Modelltheorie Übungsblatt 2

Aufgabe 1. Zeigen Sie mithilfe von Ultraprodukten, dass die folgenden Klassen nicht elementar sind:

- a) Die Klasse der Torsionsgruppen. Anmerkung: Eine Gruppe G heißt Torsionsgruppe, wenn es für jedes $g \in G$ ein $n \in \mathbb{N}$ gibt mit $g^n = 1$.
- b) Die Klasse der endlich-dimensionalen K-Vektorräume für einen fest gewählten Körper K.

Aufgabe 2. Zeigen Sie den Kompaktheitssatz mithilfe von Ultraprodukten: Wenn jede endliche Teilmenge einer Theorie T konsistent ist, dann ist auch T konsistent.

Hinweis: Betrachten Sie als Indexmenge I alle endlichen Teilmengen der Theorie. Finden Sie einen geeigneten Ultrafilter auf I, der für jedes $\sigma \in T$ die Menge $I_{\sigma} := \{\Delta \in I \mid \sigma \in \Delta\}$ enthält.

Aufgabe 3. Sei \mathcal{C} eine Klasse von \mathcal{L} -Strukturen. Zeigen Sie, dass \mathcal{C} genau dann eine elementare Klasse ist, wenn \mathcal{C} abgeschlosssen unter elementarer Äquivalenz und Ultraprodukten ist.

Aufgabe 4.

- a) Betrachten Sie die Unterstruktur $(3\mathbb{Z}, +)$ von $(\mathbb{Z}, +)$.
 - i) Zeigen Sie, dass $Th((3\mathbb{Z},+)) = Th((\mathbb{Z},+)).$
 - ii) Ist $(3\mathbb{Z}, +)$ eine elementare Unterstruktur von $(\mathbb{Z}, +)$?
- b) Betrachten Sie die Struktur

$$(\mathcal{P}(\mathbb{N}), \subseteq)$$
.

- i) Zeigen Sie, dass es eine abzählbare Teilmenge $B \subseteq \mathcal{P}(\mathbb{N})$ gibt, sodass $(B, \subseteq) \preceq (\mathcal{P}(\mathbb{N}), \subset)$.
- ii) Zeigen Sie, dass es dann für jedes $n \in \mathbb{N}$ eine Teilmenge $F_n \subseteq \mathbb{N}$ mit $|F_n| = n$ und $\mathcal{P}(F_n) \subseteq B$ gibt.

Abgabe bis Montag, den 7.11., 09:00 Uhr, Briefkasten 168.

Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden.

Web-Seite: https://wwwmath.uni-muenster.de/u/baysm/logikII/