Notes from a seminar on the Keisler order; primarily an exposition of the
proof of VI.8.12 in Shelah “Classification Theory”

0.1 Statements
Definition. For I/ an ultrafilter on A,

pU) = min [{Bewt:B<a}

acw\w

)

lef(U) := min{|A] : A C M \w, VB €W\ w. Ja € A. a < B}.
Fact. (i) The nfcp theories form the minimal class in the Keisler order.

(i) Let T be a countable stable fep theory. Then a regular ultrafilter U on
A > Vg saturates T iff p(U) > .

Theorem 1 (Shelah V1.4.8). Let T be a countable unstable theory. Let U be a
reqular ultrafilter on A > Vo with 1cf(U) < A. Then U does not saturate T

Theorem 2 (Shelah V1.3.12). For any \ > Rg, there is a reqular ultrafilter U
on A with
lef(U) < o, pUd) > A

Corollary. If T is stable and Ty is unstable, then Ty < Ty in the Keisler order.

Proof. If Ty is nfcp, we are done by the minimality of nfcp and the fact that
nfcp = stable. So suppose T} is stable fcp.
By Theorem 2, there is a regular ultrafilter & on A := Ry such that

o lcf(U) < A, hence U does not saturate To;

e u(U) > A, hence U saturates T7.

Proof of Theorem 1

By instability, there is a countable M & T and tuples b; € M <% for i € w and
a formula ¢(z,y) such that

M E ¢(bi,bj) < i < j.
For a € w!, let by := (t — byy)) /U where f € w*, o= f/U. Then by Los,
MY E ¢(ba,bp) & a < B.

Now suppose MY is A\*-saturated. Since cf(U) < A, there is a coinitial subset
{oj:j € A} Cw\w. Let a € MY realise {¢(b;, ) : i € w} U {=p(ba,, ) : j €
A} So

{iew”:Vj<i MY E ¢(bj,a)} = w.

This contradicts the overspill lemma of non-standard analysis, which states
that there is no infinite internal set of standard elements.



Alternatively (pointed out by Martin Hils): regularity of U implies N;-
saturation, so there can’t be a countable internal set.

Alternatively: if a = g/U, g € M*, then by Los, w = [[,c,{i € w: Vj <
i. M E ¢(bj,a(t))}. But any subset of w has the property that if it is bounded
then it has a maximal element, so by Los this also holds of any ultraproduct
of subsets of w (apply Los to Jz.Vy.(P(y) = vy < ) — 3x.(P(x) AVy.(P(y) —
y < )). But w C w¥ is bounded and has no maximal element. O

Proof of Theorem 2.
Let a := 2" - Xy, so |a| = 2* and cf (o) = R;.

Notation. For 0 = ¢(g1,...,9x) a (possibly infinitary) {<}-sentence with pa-
rameters gi,...,gx € w*, define [[0]] := {t : w F ¢(g(t))}. For D a filter on )\,
write w” F o to mean [[0]] € D.

Note that for any A C A\, A = [[xa = 1]].

(So really this is just a convenient substitute for talking about subsets of A,
letting us use the notation of propositional logic.)

For ¥ a set of sentences, let D (X) be the filter generated by DU {[[o]] : o €
>}

For a sentence o, let D (o) := D ({o}).

Lemma. For D a filter and 0,7 sentences, wP'?) E 1 iff wP E o — 1.

Proof. wP{) & 1 iff [[7]] € D (o)

iff [[7]] 2 An[o]] for some A € D

iff (A\ [[o]]) U[[7]] 2 A for some A € D

iff [c—7]]eD

if WP Eo— 7. O

Definition. Say sentences (7;); partition modulo a filter D if w? F —(7; A 7;)
for i # j and for any sentence o,

(Vi.wD':Ti—)U) = wl Eo.
Claim 1. There ezist f; € w* and regular filters D; for i < o such that
(1) (D;); is an increasing chain;
(2) ifi<j<aandn € w, then wPi E f; #n;
(8) if § <1i <, then (fi = n)new partitions mod Dj.
(4) U :=U;<oD; is an ultrafilter.
Claim. (i) Then f;/U are strictly decreasing, i.e. i < j < a= f;/U < f;/U.

(ii) If g € w* and g/U € W\ w, then for some i < a we have f; /U < g/U for
allt1 <7 < a.

Proof. (i) Vn € w. wPi E fi #n,soV¥n € w. wPi E f; >n,s0Vn € w. wPi F
(f; =n — fi > f;). But (f; = n), partitions mod D;, so wPi F f; > f;.
Then also W F f; > fi, i.e. f;/U > f;j/U, as required.



(ii) We have Vn € w. w F g > n. Since cf(a) = 8; > N, already Vn €

w. wPi E g >n for some i < a. We then conclude exactly as in (i).
O

So if g/U € W \ w, for some B < a we have f;/U € g/U for f < i < a, so
|{ﬂ€wu:[3<g/2/{}’2|{i:5<i<a:2)‘oN1}|:2)‘>x\.

So pu(U) > A
Furthermore, by the Claim, (f;/U);<q is a coinitial decreasing sequence in
W\ w, so
lef(U) < cf(a) =Ny,
as required.
This concludes the proof of Theorem 2 modulo Claim 1.

Proof of Claim 1

Definition. For G C w?, define FI(G) := {h: Gy — w | Gy Can G}

For h € FI(G), let o), be the sentence A cqomn) 9 = h(g). We write just
for oy,.

For D a filter and sentences 7,0, say 7 decides ¢ mod D if either w” E
h; — o or wP Eh; = —0.

Say o is supported by G mod D if there are h; € FI(G) for ¢ € w such that
each h; decides o mod D and (h;); partitions mod D.

Say G is independent modulo D if for all h € FI(G),

wP & .
We build D; such that (1) and (2) hold and also
(i) D; = Do (%;) where each o € ¥; is supported by f<; mod Dy;
(ii) f>; is independent mod Dj;
(iii) D; is maximal such that (i) and (ii) hold.

(3) and (4) will then follow.
First we find the f; and Dy.

Lemma. There are functions g; : A\ — X fori € 2* such that for any Iy Cgy, 22
and h : Iy — A, there exists v € X such that Vi € Iy. g;(y) = h(i).

Proof. Enumerate the pairs (A, F}y),ex of finite subsets A C X and functions
F :P(A) — A\ For B C A, let gg(7y) := Fy (BN A,). Now given h : Iy — A,
for some finite A C X the (BN A)pey, are distinct, and so for some « we have
A, =Aand VB € Iy. F,(BNA) = h(B), as required. O

Applying this lemma, we can find (f; : A = w);<q and g : A = Sy, (A) such
that any finite set of values for ((f;);, g) occurs somewhere on A. Let D{, be the
filter generated by R := {{t € A : i € g(t)} : i € A}. Then Dy is regular since
R is a regularising family, and f., is independent mod Dj. Extend Dg to a
maximal filter Dy such that f., is independent mod Dy. Then (i)-(iii) hold for
Do.

Let FI:= FI(f..).



Lemma 1. Suppose G C w™ is independent modulo a filter D, and G' C G, and
h € G, and 7 is supported by G' mod D, and wP E h — 7. Then w? E h|g: — T.

Proof. Say h; € FI(G’), i € w, partition mod D and each h; decides 7 mod D.
Let i € w. If wP E h; — 7 then clearly w” F h; — (hlg — 7). If
wP E h; = =7 then wP E h; — —h, so w? E =(h; A h), so by independence
h; Uh ¢ FI(G), but then already h; Uh|g: ¢ FI(G), so wP E h; — =h|g/, so again
wD = hl — (h|g/ — 7').
We conclude since the h; partition mod D. O

Lemma. For any o, if wP° # —o then wP° E h — o for some h € FIL.

Proof. Otherwise f>g is independent modulo Dy (—o), contradicting the maxi-
mality of Dy. O

Fact. If C C Sy, (A\) :={A: A Cgy A} and |C] > Ry, there exists C' C C' with
|C/‘ > Ny and Ag Cun A such that VAl,AQ eC'. (Al 7& Ay = A1 NAy = Ao)

Proof. Omitted. See [Shelah-classificationTheory Appendix Theorem 1.4]. [
Lemma 2. For any o there is f < o such that o is supported by f<g mod Dy.

Proof. Let H = {h;}; C FI be maximal such that each h; decides ¢ mod Dy
and i # j = wPo E —(h; A hy).

Suppose |H| > Ry. By the previous Fact, uncountably many have domains
intersecting pairwise in a fixed finite set, so in particular there exist h # h' € H
with h U R’ € FL. But then w?° E —(h A h’) contradicts independence.

So |H| = Ny < cf(a), so there exists S < a such that each h; € FI(f<g). It
remains to show that H partitions mod Dy.

Suppose Vh € H. wP° = h — 7 but w0 ¥ 7. Then w?® ¥ ¢¢ — 1 for some
€ i.e. wPo ¥ —(0¢ A 7).

Applying the previous Lemma to 0 A =7 yields b’ € FI which decides o and
wPo = ' — —7 s0 K is inconsistent with each h € H, contradicting maximality
of H. O

Given Dy, let Dj,, := D; ({fi # n:n <w}). Then Dj , satisfies (i) since
D; does, and satisfies (ii) since D; does and by Lemma 1. Extend Dj; to D;1;
satisfying the maximality condition (iii).

For 8 < a a limit ordinal, Djs := U;<sD; clearly satisfies (i) and (ii). Extend
it to D satisfying the maximality condition (iii).

(1) and (2) are clear from the construction.

We check (4). To show that U is an ultrafilter, let o be arbitrary, suppose
W' i o, and we show w¥ F —o.

By Lemma 2, say o is fg-supported mod Dy. Now w?s ¥ o, so by (iii)
for Dg, f>p is not independent modulo Dg (o). But then say h € FI(f>p)
and wP#( E —h. Then w”® E ¢ — —h, so w” E (1t A o) — —h for some
f<p-supported 7 with wPs E 7. So wP E h — (7 A o), and supportedness is
closed under boolean combinations (exercise), so by Lemma 1 w” E —(7 A o),
so wP8 E =0, so W E —o.

Finally, we check (3). Suppose 8 < v < a, let f := f,, and suppose
Vn € w. wPs E (f =n — o). Say wP¢ E 1, and WP E 7, = (f =n — o) and
Tn, is supported by f<g mod Dy.



By Lemma 2, say hf € FI, i € w, ¢ € {T,.L}, partition mod Dy and
wPo E hE — of.

Let hiL,ﬂ = hilf_,. Now wP E =0 = (f =n— -7,) sow? E (R A f =
n) = —7,.

Now wP# E hit — f # n for all n, so clearly f ¢ dom(h; ), so hi- U (f —
n) € FI, and so by Lemma 1, w” F hi-ﬁ — Ty,

Let 6 :=/, hz{-ﬁ. Then w? E h — (=0 — o) for all i,¢, so wP° F =0 — 0.

Let H be a maximal antichain in {h € FI: (3i.h 2 i)V (Vi.hUh; 5 ¢ FI)}.

Claim. H partitions mod Dy.

Proof. By Lemma 2, it suffices to show that for h’ € FI, if Vh € H. wP° E h —
—h' then w? E —h’. Suppose not. Now either Vi. h’ U hil,ﬂ ¢ FI, or h' extends
to some h” = h' U h*i, 3 € FI. Then by maximality, b’ resp. h” € H. But then
wP E =1/, contradiction. O

If Vi.h U hl{-ﬁ ¢ FI then w” F h — =0, and meanwhile w? F hi—,@ for each i,
sofor h € H,wP°Eh — (0 — —71,), so wP° E§ — —7,,.

So wPs E ¢ as required. O
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