). We define, by structural induction on the partial order of finite subsets of

I, an agreeing system of automorphisms σs ∈ Aut(Ls/Q̄) for s ⊂fin I.

Let σ∅ := idQ̄.

Next, suppose s is a singleton, s = {i}. Let a ∈ G(Ls) \ G(Q̄). Choose

arbitrarily αj ∈ Vj ∩ π̂−1(a). G is an absolutely irreducible curve, so, for all n,

π̂( α1/n) ≡Q̄ π̂( α2/n); therefore τ(α1) = α2 for some τ ∈ Aut(Ls/Q̄). By Lemma
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4.2.2 with H := G(Q̄) and D := 〈Ha〉Q, τ extends to σs ∈ Aut(Ls/Q̄) such that

σs(V1�Ls) = V2�Ls .

Now suppose |s| ≥ 2, and suppose inductively that we have defined for each

t ⊆ s an automorphism σt ∈ Aut(Lt/Q̄), such that

∀t ⊆ s. σt(V1�Lt) = V2�Lt

and

∀t, t′ ⊆ s. (t ⊆ t′ =⇒ σt = σ′t�Lt).

(Lt)t⊆s is a finitary independent system of algebraically closed fields. By

lemma 1.3.4, there exists σ′s ∈ Aut(Ls/Q̄) extending
⋃
t⊆s σt.

σ′s(V1 �H) = V2 �H , so, by Lemma 4.2.2 with D := H := L−, there exists

σ′′s ∈ Aut(Ls/L−) such that σ′′s (σ′s(V1�Ls)) = V2�Ls . Let σs := σ′′s ◦ σ′s; then σs

extends σt for t ⊆ s, and σs(V1�Ls) = V2�Ls .

This concludes the inductive definition of (σs)s⊂finI . Let σ :=
⋃
s⊂finI

σs be

the direct limit. Then σ ∈ Aut(K/Q̄) and σ(V1) = V2, as required.

4.3 Orbits on T

Suppose for the following fact and definition that we are in the case G = E.

Let µm ≤ Q̄× denote the group of mth roots of unity.

Fact 4.3.1. For each m ∈ N, there is an Aut(Q̄/k0)-invariant non-degenerate

alternating bilinear pairing wm : E2
m → µm, called the Weil pairing.

Definition 4.3.1. Let µ∗m/± be the primitive mth roots of unity quotiented by

the equivalence relation which identifies ζ with ζ−1. For Λ ≤ T , Λ ∼= Z2, define

wm(Λ) := wm(πm(λ))/±,

where λ is a Z-basis of Λ. This is well-defined by bilinearity of wm and the fact

that λ is well-defined up to action of GL2(Z).
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ζ1/± is conjugate over k0 to ζ2/±, written ζ1/± ≡k0 ζ2/±, iff ζ1 is Gal(Q̄/k0)-

conjugate to either ζ2 or ζ−1
2 .

Theorem 4.3.2. Let V1, V2 ≤ V̂ (K) be standard; let Λi := Vi ∩ T .

If G = Gm, the Λi are Gal(Q̄/Q)-conjugate.

If G = E, let m be as in Corollary B.1.1.1, and let λi ∈ Λ2
i be a Z-basis for

Λi. Then Λ1 and Λ2 are Gal(Q̄/k0)-conjugate iff

wm(Λ1) ≡k0 wm(Λ2).

Proof. If G = Gm, this follows from the fact (see Theorem 2.2.1) that every

group automorphism ofG∞ is induced by an element of Gal(Q(G∞)/Q). Indeed,

say λi generates Λi. For each n, πn(λi) generates Gn, so there is a unique group

automorphism τn ∈ Aut(Gn) such that τn(πn(λ1)) = πn(λ2). Then the limit

τ :=
⋃
n τn ∈ Aut(G∞) is induced by some σ ∈ Gal(Q(G∞)/Q); σ then maps

λ1 to λ2, and hence Λ1 to Λ2 as required.

Suppose now G = E.

If σ(Λ1) = σ(Λ2), and λ1 is a Z-basis for Λ1, then λ2 := σ(λ1) is a Z-basis

for Λ2. Then by Galois-invariance of wm and definitions,

σ(wm(Λ1)) = wm(σ(πm(λ1))/±

= wm(πm(λ2))/±

= wm(Λ2)

For the converse, it remains to show that if wm(Λ1) = wm(Λ2), then Λ1

and Λ2 are conjugate. Let λi be respective bases such that wm(πm(λ1)) =

wm(πm(λ2)). This implies that πm(λi) are in the same orbit of the action of

SL2( Z/mZ) on Gm. Since the natural map SL2(Z)→ SL2( Z/mZ) is a surjection

[Shi94, Lemma 1.38], there exist bases λ
′
i such that πm(λ

′
1) = πm(λ

′
2).

By Corollary B.1.1.1 and the argument used in the multiplicative group case

above, λ
′
1 is then conjugate to λ

′
2, and hence Λ1 is conjugate to Λ2.
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Proof of Theorem 4.1.1. By Theorem 4.2.3, the orbit under Aut(K/k0) of a

standard V ≤ V̂ is determined by the orbit of V ∩ T . By Theorem 4.3.2, there

are only finitely many such orbits, classified as stated if G = E, and there is

only one orbit if G = Gm.

Remark 4.3.1. If k0 = Q, then all elements of µ∗m are conjugate over k0, and so

there is only one orbit.

4.4 Categoricity

In this section we rephrase the algebraic results above in model theoretic terms,

where they become statements of categoricity of certain theories in the infinitary

logic Lω1,ω, as previewed in Section 0.1. We essentially follow [Zil02a].

Our language has two sorts, V and G. On V we place the language of Q-

vector spaces, 〈+, (q·)q∈Q〉. On G we place the natural language over k0, which

consists of a predicate for each k0-closed subvariety. Finally, we have in our

language a function exp : V→ G.

We define a first-order theory TG in this language to be the theory axioma-

tised by:

(I) G satisfies the complete first order theory of G(K) in the natural language,

for K an algebraically closed extension of k0;

(II) V satisfies the theory of Q-vector spaces;

(III) exp is a surjective group homomorphism.

Remark 4.4.1. It is proved in [Zil02a] that TG is complete and has quantifier

elimination. Note that
〈
V̂ (K); G(K); π̂

〉
is a model.

Let d := 1 if G = Gm and d := 2 if G = E. Consider the Lω1,ω axiom:
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∃λ ∈ ker(exp). ((¬
∨
n∈Zd

Σiniλi = 0)

∧ ∀ζ ∈ ker(exp).
∨
n∈Zd

Σiniλi = ζ)
(ker(exp) ∼= Zd)

For the multiplicative group and certain elliptic curves, in particular if k0 = Q,

TG∪{ker(exp) ∼= Zd} is uncountably categorical. In general, it will have finitely

many models in each transcendence degree, corresponding to the finitely many

orbits of Theorem 4.1.1, and we need a further axiom to ensure categoricity.

Let exp : V → G(K) be a model of TG ∪ {ker(exp) ∼= Z2}, let λ be a basis of

ker(exp), let m be as in Corollary B.1.1.1, and let f be the minimal polynomial

over k0 for wm(exp(λ/m)) ∈ µ∗m. Consider the Lω1,ω axiom:

∃λ ∈ ker(exp)2. (ker(exp) =
〈
λ
〉
∧ f(wm(exp( λ/m))) = 0). (Weilm(f))

Note that this can indeed be expressed by a Lω1,ω-sentence in our lan-

guage: ker(exp) =
〈
λ
〉

can be expressed as in the axiom (ker(exp) ∼= Zd),

and f(wm(exp( λm ))) = 0 can be expressed since the field K is ∅-interpretable

with k0 as distinguished points (Fact A.2.1), and wm : G2 → K is then an

invariant map with finite domain and hence is ∅-definable.

The algebraic analysis of Theorem 4.1.1 translates straightforwardly into a

categoricity result:

Theorem 4.4.1. TG∪{(ker(exp) ∼= Zd), (Weilm(f))} is uncountably categorical.

Proof. Let 〈V ;G; exp〉 be an uncountable model. By Fact A.2.1, G ∼= G(K) for

some algebraically closed fieldK of the same cardinality asG, soG is determined

up to isomorphism by the cardinality.

It remains to show that for a fixed algebraically closed K ≥ k0, any two
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models 〈V1; G(K); exp1〉 and 〈V2; G(K); exp2〉 are isomorphic. Let

V ′i :=
{(

π′
( v
n

))
n

∣∣∣ v ∈ Vi} ≤ V̂ (K).

Then V ′i ≤ V̂ is standard and 〈Vi; G(K); expi〉 is isomorphic to
〈
V ′i ; G(K); π̂�V ′i

〉
.

By (Weilm(f)) and Theorem 4.1.1, there exists σ ∈ Aut(K/k0) such that

σ(V ′1) = V ′2 ; σ induces an isomorphism of the structures as required.

4.5 Limitations and extensions

In this informal section, we briefly discuss some known, suspected, or otherwise

hypothesised generalisations of these results.

We have assumed that E has no complex multiplication. This should not

be a necessary assumption - if everywhere “abelian group” is read as “End(E)-

module” and “Q-linearly independent” as “End(E)⊗Z Q-linearly independent”,

most parts of our treatment can be seen to go through. The Kummer theory is

known to work nicely, indeed more smoothly as there is no longer the compli-

cation of needing Serre’s theorem to apply. Gavrilovich has already performed

the necessary analysis for the analogue of Theorem 4.3.2 in his thesis - again,

there are finitely many orbits. So the generalisation to arbitrary elliptic curves

over number fields should be straightforward, but remains to be done.

We have been assuming characteristic 0 throughout. In the case of the

multiplicative group, the analogue of Theorem 4.2.3 holds also in characteristic

p > 0; since in this case G has no p torsion, “standard” kernel has to mean

Z[ 1
p ]. The proof of this result is in [BZ07]; there are few departures from the

proof given here in characteristic 0 for the multiplicative group. (We could

easily have included this case in our presentation here, but I didn’t want to

have to introduce further notational intricacies.) So perhaps it would make

sense to try to generalise the elliptic curve case of Theorem 4.2.3 to positive

characteristic. Note that already in the multiplicative group case, the analogue

of Theorem 4.3.2 fails drastically - the torsion group G∞ is precisely G(Fpalg),
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and so it is far from true that every group automorphism of G∞ is induced

by an algebraic automorphism. In this way, it is not hard to see that there are

infinitely many orbits of standard V on T . Via the Weil pairing, the same will be

true of an elliptic curve over a finite field. The best we can do, then, is to obtain

categoricity over the torsion in the sense of Theorem 4.2.3. As mentioned, this

has been done for the multiplicative group, but remains open for elliptic curves.

Another obvious direction in which to generalise is in dimension. We have

restricted ourselves to semi-abelian curves; what of semi-abelian varieties in

general? Distressingly, there has been no firm substantial progress on this since

Gavrilovich’s thesis work, so I refer the reader to [Gav06, IV.7.4,IV.5.4.2,IV.6].

But let me also remark that I have hopes that the methods of this thesis will

prove to be useful in the higher dimensional case.



54 CHAPTER 4. CATEGORICITY RESULTS



Chapter 5

Universal covers of

1-dimensional algebraic

groups as topological

structures

In this isolated and rather technical chapter, we describe and elucidate the struc-

ture of a natural coarse topological structure on covers with standard kernel.

Although we will not formally discuss this aspect, these structures are examples

of Analytic Zariski Structures as defined by Zilber.

There is not much novelty or surprise in the results of this chapter. For

the case of the multiplicative group in characteristic 0, essentially the same

conclusions were drawn in the thesis [Smi07] of Lucy Smith; we generalise this

here to elliptic curves in characteristic 0 and to the multiplicative group in

arbitrary characteristic. Meanwhile, the thesis [Gav06] of Misha Gavrilovich

contains a thorough analysis of the analytic Zariski topology on universal covers

of complex abelian varieties, which turns out to be the same as the topological

55
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structure we study here. The difference between that work and the present

is one of approach - Gavrilovich starts with the complex analytic picture and

uses theorems of complex analysis to derive consequences of algebraic character,

whereas here we start with the pure algebra. In particular, the N = 1 case of

4.2.1, and its corollary Lemma 5.1.1e below, is the crucial fact which allows our

analysis to proceed; conversely, for abelian varieties this fact falls out ([Gav06,

III.1.3.4]) of Gavrilovich’s analysis.

In particular then, we define a topological structure which is the analogue

in positive characteristic of a natural topological reduct of the complex analytic

structure on the universal cover of Gm(C), and which is rather tractable.

5.1 Setup

We work in one of the following 3 contexts:

(I) G = Gm; char 0; k0 := Q; R := Z; Γker := Z

(II) G = Gm; char p > 0; k0 := Fp; R := Z[1/p]; Γker := Z[1/p]

(III) G = E, an elliptic curve defined over a number field k0; R := End(E);

Γker := Z2

A cover with standard kernel is then a 2-sorted structure 〈V ; G(K);π〉 where

V has the structure of a R-module, K is algebraically closed and G(K) is con-

sidered in the natural language over k0, and

0 // Γker
// V

π // G(K) // 0 .

We collect some properties which hold in these contexts:

Lemma 5.1.1. (a) [m] : Gt → Gt is open and closed.

(b) R is a Noetherian ring, and Λ is finitely generated as a R module. kE :=

Q⊗R is a field. If η ∈ R, ker η ⊆ Gm := ker[m] for some m ∈ N.
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(c) Let H ≤ Gt be a proper algebraic subgroup. Then H ≤ ker(η) for some

0 6= η : Gt → Gs represented by some E ∈ Mats,t(R).

(d) Let η : Gt → Gs represented by some E ∈ Mats,t(R). Let X ⊂cl Gs

irreducible. Let Y be any irreducible component of η−1(X). Then η(Y ) =

X.

(e) Let K ≥ k0 be algebraically closed; let X ⊆ Gt be closed and irreducible

in the K-Zariski topology, and suppose X is not contained in any proper

algebraic subgroup of Gt. Then there exists m ∈ N such that any irreducible

component X ′ of [m]−1(X) has the property that for all t ∈ N, [t]−1(X ′) is

irreducible.

Proof. (a) This follows from [m] being finite and étale.

(b) Standard.

(c) See Lemma 6.2.1.

(d) By (a), η(Y0) = X for some irreducible component Y0 of η−1(X). But the

isomorphisms x 7→ x+ζ for ζ ∈ ker η act transitively on the set of irreducible

components, so η(Y ) = η(Y0) = X for any irreducible component Y .

(e) Let a ∈ X be generic over K. By (c), a is kE-linearly independent over

G(K). By (d), for any m the irreducible components of [m]−1(X) are in

bijective correspondence with the K-conjugacy classes of [m]−1(a). The

result therefore follows from the N = 1 case of Lemma 4.2.1 when that

holds.

We proved Lemma 4.2.1 only under the assumptions of characteristic 0

and no complex multiplication; however, the proof of the N = 1 case goes

through in the current more general context. For the multiplicative group

in positive characteristic, this is proved as the n = 1 case of [BZ07, The-

orem 3], with essentially the same proof as the characteristic 0 case. For

elliptic curves with complex multiplication, one can note that the complex
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multiplication case of Theorem 3.2.1 follows as in Chapter 3 using the com-

plex multiplication case of Bashmakov’s theorem, and conclude the N = 1

case of Lemma 4.2.1 from Lang-Néron as before.

Definition 5.1.1. X ⊂cl Gn is unfurled iff [t]−1(X) is irreducible for all t ∈ N.

Definition 5.1.2. For V a kE-vector space, perhaps with extra structure:

(i) a definable kE-linear map is a map θ : V s → V t defined by a matrix

A ∈ Matt,s(kE);

(ii) a definable affine kE-linear map is a the composition of a definable kE-

linear map with a translation;

(iii) a definable kE-linear subspace is the kernel of a definable kE-linear map;

(iv) a definable kE-linear coset is a coset of a definable kE-linear subspace.

5.2 Tinv

Definition 5.2.1. Given a set S, a topological structure on S consists of a

topology on each Sn such that

(i) The co-ordinate projection maps pr : Sn → Sm are continuous;

(ii) The inclusion maps

ι : Sm → Sn; (x1, . . . , xm) 7→ (x1, . . . , xm, cm+1, . . . , cn)

are continuous.

(iii) The diagonal ∆ ⊆ S2 is closed.

A topological structure is a set S with a topological structure on it.

Remark 5.2.1. • The ”co-ordinate projection maps” in (i) should be under-

stood to include the co-ordinate permutation maps : Sn → Sn.
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• It follows from the axioms (i)-(iii) that fibres C(x, c) of closed sets are

closed, cartesian products C1 × C2 of closed sets are closed, and that a

singleton set {s} ⊆ Sn, being a fibre of ∆n, is closed.

Fix an algebraically closed field K ≥ k0. We consider G(K) as a topological

structure by equipping each Gn(K) with the K-Zariski topology.

Let Ĝ(K) := lim←−N;|([m] : G(K) → G(K)) be the inverse limit of copies

of G(K) with respect to the multiplication-by-m maps [m] (a “proalgebraic

group”); let π̂n : Ĝ(K)→ G(K) be the corresponding maps, so

[m] ◦ π̂nm = π̂n.

We define a topological structure on Ĝ(K) by equipping Ĝ(K)n with the

inverse limit topology, i.e. the coarsest topology such that all π̂n : Ĝ(K)n →

Gn(K) are continuous. We denote this topological structure on Ĝ(K) by Tinv.

Since G(K) is an R-module and [m] is an R-module homomorphism, the

inverse limit Ĝ(K) also acquires the structure of an R-module; namely, for

η ∈ R,

η(ai)i∈N := (ηai)i∈N.

Note that η ∈ R is continuous for the topology on Ĝ(K), and the graph of

η is closed in Ĝ(K)2.

Remark 5.2.2. • π̂n is open and closed.

• kE-linear maps are continuous.

5.3 Analytic Zariski topology on covers with stan-

dard kernel

Let π : V → G(K) be a cover with standard kernel Λ := ker(π) ∼= Γker. Let

πn(x) := π( xn ); we can define as above a topological structure Tinv on V by

taking as a sub-basis of closed subsets of V t all pullbacks of K-Zariski closed
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subsets of Gt(K) under πm. Equivalently, Tinv is the restriction topological

structure induced by the canonical embedding of (V, π,G(K)) into (V̂ , π̂,G(K)).

We wish also to consider a finer topological structure on V :

Definition 5.3.1. The topological structure Tan is that which has as sub-basis

of closed sets the collection S of sets of the form

(π−1
n (X) ∩ L) +A, (5.1)

where X ⊂cl Gt(K) is K-Zariski closed, L is a definable kE-linear coset in V t,

and A is an arbitrary subset of Λt.

We call elements of S sub-basic closed, and finite unions of them basic closed.

Note that Λt ⊆ V t has the discrete topology in Tan; we will see later that

Tan is the coarsest topological structure which refines Tinv, induces the discrete

topology on Λt, and for which all definable kE-linear maps are continuous.

Call a finite union of sets of the form 5.1 a basic closed set. We also define

a more technically useful sub-basis:

Definition 5.3.2. A fundamental closed set is one of form

θ(π−1
n (X)),

where X ⊂cl Gt(K) is unfurled, and θ : V d → V t is a definable affine kE-linear

embedding.

Define S ′ to be the collection of all sets of the form

F +A,

where A ⊆ Λt and F is a fundamental closed set.

Call elements of S ′ sub-basic’ closed, and finite unions of them basic’ closed.

The following theorem reveals the structure of Tan, and shows it to be really

quite simple.
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Theorem 5.3.1. (I) Let θ : V s → V t be a definable affine kE-linear map.

Then θ is continuous.

(II) The basic’ closed sets are precisely the basic closed sets; in particular, S ′

forms a sub-basis of closed sets for Tan.

(III) Tan is the coarsest topological structure which refines Tinv, induces the

discrete topology on Λt, and for which all definable affine kE-linear maps

are continuous.

(IV) Fundamental closed sets are irreducible.

(V) There is no infinite descending chain of fundamental closed sets.

(VI) The fundamental closed sets are precisely the irreducible closed sets.

Proof. We work in Tan throughout.

Lemma 5.3.2. Any S ∈ S is a finite union of sets of the form

π−1
n (X) ∩ (L+A), (5.2)

where X ⊂cl Gt is closed, A ⊆ Λt, and L is a definable kE-linear coset.

Proof.

(π−1
n (X) ∩ L) +A =

⋃
ζ∈Gtn

((π−1
n (X) ∩ L) + (A ∩ π−1

n (ζ)))

=
⋃
ζ∈Gtn

⋃
α∈A∩π−1

n (ζ)

((π−1
n (X) + α) ∩ (L+ α))

=
⋃
ζ∈Gtn

(
π−1
n (X + ζ) ∩ (L+A ∩ π−1

n (ζ))
)
,

where Gt
n is the n-torsion subgroup of Gt.

Proof of I. Translations x 7→ x+ γ are easily seen to be continuous, so we may

assume that θ is a definable kE-linear map.
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It suffices to show that the inverse image under θ of any sub-basic closed set

is closed.

By Lemma 5.3.2, it suffices to show that θ−1(π−1
n (X)) and θ−1(

⋃
α∈A(L+α))

are closed for any X, A, L.

Now θ has matrix representation T = m−1E for some m ∈ N and some

E ∈ Matt,s(R). Write η both for the definable linear map V s → V t represented

by E and for the definable map Gs → Gt represented by E. By definitions,

ηπn = πnη.

Then θ−1(π−1
n (X)) = [m](π−1

n (η−1(X))) = π−1
nm(η−1(X)), which is closed.

Now L = ker(η′) + γ say, some definable kE-linear map η′ : V t → V r

represented by E′ ∈ Matr,t(kE). Let A′ := η′(A) ⊆ Λr/m say, and let γ′ :=

η′(γ). Then
⋃
α∈A(L+ α) = η′−1(A′ + γ′).

Let θ′ := η′ ◦ θ; we want to show that θ′−1(A′ + γ′) is closed.

Let N := ( Λr/m + γ′) ∩ im(θ′). If N = ∅, there is nothing to prove. Else, N

is a coset of M := Λr/m ∩ im(θ′), say N = M + ν.

Now M is a sub-R-module of the finitely generated R-module Λr/m, so, by

Noetherianity of R, M is finitely generated as an R-module; say M = 〈µ̄〉R.

Let µ̄′ be such that µ̄ = θ′(µ̄′). Since Q ⊗ Λt is a kE-subspace, we may take

µ′i ∈ Q⊗ Λt. So M ′ := 〈µ̄′〉R ⊆ Λt/m′ for some m′.

Now x 7→ θ′(x) + ν;M ′ → N is a surjection; so say A′′ ⊆ M ′, θ′(A′′) + ν =

(A′ + γ′) ∩ im(θ′), and let ν′ ∈ θ−1(ν). Then

θ′−1(A′ + γ′) = ker(θ′) +A′′ + ν′

=
⋃

ζ∈Zm′

ker(θ′) + ν′ + ζ + ((A′′ − ζ) ∩ Λt),

where Zm′ is a set of representatives for
Λt/m′

Λt , which is finite. So θ′−1(A′+ γ′)

is a finite union of sub-basic, and so closed as required.

Lemma 5.3.3.

(i) Let θ be a definable kE-linear embedding. Then θ is a homeomorphism.
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(ii) S ′ ⊆ S.

Proof. By linear algebra, there exists a definable kE-linear map φ such that

φ�im(θ)= θ−1. (i) then follows from the previous lemma. For (ii): say φ = η/m,

and let L := im(θ); then

θ(π−1
n (X)) = φ−1(π−1

n (X)) ∩ L

= π−1
nm(η−1(X)) ∩ L

Lemma 5.3.4. Any set of form C := π−1
n (X) ∩ L, where X is closed and L is

a kE-linear coset, is a finite union of fundamental closed sets.

Proof. We may assume that X is irreducible, X ⊆ πn(L), and L is a minimal

definable kE coset such that X ⊆ πn(L).

L = im(θ) for some definable affine kE-linear embedding θ : V s → V t, say

θ = η/m + γ. So C = θ(π−1
nm(η−1(X)− πnm(γ))).

Let Y be an irreducible component of η−1(X).

Claim 5.3.4.1. Y is not contained in any coset of a proper algebraic subgroup

of Gs.

Proof. Else, by Lemma 5.1.1c, Y ⊆ ker(η′) + g, say. Let L′ := ker(η′) +

γ ⊆ V s, where πnm(γ) = g. Then Y ⊆ πnm(L′).

But by Lemma 5.1.1d, X = η(Y ) ⊆ η(πnm(L′)) = πn(θ(L′)), contra-

dicting minimality of L.

So we are done by Lemma 5.1.1e.

II is now immediate.

Proof of III. In light of I and 5.3.2, it suffices to show:
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Lemma 5.3.5. Let L ⊆ V t be a definable affine kE-linear coset, and let A ⊆ Λt.

Then L+A is a finite union of sets of form θ−1(A′), with θ : V t → V s definable

affine kE-linear and A′ ⊆ Λs.

Proof. Say L = ker(φ)+α with φ an kE-linear map. Then L+A = φ−1(φ(A))+

α. φ(A) ⊆ Λs/m for some m; the result follows easily.

Lemma 5.3.6. A finite intersection of sub-basic is basic.

Proof. This is straightforward from Lemma 5.3.2.

Proof of IV. Let F be fundamental. By 5.3.3(i), we may assume F = π−1(X)

for some unfurled X.

By the preceding lemma, it suffices to show that F is not a finite union of

sub-basic proper subsets of F . If S is sub-basic then π(S) is closed, so it suffices

to show that if S ⊆ F is sub-basic and π(S) = X, then S = F .

Say S = (π−1
m (Y ) ∩ L) +A and π(S) = X.

Since X = π(F ) is unfurled,

πm(S) = πm(F ).

Suppose L ( V t. Then X = π(F ) = π(S) ⊆ π(L), so X is in a proper

subcoset of Gt. But this contradicts F being unfurled.

So

S = π−1
m (Y ) +A

= π−1
m (πm(S))

= π−1
m (πm(F ))

= F.
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Proof of V. By Noetherianity of the class of definable kE-linear cosets, in suf-

fices to show that there is no infinite strictly descending chain (Fi) of fun-

damental closed such that the Fi share a common least containing definable

kE-linear coset L. But indeed, we would then have Fi = θ(π−1
ni (Xi)) where

θ is a definable affine kE-linear embedding with L = im(θ). So since θ is a

homeomorphism by Lemma 5.3.3(i), we may assume Fi = π−1
ni (Xi). As above,

dim(π(Fi+1)) < dim(π(Fi)), so we contradict finiteness of dim(π(F1)).

Proof of VI. Let C be irreducible closed. By II,

C =
⋂
i

Bi,

where Bi is basic’.

C is irreducible, so C is contained in an irreducible component F1 of B1.

By the definition of basic’, F1 is fundamental closed. Let B′2 := B2 ∩ F1. By

Lemma 5.3.6 and 5.3.3(ii), B′2 is basic’.

So

C ⊆ F1 ∩
⋂
i>1

Bi = B′2 ∩
⋂
i>2

Bi.

Let F2 be the irreducible component of B′2 containing C.

Continuing, we construct a descending chain (Fi)i∈N of fundamental closed

subsets, such that C =
⋂
i Fi. By V, C =

⋂
i Fi = Ft for some t ∈ N. So C is

fundamental, as required.

Remark 5.3.1. Note that it is not true that any closed set is basic closed, i.e.

the basic closed sets do not form a topology. Furthermore, π is not a closed

map, although the image of basic closed is closed.
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Part II

Schanuel Conjectures for

Powers and the CIT
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Chapter 6

CIT and Nonstandard

Endomorphisms

This chapter represents joint work with Boris Zilber.

The Conjecture on Intersections with Tori, as conjectured by Zilber [Zil02b,

Conjecture 1], Conjecture 6.1.1 below, states that there are essentially only

finitely many ways in which a fixed subvariety of Gn
m can have an unusually

large intersection with an algebraic subgroup of Gn
m.

In this chapter we show, Theorem 6.3.1 below, that the CIT is equivalent

to a certain dimension inequality regarding non-standard integer powers. We

refer to this as a “Schanuel conjecture” for non-standard integer powers, as

introduced in Section 0.1. A precise statement of this Schanuel conjecture will

be given in the course of this chapter, but we give a rough statement here:

Consider complex exponentiation exp : C → C× in the language which has

the field structure on C× and has a sort for Z acting by multiplication on the

cover C. The CIT holds iff whenever 〈∗C; ∗Z; ∗exp〉 is an elementary extension,

for all x ∈ ∗C<ω

ld∗Q(x/ ker(∗exp)) + trd(∗exp(x/C))− ldQ(x/ ker(∗exp)) ≥ 0, (6.1)
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where ∗Q is the quotient field of ∗Z.

In fact, we will find it convenient to work in a language which doesn’t explic-

itly mention an exponential map. Furthermore, we give statements and results

in a slightly greater generality, allowing an elliptic curve and its endomorphisms

to replace the rôle of the multiplicative group and integer powers.

6.1 The CIT for Gm and elliptic curves

Definition 6.1.1. Let W and W ′ be subvarieties of a smooth algebraic variety

V . We say that W and W ′ intersect atypically iff

codimV (W ∩W ′) < codimV (W ) + codimV (W ′),

where codimV (U) := dim(V )−dim(U); an atypical component of W∩W ′ is then

an irreducible component S of W ∩W ′ witnessing atypicality of the intersection,

i.e. which is such that

codimV (S) < codimV (W ) + codimV (W ′).

Remark 6.1.1. By the Dimension Theorem, in the context of Definition 6.1.1,

since V is smooth, we have

codimV (W ∩W ′) ≤ codimV (W ) + codimV (W ′).

Let G be either the multiplicative group Gm or an elliptic curve E, defined

over k0 ≥ Q.

Conjecture 6.1.1 (CIT). Let W be a subvariety of Gn defined over k0. There

exists a finite set τ(W ) of algebraic subgroups of Gn such that if T ≤ Gn is an

algebraic subgroup and S is an atypical component of T ∩W , then S ⊆ T ′ for

some T ′ ∈ τ(W ).

By abuse of acronym, we refer to this conjecture as the CIT even if G 6= Gm.
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Note that the algebraic subgroups in the statement of the conjecture are not

assumed to be connected.

In this chapter, we show that Conjecture 6.1.1 is equivalent to a Schanuel

conjecture for non-standard endomorphisms.

We also consider the following apparently stronger variant form of the con-

jecture, which differs only in that it allows W to be defined with parameters:

Conjecture 6.1.2 (CIT′). Let W be a subvariety of Gn, defined over some

extension k ≥ k0. There exists a finite set τ(W ) of algebraic subgroups of Gn

such that if T ≤ Gn is an algebraic subgroup and S is an atypical component of

T ∩W , then S ⊆ T ′ for some T ′ ∈ τ(W ).

This variant form appears in [BMZ07, p27]; its equivalence to Conjecture 6.1.1

will be proved in the course of the proof of Theorem 6.3.1 below.

6.2 Setup

Let G be either the multiplicative group Gm or an elliptic curve E, defined over

k0 ≥ Q.

Let R := End(G) be the ring of algebraic endomorphisms of G; let kE :=

R ⊗Z Q. If G = Gm, kE ∼= Q; if G = E, kE is isomorphic either to Q or to

a quadratic imaginary field. Assume that all the endomorphisms r ∈ R are

defined over k0.

We shall consider G in a language which has a sort R for R = End(G), so

elementary extensions contain “non-standard endomorphisms”.

We first fix a standard model. Let F ≥ k0 be an algebraically closed field

of infinite transcendence degree (for example F = C), and let 〈G(F );R〉 be

the two sorted structure where G(F ) is taken in the natural language over k0

(see Section A.2), R is taken in the ring language, and the language includes

a function · : R × G(F ) → G(F ) interpreted as the action of R on G(F ). We

write R for the second sort considered as a definable set.

We will also consider elementary extensions 〈∗G; ∗R〉 of 〈G(F );R〉.
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R has field of fractions kE , so let ∗kE be the field of fractions of ∗R. Let

Tor∗R resp. TorR be the ∗R- resp. R-torsion of ∗G, i.e.

Tor∗R(∗G) := {x ∈ ∗G|∃r ∈ ∗R. rx = 0},

and similarly for TorR(∗G).

Then
∗G/Tor∗R(∗G) is a ∗kE-vector space. For x ∈ ∗Gn and A ⊆ ∗G, define

ld∗R(x/A) := ld∗kE (φ(x)/φ(A)),

where φ : ∗G → ∗G/Tor∗R(∗G) is the quotient map and ld∗kE denotes ∗kE-linear

dimension. Define ldR analogously.

Equivalently, say x ∈ ∗Gn is ∗R-linearly independent iff

∀r ∈ ∗Rn \ {0}. Σirixi 6= 0,

and define ld∗R(x) to be the cardinality of any maximal ∗R-linearly independent

subtuple of x. Similarly for R.

Given a tuple c ∈ Gm, by an algebraic coset over c we mean a fibre H(c) ⊆

Gm for some algebraic subgroup H ≤ Gn+m.

Lemma 6.2.1. Let H ≤ Gn be an algebraic subgroup, d := dim(H). Then

there exists an algebraic homomorphism θ ∈ Hom(Gn,Gn−d) ∼= Matn−d,n(R)

such that H ≤ ker θ and dim(ker θ) = d.

Proof. For some co-ordinate projection pr : G → Gd to d of the co-ordinates,

pr(H) = Gd and ker pr ≤ H is finite. So say N ∈ N is such that N ker pr = {0}.

Then NH is the graph of a homomorphism : Gd → Gn−d, so NH = ker θ for a

homomorphism θ : Gn → Gn−d.

Lemma 6.2.2. Let a ∈ Gn and c ∈ Gm. Then ldR(a/c) is the dimension of

the smallest algebraic coset over c containing a.
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Proof. We may assume that c is R-linearly independent. Let H(c) be the small-

est coset over c containing a. Then dim(H) = dim(H(c)) + m and ldR(ac) =

ldR(a/c) +m, and H is the smallest subgroup containing ac.

So it suffices to prove the lemma in the case that c = ∅. So let H be the

smallest subgroup containing a. By Lemma 6.2.1, H ≤ kerM for some M ∈

Matt,n(R) with R-linearly independent rows, and dim(H) = dim(kerM) = n−t.

So dim(H) ≥ ldR(a). The converse inequality is clear.

6.3 CIT as a Schanuel conjecture for non-stan-

dard endomorphisms

Theorem 6.3.1. Let F be an algebraically closed field of characteristic 0 and

infinite transcendence degree. Let G be either the multiplicative group or an

elliptic curve, defined over k0 ≤ F , and let R := End(G).

Then Conjecture 6.1.1 holds for G iff for any elementary extension 〈∗G; ∗R〉

of 〈G(F );R〉, for any tuple a ∈ ∗G<ω,

δ(a) := ld∗R(a) + trd(F (a)/F )− ldR(a) ≥ 0 (6.2)

Proof. We show that the following are all equivalent:

(i) ∀a ∈ ∗G<ω. δ(a) := ld∗R(a) + trd(F (a)/F )− ldR(a) ≥ 0

(ii) ∀a ∈ ∗G<ω. δ(a/G(F )) := ld∗R(a/G(F ))+trd(F (a)/F )−ldR(a/G(F )) ≥ 0

(iii) Let W be an algebraic subvariety of Gn defined over F . Then there exists a

finite set τ c0 (W ) of proper algebraic subgroups such that if C is an algebraic

subgroup with dimC < codimW , then C ∩W ⊆
⋃
τ c0 (W ).

(iv) CIT’, Conjecture 6.1.2

(v) CIT, Conjecture 6.1.1

We prove (ii)⇒ (i)⇒ (iii)→ (iv)⇒ (v)⇒ (ii):
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(ii) ⇒ (i): It suffices to show that for any a,

ld∗R(a/G(F ))− ldR(a/G(F )) ≤ ld∗R(a)− ldR(a).

For this, it suffices to show that if cc ∈ G(F )1+n then

ld∗R(a/cc)− ldR(a/cc) ≤ ld∗R(a/c)− ldR(a/c).

By Steinitz exchange, this fails iff rc ∈ 〈ac〉R for some r ∈ R and yet for

all r′ ∈ ∗R, r′c /∈ 〈ac〉∗R. But c ∈ G(F ), so this contradicts 〈G(F );R〉

being elementarily embedded in 〈∗G; ∗R〉.

(i) ⇒ (iii): First note that for any n-tuple x in the sort G and any t ≤ n, the

condition ldR(x) < n − t is first-order expressible in the language 〈G; R〉,

by saying that there exists M ∈ Matt,n(R) with R-linearly independent

rows such that Mx = 0.

Suppose (iii) is false for some W . Then by Lemma 6.2.2, the following

type over F is consistent:

x ∈W ∧ ldR(x) < codimW

∧
∧
m∈N

( ∧
r∈Rn

(
rx = 0→ r = 0

))

So for some elementary extension 〈∗G; ∗R〉, the type is realised by some

a ∈ ∗Gn. But then

ld∗R(a) + trd(a/F )− ldR(a) < codimW + dimW − n = 0.

(iii) ⇒ (iv): Let W be an algebraic subvariety of Gn defined over k ≥ k0.

Since F is of infinite transcendence degree, we may suppose k ≤ F . We

may suppose that W is (absolutely) irreducible.

Now it suffices to show that for each t ≤ dim(W ) there exists a finite
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set τt(W ) of proper subgroups of Gn such that if H is a subgroup with

dim(H) < codim(W )+ t then any irreducible component S ⊆ H ∩W with

dim(S) ≥ t is contained in some H ′ ∈ τt(W ). Indeed, we can then take

τ(W ) :=
⋃
t τt(W ). So fix t ≤ dim(W ).

Let Pr be the finite set of co-ordinate projection maps pr : Gn → Gt

to t-tuples of co-ordinates such that pr(W ) is Zariski dense in Gt. Since

t ≤ dim(W ) and dim(G) = 1, Pr is non-empty.

Let a ∈ Gt(F ) be generic - such exists since F is of infinite transcendence

degree.

Note that for any pr ∈ Pr, we have a ∈ pr(W ) and so W ∩ pr−1(a) 6= ∅.

Let τt(W ) :=
⋃

pr∈Pr τ
c
0 (W ∩ pr−1(a)) where each τ c0 (W ∩ pr−1(a)) is as

given by (iii). We clain that τt(W ) is as required.

So let H ≤ Gn be an algebraic subgroup such that dim(H) < codim(W )+

t. Suppose S is an irreducible component of H ∩W with dimS ≥ t. Then

pr(S) is dense for some pr ∈ Pr, and so S′ := S ∩ pr−1(a) 6= ∅. Let

W ′ := W ∩ pr−1(a) 6= ∅.

Since a is generic and W , S are irreducible, we have

dimW ′ = dimW − t

dimS′ = dimS − t,

So dimH < codimW ′. But S′ ⊆ H ∩ W ′, so S′ ⊆⊆
⋃
τ c0 (W ′); S is

irreducible, so S ⊆ H ′ for some H ′ ∈ τ c0 t(W ′) ⊆ τt(W ).

So τt(W ) is as required.

(iv) ⇒ (v): Clear.

(v) ⇒ (ii): Suppose a ∈ ∗Gn and δ(a/G(F )) < 0. We may assume that a

is R-linearly independent over G(F ).
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Let W be the locus of a over F in Gn, i.e. the intersection of all F -closed

subsets containing a.

We may represent W as W = V (c) for some k0-closed V ⊆ Gn+m and

some c ∈ G(F )m. We may assume that c is such that ld∗R(a/c) =

ld∗R(a/G(F )). We may also assume that c is R-linearly independent

(since c ∈ 〈c′〉R for some R-linearly independent c′). By appropriate

choice of V , we may also assume that c is generic in the projection pr(V ),

so dim(V ) = dim(W ) + dim(c).

Let τ(V ) be as given by (v).

SupposeH(c) ⊆ Gn is a proper algebraic coset over c such that dim(H(c)) <

codimGn(W ) and H(c)∩W 6= ∅, say b ∈ H(c)∩W . Say S is a component

of H ∩ V containing (b, c). Then

codimGn+m(S) ≤ (n+m)− dim(c)

= (n+m)− (dim(V )− dim(W ))

= codimGn+m(V ) + dim(W )

< codimGn+m(V ) + codimGn(H(c))

= codimGn+m(V ) + codimGn+m(H),

the last equality holding since c is R-linearly independent. So b ∈ H ′(c)

for one of the H ′ ∈ τ(V ).

So the type

x ∈W ∧ ldR(x/c) < codimW

∧
∧
m

∧
(r,r′)∈Rn+m

(rx = r′c→ r = 0)

is inconsistent; but a realises it. Contradiction.

Remark 6.3.1. The inequality (6.1) corresponds precisely to the inequality (6.2)
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with G = Gm and F = C; obvious modifications to the proof of Theorem 6.3.1

therefore suffice to show the equivalence of the CIT to the statement in terms

of (6.1) given in the introduction to the chapter.
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Chapter 7

Schanuel Conjectures for

Raising to Powers and the

CIT

7.1 A Schanuel inequality for generic powers in

exponential fields

The material in this section forms part of joint work with Jonathan Kirby and

Alex Wilkie, [BKW08].

Definition 7.1.1. Field extensions K and L of a field F are said to be linearly

disjoint over F , K ⊥F L, iff any tuple k of elements of K is linearly independent

over L iff it is linearly independent over F .

Lemma 7.1.1. (i) K ⊥F L iff L ⊥F K

(ii) K ⊥F L iff for any tuple k from K, ldL(k) = ldF (k)

(iii) If k is algebraically independent over L ≥ F , then F (k) ⊥F L.

Proof. (i) Standard.
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(ii) k is an L-linear basis iff it is an F -linear basis.

(iii) This is [Lan02, Proposition VIII 3.3].

Lemma 7.1.2. Suppose K ⊥F L. Then for any tuple x from any field extension

of KL and any A ⊆ L,

ldK(x/L)− ldF (x/L) ≤ ldK(x/A)− ldF (x/A)

Proof. Say l ∈ L is a finite tuple s.t. ldK(x/lA) = ldK(x/L) and ldF (x/lA) =

ldF (x/L).

Now:

ldK(x/A)− ldK(x/lA) = ldK(l/A)− ldK(l/xA) (by addition formula)

= ldF (l/A)− ldK(l/xA) (by Lemma 7.1.1(ii))

≥ ldF (l/A)− ldF (l/xA)

= ldF (x/A)− ldF (x/lA) (by addition formula)

Definition 7.1.1. An exponential field 〈K; +, ·, exp〉 is a field equipped with a

homomorphism exp : K → K× from the additive group to the multiplicative

group.

An exponential polynomial f : Kn → K is a function of the form

f(x1, . . . , xn) = g(x1, . . . , xn, exp(x1), . . . , exp(xn)),

where g is a polynomial. An exponential polynomial map F : Kn → Km is a map

of the form F (x) = (f1(x), . . . , fm(x)) where fi are exponential polynomials. It

is defined over A ⊆ K iff the corresponding polynomials are defined over A. The
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formal derivative ∂F
∂xi

: Kn → Km of F (x1, . . . , xn) is defined in the obvious way

by formal differentiation of polynomial maps, the rule d exp(x)
dx = exp(x), and the

chain rule. The Jacobian of an exponential polynomial map F : Kn → Km at

a point a ∈ Kn is the matrix Jaca(F ) ∈ Matm,n(K) with ith column ∂F
∂xi

(a). A

non-singular zero of an exponential polynomial map F is a tuple a ∈ Kn such

that F (a) = 0 and Jaca(F ) is non-singular.

The exponential closure (or étale closure) of a subset A ⊆ K, ecl(A), is

the set of all x ∈ K such that for some tuple y ∈ K<ω and some exponential

polynomial map F defined over A, xy is a non-singular zero of F .

A tuple p ∈ Kn is ecl-independent, or exponentially algebraically indepen-

dent, over C ⊆ K iff for all i,

pi /∈ ecl(C ∪ {p1, . . . , pi−1, pi+1, . . . , pn}).

The following is the main theorem of [BKW08].

Theorem 7.1.3. Let 〈K; +, ·, exp〉 be an exponential field, let C ≤ K be ecl-

closed, and let p ∈ Kn be tuple ecl-independent over C. Then for any tuple x

from K:

ldQ(p)(x/ ker) + trd(exp(x)/C)− ldQ(x/ ker) ≥ 0,

where ker is the kernel of exp.

Proof. Define:

δ(x) := trd(x, exp(x))− ldQ(x),

δC(x) := δ(x/C) = trd(x, exp(x)/C)− ldQ(x/C),

dC(x) := min{δC(zx)|z a tuple from C},

eclC(A) := ecl(C ∪A).

In [Kir08], Kirby shows that dC is the dimension function of a pregeometry

clC on K, and that eclC = clC .
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So we have:

(i) p is ”self-sufficient” in Cexp with respect to δC , i.e. for any tuple x ∈ K<ω:

δC(p, x) ≥ δC(p).

(ii) p is algebraically independent over C.

(iii) Q(p) is linearly disjoint from C over Q (by Lemma 7.1.1 iii).

Lemma 7.1.4. For any tuples p, x:

(a) trd(exp(p)/C, exp(x)) ≤ ldQ(p/C, x)

(b) trd(x/C, p) ≤ ldQ(p)(x/C)

Proof. (a) Say p1, . . . , pt are Q-linearly independent over (C, x), and for

i > t, pi is in the Q-linear span of (C, x, p1, . . . , pt). Then for i > t,

exp(pi) is in the algebraic closure of (C, exp(x), exp(p1), . . . , exp(pt)).

So trd(exp(p)/C, exp(p)) ≤ t = ldQ(p/C, x).

(b) Similar, since if xi is in the Q(p)-linear span of (x1, . . . , xt, C) then xi

is in the algebraic closure of (C, p).
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Now for any tuple x from C we have:

n = δC(p)

≤ δC(x, p) (by i)

= trd(x, exp(x), p, exp(p)/C)− ldQ(x, p/C)

≤ trd(exp(x), exp(p)/C) + trd(x, p/C)− ldQ(x, p/C)

= trd(exp(p)/C, exp(x)) + trd(exp(x)/C)

+ trd(x/C, p) + trd(p/C)

− ldQ(p/C, x)− ldQ(x/C)

= trd(exp(p)/C, exp(x))− ldQ(p/C, x)

+ trd(x/C, p)

+ trd(exp(x)/C)− ldQ(x/C) + trd(p/C)

≤ 0

+ ldQ(p)(x/C)

+ trd(exp(x)/C)− ldQ(x/C) + trd(p/C)

But by (ii), trd(p/C) = n, so

0 ≤ trd(exp(x)/C) + ldQ(p)(x/C)− ldQ(x/C)

≤ trd(exp(x)/C) + ldQ(p)(x/ ker)− ldQ(x/ ker) (by (iii) and Lemma 7.1.2)

As required.

Remark 7.1.1. In the case that the exponential field is a model of the theory

of Rexp, which is the case which will be of relevance below, the use of [Kir08]

in the proof of Theorem 7.1.3 can be replaced by more specific arguments - see

the proof of [BKW08, Proposition 2.1] for this.
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7.2 Towards Real CIT

As we saw in Chapter 6, the CIT is equivalent to a Schanuel inequality for

non-standard integer powers, (6.1). Theorem 7.1.3 provides such an inequality

for particular rings of non-standard powers, namely those generated by expo-

nentially algebraically independent powers. This applies in particular to models

of the theory of real exponentiation. In this context, a non-standard integer is

just an infinite element of an elementary extension of the real exponential field

Rexp, which is easily seen to be ecl-independent over R. This already provides

a CIT-style result on the reals for families of tori parameterised by a single

integer, Theorem 7.2.2 below. For arbitrarily many powers, the implication of

Theorem 7.1.3 is that any failure of CIT on the reals, for a given variety W

over the reals, must be due to some finitely many fixed exponential-algebraic

dependencies on the integer powers involved - Theorem 7.2.3 makes this precise.

Fact 7.2.1 ([Wil96]). Let R be a model of the theory of the real exponential

field Rexp. Then R is an o-minimal structure, and the pregeometry of definable

closure, dcl, coincides with the exponential algebraic closure operator ecl defined

above.

First, we give the result for a one-integer-parameter family of subtori:

Theorem 7.2.2. Let V ⊆ An be an affine algebraic variety of dimension d

defined over R. Let M = M(X) = (mi,j(X))i,j ∈ Matd+1,n(Z[X]).

Then there exists a finite set (ni)i of non-zero n-tuples of integers such that

for all N ∈ Z, if the rows of M(N) are Q-linearly independent then

∀y ∈ (R×)n. ((y ∈ V ∧ yM(N) = 1)→
∨
i

yni = 1),

where xM(N) = (Πjx
mi,j(N)
j )i∈{1,...,d+1}.

Proof. Consider the following collection of formulae with free variables (x, t) in

Rexp:
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(i) exp(x) ∈ V

(ii) ∀z. ((
∧
i Σjzj ·mi,j(t) = 0)→ z = 0)

(iii) M(t) · x := (Σjmi,j(t) · xj)i = 0

(iv) for each M ∈ N: |t| > M

(v) for each m ∈ (Zn \ {0}): m · x := Σjmj · xj 6= 0

Suppose this were a consistent type, say realised by (a, τ) in an elementary

extension ∗R � Rexp. By (iv) and Archimedeanity of R, τ /∈ R. By (ii) and

(iii), ldQ(τ)(a) < (n− d). By (i), trd(a/R) ≤ d. By (v), ldQ(a) = n.

So

ldQ(τ)(a) + trd(exp(a)/R)− ldQ(a) < 0,

contradicting Theorem 7.1.3 applied to ∗R with C := R ≤ ∗R (which is an

ecl-closed subset by Fact 7.2.1).

So (i)-(v) are inconsistent. By the compactness theorem for first-order logic,

there exists M ∈ N and a finite collection (mi)i of n-tuples of integers such that

∀(x, t) ∈ R. ([(i)-(iii) hold for (x, t)]→ (|t| ≤M ∨
∨
i

xmi = 1)).

So let (ni)i := (mi)i ∪ ((m1,j(t))j)t∈{−M,...,M}, and we are done.

Next, we give a stronger multivariate version of Theorem 7.2.2, stating that

any failure of Real CIT must be due to exponential relations between the integer

powers involved.

Recall that the (o-minimal) dimension of a tuple a in an o-minimal structure

R over a subset C ⊆ R, dim(a/C), is the dimension of a over C with respect

to the pregeometry dcl. The dimension of a definable set X ⊆ Rn defined over

C ⊆ R, dim(X), is the maximal value of dim(a/C) for a ∈ X(∗R) for ∗R � R

is an elementary extension.
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Theorem 7.2.3. Let V ⊆ An be an affine algebraic variety of dimension d

defined over R. Let s ∈ N. Let M = (mi,j(X))i,j ∈ Matd+1,n(Z[X]), X an

s-tuple.

Then there exists a finite set (ni)i of non-zero n-tuples of integers, and an

Rexp-definable set X ⊆ Rn with dim(X) < s such that for all N ∈ Zs, if the

rows of M(N) are Q-linearly independent then either N ∈ X, or

∀x ∈ (R×)n. ((x ∈ V ∧ xM(N) = 1)→
∨
i

xni = 1).

Proof. In fact, we prove the stronger statement where N ranges over Rs.

Suppose the statement is false. Then the following type in (z, ν) is consistent:

(i) exp(z) ∈ V

(ii) M(ν)z = 0

(iii) the rows of M(ν) are linearly independent over the field (this is one for-

mula)

(iv) ν is in no definable set over R of dimension less than s

(v) z is Q-linearly independent

and so is realised in some elementary extension ∗Rexp of Rexp by (a, η) say.

By (i), trd(exp(a)/R) ≤ d. By (ii) and (iii), ldQ(η)(a) ≤ n − d − 1. By (v),

ldQ(a) = n. But by (iv), η is ecl-independent over R, which is ecl-closed by

Lemma 7.2.1. So we have a contradiction to Theorem 7.1.3.



Appendix A

Algebraic varieties as first

order structures

This section aims to be a concise account of some well-known facts about the

model theory of algebraic geometry, for which there appear to be no clear ref-

erences.

A.1 Interpretations

All interpretations will be ∅-interpretations. An A-interpretable set of a struc-

ture is a set of the form D/ ∼ where D is an A-definable set and ∼ is an

A-definable equivalence relation.

Notation A.1.1. If A and B are first order structures, Γ : A  B denotes an

interpretation of B in A. We denote Γ̄ : I → Γ̄(I) the associated bijections of

∅-interpretable sets I of B with associated ∅-interpretable sets Γ̄(I) of A, which

we may also think of as forming a map Γ̄ : Beq → Aeq. In particular we have

a bijection Γ̄ : B → Γ̄(B) of the universe of B with a ∅-interpretable set of A.

We also denote by Γ the associated topological homomorphism Γ : Aut(A) →

Aut(B).
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Note the contravariance: Γ ◦∆ = ∆̄ ◦ Γ̄.

Recall

Definition A.1.1. A self-interpretation is an interpretation Γ : A  A such

that the associated bijection Γ̄ : A→ Γ̄(A) is ∅-definable in A.

A bi-interpretation between A and B is a pair of interpretations Γ : A B

and ∆ : B  A such that ∆ ◦ Γ and Γ ◦∆ are self-interpretations. We denote

such a bi-interpretation by

Γ : A! B : ∆.

Remark A.1.1. Although the clearest formulation is in terms of structures as

above, bi-interpretation can be seen to be a property of the corresponding pair

of complete theories.

Definition A.1.2. In the context of a bi-interpretation Γ : A! B : ∆, we

define dcleq on the disjoint union of Aeq and Beq:

a ∈ dcleq(a, b) iff a ∈ dcleq
A (a, Γ̄(b))

b ∈ dcleq(a, b) iff b ∈ dcleq
B (∆̄(a), b)

We extend this to infinite sets by finite character, as usual.

Lemma A.1.1.

(i) b ∈ dcleq
B (b) iff Γ̄(b) ∈ dcleq

A (Γ̄(b))

(ii) dcleq is a closure relation on Aeq ∪̇Beq.

(iii) If I is a ∅-interpretable set of B and C is dcleq-closed, then Γ̄(I ∩ C) =

Γ̄(I) ∩ C.

Remark A.1.2. We could make the corresponding definitions and statements for

acleq.
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A.2 Algebraic varieties in their natural language

Let G be an infinite abstract algebraic variety defined over a field k. Let K ≥ k

be algebraically closed. We consider G(K) as a structure G in the language

which has a predicate for each Zariski closed k-definable subset, and call this

the natural language for the variety.

Let Γ : Kk  G be an interpretation of G in Kk, where Kk is the structure

on K of an algebraically closed field expanded with distinguished constants for

k. Γ corresponds to a choice of open cover of G by finitely many k-definable

affine varieties with k-definable transition maps.

G has all the structure induced from Kk via Γ; i.e. for any n, X ⊆ Gn is ∅-

definable in G iff Γ̄(X) ⊆ Γ̄(Gn) is ∅-interpretable in Kk. Note that this implies

that for any sort S = Gn/∼ of Geq, X ⊆ S is ∅-interpretable in G iff Γ̄(X) ⊆ Γ̄(S)

is ∅-interpretable in Kk. It also implies that G has quantifier elimination.

Fact A.2.1. G is bi-interpretable with Kk,

Γ : Kk! G : ∆.

Proof. Let f : G → K be a non-constant rational function defined over k.

K ′ := im f ⊆ K is cofinite in K. Let A be the quotient of the domain of f by

the equivalence relation f(x) = f(y). A is ∅-definable in G, and f induces a

bijection θ : A→ K ′ which is ∅-definable in Kk.

Now consider the equivalence relation on A2,

(a, b) ∼ (a′, b′) ⇐⇒ θ(a) + θ(b) = θ(a′) + θ(b′).

This is ∅-definable in Kk, and hence in G. Let F := A2
/∼, and define φ : F →

K; (a,b)/∼ 7→ a + b. Then φ is ∅-definable in Kk and is a bijection. Pulling

the Kk structure on K back to F via φ, F becomes an isomorphic copy of Kk

interpretable in G.

Let ∆ : G  Kk be the corresponding interpretation; Γ̄ ◦ ∆̄ = φ, so ∆ ◦ Γ is
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a self-interpretation.

It remains to check that Γ◦∆ is a self-interpretation; but indeed, the bijection

Γ̄ ◦ ∆̄ : Γ̄(G)→ (Γ̄ ◦ ∆̄ ◦ Γ̄)(G) is ∅-definable in Kk since φ is; the graph of this

is precisely the image under Γ̄ of the graph of ∆̄ ◦ Γ̄ : G → (∆̄ ◦ Γ̄)(G), and so

this map is part of the structure induced on G via Γ.
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Miscellany

B.1 Galois representations

We quote here some standard results which are used in a number of places in

the text.

Let E be an elliptic curve over a number field k0.

Suppose E has no complex multiplication, End(E) ∼= Z.

A Galois automorphism σ ∈ Gal(Q̄/k0) induces automorphisms of each En

which commute with the maps [m], and hence induces group automorphisms of

T and Tl. This gives a continuous l-adic representation:

ρl : Gal(Q̄/k0)→ AutZl(Tl).

The following fact, which is effectively the foundation on which our argument

is built, is highly non-trivial.

Fact B.1.1 ([Ser72]). For each prime l, im(ρl) ≤ AutZl(Tl) is an open subgroup.

Equality holds for all but finitely many primes.

We sometimes find it useful to use an alternative statement, concerning

group automorphisms of E∞:
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Corollary B.1.1.1. There exists m ∈ N such that any group automorphism of

E∞ fixing Em is induced by some algebraic automorphism fixing k0; i.e.

�E∞ : Gal(Q̄/k0) // // Aut(E∞/Em) .

Proof. Let li be one of the finitely many primes such that im(ρl) is a proper

open subgroup of Aut(Tl). Each im(ρli), being open, contains the kernel of

some reduction Aut(Tl)→ Aut(Elnii ). So

�El∞
i

: Gal(Q̄/k0) // // Aut(El∞i /Elnii ) ,

and for the other primes l, the image is the whole of Aut(El∞). Let m := Πil
ni
i ;

the desired surjection follows by composition with the isomorphism

Πl Aut(El∞) ∼= Aut(E∞).

B.2 Galois cohomology and torsors

We include here a brief account of the material on Galois cohomology we need

in the proof of Lemma 2.4.2.

Definition B.2.1. Let G be a commutative algebraic group defined over a field

k.

• A continuous k̄/k-1-cocycle is a map θ : Gal(k̄/k)→ G(k̄) satisfying

∀σ, τ ∈ Gal(k̄/k). θ(στ) = θ(σ) + σθ(τ)

and which is continuous with respect to the Krull topology on Gal(k̄/k)

and the discrete topology on G(k̄). The continuous k̄/k-1-cocycles form

an abelian group C1 = C1(Gal(k̄/k),G(k̄)) with addition (θ + θ′)(σ) =
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θ(σ) + θ′(σ).

• The k̄/k-1-coboundaries comprise the subgroup

B1 = B1(Gal(k̄/k),G(k̄)) := {< ·, α > |α ∈ G(k̄)} ≤ C1,

where < σ,α >:= σα− α.

• The first k̄/k cohomology group, H1 = H1(Gal(k̄/k)), is the quotient

group C1
/B1 . Two 1-cocycles in C1 with the same image in H1 are said

to be “cohomologous”.

Fact B.2.1 (Hilbert 90). For the multiplicative group, all continuous 1-cocycles

are 1-coboundaries; i.e. for any field k,

H1(Gal(k̄/k),Gm(k̄)) = 0.

For an elliptic curve, G = E, the cohomology need not be trivial. It can

be studied in terms of torsors. We follow [Sil86, X.3] for this material; the

reader may look there for justifications. The model-theoretic reader may also

find useful the model theoretic presentation of these ideas in [Pil97].

Definition B.2.2.

• A k-torsor of an elliptic curve E over k (also known as a principal homo-

geneous space for E) is a projective curve T over k and a simply transitive

action of E on T defined over k,

T× E→ T

(β, α) 7→ β + α.

• We write β − α for the unique γ ∈ T such that γ + α = β.

• Two k-torsors T,T′ for E are equivalent, T ∼= T′, iff they are k-definably

isomorphic as torsors, i.e. iff there exists a k-definable bijection θ : T→ T′
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such that

∀β ∈ T. ∀α ∈ E. θ(β + α) = θ(β) + α.

T is said to be trivial iff T ∼= E.

WC(E/k) is the set of equivalence classes of k-torsors. It is called the

Weil-Châtelet group - the group structure is defined via the bijection in

Fact B.2.2 below.

• Given a k-torsor T and a point β ∈ T(k̄),

〈·, β〉 : Gal(k̄/k) → E(k̄)

; σ 7→ σβ − β

is a continuous k̄/k-1-cocycle.

Fact B.2.2. The map

θ : WC(E/k) → H1(Gal(k̄/k),E(k̄))

; T/∼= 7→ 〈·, β〉 (any β ∈ T(k̄))

is a bijection.

B.3 Free and locally free abelian groups

Definition B.3.1. A torsion-free abelian group is locally free iff every finite

rank subgroup is free.

Fact B.3.1 (Pontryagin). A countable torsion-free abelian group is locally free

iff it is free.

Lemma B.3.2. For torsion-free abelian groups, the properties of freeness and

local freeness are preserved under taking extensions and subgroups. In other

words, given an exact sequence of torsion-free abelian groups

0 // A // C // B // 0 ,
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C is (locally) free if both A and B are (locally) free, and A is (locally) free if C

is (locally) free.

Proof. For the case of freeness, this is standard and easily proven. The case of

local freeness follows by restricting to finite rank subgroups.
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the 1971 original, Kanô Memorial Lectures, 1.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106
of Graduate Texts in Mathematics. Springer-Verlag, New York, 1986.

[Smi07] Lucy Smith. Toric varieties as analytic Zariski structures. PhD
thesis, Oxford University, 2007.

[Wil96] A. J. Wilkie. Model completeness results for expansions of the or-
dered field of real numbers by restricted Pfaffian functions and the
exponential function. J. Amer. Math. Soc., 9(4):1051–1094, 1996.

[Zil02a] B. Zilber. Model theory, geometry and arithmetic of the universal
cover of a semi-abelian variety. In Model theory and applications,
volume 11 of Quad. Mat., pages 427–458. Aracne, Rome, 2002.



BIBLIOGRAPHY 99

[Zil02b] Boris Zilber. Exponential sums equations and the Schanuel conjec-
ture. J. London Math. Soc. (2), 65(1):27–44, 2002.

[Zil03] B. Zilber. Raising to powers in algebraically closed fields. J. Math.
Log., 3(2):217–238, 2003.

[Zil04] B. Zilber. Raising to powers revisited. 2004. http://www.maths.
ox.ac.uk/~zilber/publ.html.

[Zil05a] B. Zilber. Pseudo-exponentiation on algebraically closed fields of
characteristic zero. Ann. Pure Appl. Logic, 132(1):67–95, 2005.

[Zil05b] Boris Zilber. A categoricity theorem for quasi-minimal excellent
classes. In Logic and its applications, volume 380 of Contemp. Math.,
pages 297–306. Amer. Math. Soc., Providence, RI, 2005.

[Zil06] Boris Zilber. Covers of the multiplicative group of an algebraically
closed field of characteristic zero. J. London Math. Soc. (2),
74(1):41–58, 2006.


