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Setting
L a countable language, T a complete theory in L (with eq), M a model of T ,
U a monster model of T .

Recall that an imaginary element is an equivalence class of some ∅-definable
equivalence relation on some cartesian power of U . The typical example is the
equivalence relation E defined as follows, for some formula ϕ(x, y): E(y1, y2) ⇐⇒
∀x (ϕ(x, y1)↔ ϕ(x, y2)). Given a ∈ Um, the E-equivalence class of a will some-
times be called the code of ϕ(U , a).
We say that T eliminates imaginaries if whenever E is a ∅-definable equivalence
relation on some Un, then there is a ∅-definable map f : Un → U` whose fibers
are exactly the E-equivalence classes.

Strongly minimal sets
A definable subset D of Un (some n > 0) is strongly minimal if every U-

definable subset of D is either finite or cofinite.

One can define a pre-geometry on D, by: if a ∈ D, A ⊂ D, then a ∈ cl(A) ⇐⇒
a ∈ acl(A). To obtain a geometry one needs to delete acl(∅) and quotient by the
equivalence relation a ∼ b ⇐⇒ acl(a) = acl(b) ( ⇐⇒ a ∈ acl(b) \ acl(∅)). We
denote by (D∗, cl) the geometry thus obtained. Note that most of the axioms of
geometry are trivial, the one which matters is ”Steinitz’s exchange principle”:
if a, b ∈ D, A ⊂ D and a ∈ acl(Ab) \ acl(A), then b ∈ acl(Aa).

Notion of dimension of D(M), for M a model of T , or a subset B of D(U):
dim(B) is the cardinality of a maximal subset I of B such that whenever a ∈ I,
then a /∈ acl(I \ {a}). Using the exchange principle it is well-defined.

Morley’s theorem.
Theorem (Morley). If T is κ-categorical for some uncountable κ, then T is
λ-categorical for all uncountable cardinal λ.
Remark: κ-categorical for some uncountable κ
(1) If and only if: T is ω-stable (If A ⊂M |= T is countable, then |Sn(A)| = ℵ0)
and has no Vaughtian pair (there is no formula ϕ(x) which defines in some model
M of cardinality κ > ℵ0 an infinite subset of size < κ (or even, countable).
(2) Implies: there is a formula ϕ(x) (with parameters in M) such that in every
model M of T , M is algebraic over D := ϕ(M), and D is a strongly minimal
set. ϕ is defined over a tuple a of parameters which realises an isolated type
over ∅.
(3) Implies: A consequence of (2) is that each model of T is uniquely determined
by its dimension: the cardinality of a subset of ϕ(M) consisting of algebraically
independent elements. In particular, up to isomorphism, T will either have
only one countable model (in which case it will be totally categorical), or ℵ0.
(Baldwin-Lachlan)

Stable formulas, theories



Let ϕ(x̄, ȳ) be an L-formula, with |x̄| = |ȳ| = n. We say that ϕ(x̄, ȳ) is stable
iff there is no infinite X ⊂ Un such that ϕ(x̄, ȳ) defines on X a total ordering.
We say that T is stable if every formula is stable. And otherwise we say that it
is unstable.

Stable theories (2)
Let λ be an infinite cardinal. We say that T is λ-stable if whenever A ⊂ U is of
cardinality ≤ λ, then |S1(A)| ≤ λ. A result of Shelah says that exactly one of
the following four cases occur:
(1) T is ω-stable, in which case it is λ-stable for all λ ≥ omega.
(2) T is superstable, i.e., T is λ-stable for all cardinals ≥ 2ℵ0 .
(3) T is λ-stable for all cardinals satisfying λ = λℵ0 .
(4) T is unstable.

The Morley rank
Let D be a definable non-empty set. One defines (the Morley rank of D)
RM(D) ≥ α by induction on α, as follows:
– RM(D) ≥ 0,
– if α is a limit ordinal, then RM(D) ≥ α if and only if RM(D) ≥ β for all
β < α,
– RM(D) ≥ α+ 1 if and only if there exists an infinite family (Di)i of definable
subsets of D which are pairwise disjoint and such that RM(Di) ≥ α for all i.

Then RM(D) is the smallest α such that RM(D) ≥ α, but RM(D) 6≥ α + 1 if
such an α exists, and +∞ if no such α exists. If RM(D) = α, then the Morley
degree of D is the largest integer such that D can be partitioned into definable
sets of Morley rank α.
If p is a type over some set A, then RM(p) = inf{RM(D) | D ∈ p}.

Zilber’s conjecture - Kinds of geometries
Let D be a strongly minimal set (definable in U), and consider the associated
geometry (D∗, cl). Three interesting possibilities:

(1) the geometry is trivial (also called disintegrated): for any A ⊂ D, acl(A) =⋃
a∈A acl(a).

(2) the geometry is non-trivial, and is locally modular: If A,B ⊂ D are alge-
braically closed and A ∩B 6= ∅, then A and B are independent over A ∩B.
A slightly stronger property is the property of modularity: whenever A,B ⊂ D
are algebraically closed, then A and B are independent over A ∩B.
(3) the geometry is non-modular.

Examples
Here are some examples:

(1) Consider the theory of the infinite set (in the language with only equality).
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It is totally categorical, strongly minimal, and the geometry is trivial.

(2) Let ∆ be a division ring, and T the theory of ∆-vector spaces (of infinite
dimension if ∆ is a finite field). This theory is complete and ℵ1-categorical. The
geometry is non-trivial and modular.

(3) Let T be a theory of algebraically closed fields (fix the characteristic). Then
T is ℵ1-categorical, and the geometry is non-locally modular.

Zilber’s conjecture
Zilber’s conjecture stated that these are essentially the only examples: i.e., if
U is strongly minimal, then it is a finite cover of some definable set D which is
bi-interpretable with one of the above.
This conjecture was disproved by E. Hrushovski, who constructed examples of
strongly minimal theories which are trivial, but do not interpret a group law; and
of non-locally modular strongly minimal theories in which two distinct structures
of algebraically closed fields are definable. These types of constructions are
commonly referred to as: “Hrushovski’s constructions”, or “amalgamation à la
Hrushovski”, or “fusion/collapse”.

Apart from Hrushovski, many people have used these constructions.

The generic curve
Let me state a result which I find very amusing, and which shows that the exotic
structures constructed in the counterexamples . . . are not so exotic after all.

For each d ≥ 1, let Td the theory of the field of complex numbers, expanded by
a binary relation symbol C which is interpreted as the set of points (in C2) of
a curve of total degree d, defined by a polynomial equation

∑
i,j ai,jX

iY j = 0
(with i+ j ≤ d) whose coefficients are algebraically independent over Q. Then
the limit theory Tω = limd→∞ Td exists, is ω-stable (of Morley rank ω) and
complete, and its countable saturated model can be obtained by a Hrushovski
construction.

Zariski geometry
However, Zilber’s conjecture remains “morally true”. He and Hrushovski iso-
lated conditions which ensured that a strongly minimal set satisfying these ax-
ioms satisfies the conclusion of Zilber’s conjecture. These are called Zariski
geometries. They are defined for strongly minimal sets, (or, more generally, for
∞-definable sets of U-rank 1). I will not give the axioms, but let me say that
they define a Noetherian topology on each cartesian power of the model, in which
there is a good notion of dimension, satisfying in particular a condition on the
dimension of intersections of closed sets (if V1, V2 ⊂ Dn, and W is an irreducible
component of the intersection V1 ∩V2, then dim(W ) ≥ dim(V1) + dim(V2)−n).
At least in the case of definable sets, one has elimination of quantifiers in the
language with predicates for all closed sets.
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Examples
The three typical examples listed above are all Zariski geometries; the closed
sets are those defined by positive quantifier-free formulas (i.e., disjunctions of
conjunctions of equations). Here is a less obvious example:
The theory DCF0 of differentially closed fields of characteristic 0. It is known
that this theory is ω-stable, of rank ω. It eliminates quantifiers and imaginaries
in the language {+,−, ·, D} of differential fields. Hrushovski and Sokolovic
showed that if D is a strongly minimal set definable in a differentially closed
field K, then, taking as closed subsets of Dn the sets defined by differential
equations (the so-called Kolchin closed sets) defines a Zariski topology on D. It
follows that if D is non-modular, then D interprets a field, and other arguments
give that this field is necessarily the field C of constants of K, defined by the
equation Dx = 0.

These results can be partially generalized to the theory DCF0,n of diffentially
closed fields of characteristic 0 with n commuting derivations D1, . . . , Dn: by a
result of Moosa-Pillay-Scanlon, a non-modular strongly minimal set is necessar-
ily of order 1 (since it is non-orthogonal to the generic of a definable subgroup
of Ga of rank 1, and those are of order 1), and therefore is non-orthogonal to
the field C of absolute constants defined by D1x = D2x = · · · = Dnx = 0. It is
however unknown what exactly happens with other (locally modular) strongly
minimal sets.

Orthogonality
There are several notions of orthogonality. It is usually used in the context where
there is a good notion of independence (or non-forking; denoted by |̂ ), and this
is what we will assume. By good, I in particular mean that it is symmetric and
transitive.

(1) Let p and q be two complete types over A. p is almost orthogonal to q,
p ⊥a q, if whenever a |= p and b |= q, then a |̂ Ab (a and b are independent over
A).
(2) Let p and q be two complete types over A and B respectively. p is orthogonal
to q, p ⊥ q, if whenever C ⊃ A∪B, and a |= p, b |= q, and a |̂ AC, b |̂ AC, then
a |̂ Cb.

Orthogonality - 2
When p and q are types of rank 1, then a |̂ AC simply means a /∈ acl(C), and
a |̂ Cb means a /∈ acl(Cb) \ acl(C) (or b /∈ acl(Ca) \ acl(C)).

If the ambient theory is stable and eliminates imaginaries, and A = acl(A),
then the almost-orthogonality of the types p, q ∈ S(A) can be rephrased as:
p(x) ∪ q(y) is complete.

If p, q ∈ S(A), one can also show that p 6⊥ q if and only if there are A-
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independent a1, . . . , an realising p, A-independent b1, . . . , bn realising q, and
such that a1, . . . , an |̂/ Ab1, . . . , bn, for some n.

Full orthogonality
In the same spirit, one will say that two definable sets D1 and D2 are fully
orthogonal if whenever S ⊂ Dm

1 ×Dn
2 is definable (some m,n), then S is a finite

union of boxes R1 ×R2 where R1 ⊂ Dm
1 and R2 ⊂ Dn

2 are definable.

The trichotomy becomes a dichotomy? One-basedness
Let D be strongly minimal. If the geometry on D is trivial, then it satisfies (for
trivial reasons) the local modularity axiom. Thus, as was suggested already in
the last part of the example on fields with several derivations, what some people
really care about is: what exactly is the structure on a non-modular strongly
minimal set? Does it have more (or less) structure than a pure field?
It turns out that the property of local modularity generalises to types of arbi-
trary rank and to definable sets, or ∞-definable sets.

One-basedness
Let A ⊂ U , and S ⊂ Un be Aut(U/A)-invariant. Then S is one-based if whenever
a = (a1, . . . , am) ∈ Sm and B ⊃ A, then

a |̂ CB, where C = acleq(Aa) ∩ acleq(B).

A type is one-based if the set of its realisations is one-based. Thus non-locally
modular types of rank 1 are not one-based and conversely. The interest of
one-basedness is that it is stable under unions and fibrations: if S1 and S2 are
one-based, then so is S1 ∪ S2; thus, an Aut(U/A)-invariant set S is one-based
if and only if every type realised in S is one-based; if tp(a/A) is one-based and
tp(b/Aa) is one-based, then so is tp(ab/A).

Zariski geometries outside the strongly minimal context.
Assume that we have an A-definable (or∞-definable) set D in which acl defines
a pre-geometry (ie, satisfies the Steinitz’ exchange principle). Then, as above,
one can distinguish between the three types of geometries: trivial, non-trivial
locally modular, and non locally modular. Here are two important examples:

Separably closed fields of finite degree of imperfection
Let e ∈ N>0, p a prime, and consider the theory SCFe,p of separably closed
fields of imperfection degree e (i.e., [K : Kp] = pe. If one adds to the language
e distinct constant symbols, and says that these e elements form a p-basis, then
one obtains a complete theory which eliminates imaginaries, and quantifiers in
a language Lλ obtained as follows:
Let b1, . . . , be be a p-basis of K, and let B be the set of p-monomials {bn1

1 · · · bne
e |

0 ≤ ni < p for i = 1, . . . , e}. Then B forms a basis of the Kp-vector space K. To
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each b ∈ B, we associate the function λb which to an element a ∈ K associates
the p-th root of the b-coordinate of a with respect to the basis B. I.e.,

a =
∑
b∈B

λb(a)pb.

SCF (ctd)
Let SCFλe,p be the obvious expansion of SCFe,p to this richer language. Then
SCFλe,p eliminates quantifiers. Hrushovski and Delon have shown that if p is
a type of U-rank 1 (i.e., if P is the set of realisations of p in U , then (P, acl)
is a pre-geometry), then P , endowed with the topology whose closed sets are
those defined by equations of the language, satisfies the (appropriately modified)
axioms of a Zariski geometry. This result allowed Hrushovski to prove the
Mordell-Lang conjecture in positive characteristic for certain Abelian varieties.
(Sofar, his proof is the only existing proof).

Existentially closed difference fields
A difference field is a field with a distinguished automorphism σ, a structure
in the language of rings expanded by a unary function symbol. Any complete
theory of e.c. difference fields is supersimple of SU-rank ω. One shows that to
certain types of SU-rank 1, one can associate a set of points P , in some limit
structure (non first-order, model of a Robinson theory), and which satisfies an
appropriate version of the axioms for Zariski geometries. This allows one to
show that if p is a non-modular type of rank 1, then p is non-orthogonal to the
type of a fixed field, i.e., to the field defined by σ(x) = x, or in addition, if the
characteristic is p > 0, to a field defined by an equation σm(x) = xp

n

, where
m,n are relatively prime integers, with m > 0.

Variations on the theme of existentially closed difference fields allow one to
obtain similar results for the theory of e.c. difference differential fields (the
automorphism commuting with the derivation): a non-locally modular type of
SU-rank 1 will be non-orthogonal to the type defined by σ(x) = x ∧Dx = 0.

O-minimal structures
An important example of a structure with a good independence notion, is an
o-minimal structure. Recall that a totally ordered structure (M,<, . . .) is o-
minimal iff every definable subset D of M is a finite union of open intervals
with extremities in M (∪{−∞,+∞} if the ordering on M has no endpoints).
This definition was first introduced by Van den Dries; the first general important
results were obtained by Pillay, Steinhorn, and Knight. O-minimal structures
have been the object of intensive study since then.

O-minimal structures - 2
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(M, acl) is a pre-geometry, and Peterzil and Starchenko show that it satisfies a
trichotomy theorem: let a ∈ M ; if the geometry in an open interval around a
is non-locally modular, then there is an open interval around a which inteprets
a field; similar local statements for locally modular or disintegrated geometries
around a.
Note that one cannot hope for bi-interpretability: it is known for instance that
the field of real numbers expanded by the exponential map exp is o-minimal
(Wilkie). And clearly the exponential map is not definable in the pure field
structure.

Polynomially bounded expansions of the reals
Let R = (R,+,−, ·, <, 0, 1, . . .) be an expansion of the field of real numbers,
which is o-minimal. Then R is polynomially bounded if whenever f : R → R is
a definable function, then for some integer n ≥ 0, one has limx→+∞ f(x) < xn.
C. Miller has shown that R is polynomially bounded if and only if it does not
define the exponential function. This result extends to any o-minimal expansion
of an arbitrary real closed field R, with polynomially bounded being replaced
by power bounded (a power function being a multiplicative homomorphism f :
R× → R× which satisfies f(x)/xf ′(x) is constant).
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