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Notes from a seminar on the Keisler order; primarily an exposition of the
proof of VI.3.12 in Shelah “Classification Theory”

0.1 Statements

Definition. For U an ultrafilter on λ,

µ(U) := min
α∈ωU\ω

∣∣{β ∈ ωU : β < α}
∣∣ ,

lcf(U) := min{|A| : A ⊆ ωU \ ω, ∀β ∈ ωU \ ω. ∃α ∈ A. α < β}.

Fact. (i) The nfcp theories form the minimal class in the Keisler order.

(ii) Let T be a countable stable fcp theory. Then a regular ultrafilter U on
λ ≥ ℵ0 saturates T iff µ(U) > λ.

Theorem 1 (Shelah VI.4.8). Let T be a countable unstable theory. Let U be a
regular ultrafilter on λ ≥ ℵ0 with lcf(U) ≤ λ. Then U does not saturate T .

Theorem 2 (Shelah VI.3.12). For any λ ≥ ℵ0, there is a regular ultrafilter U
on λ with

lcf(U) ≤ α1, µ(U) > λ.

Corollary. If T1 is stable and T2 is unstable, then T1 < T2 in the Keisler order.

Proof. If T1 is nfcp, we are done by the minimality of nfcp and the fact that
nfcp ⇒ stable. So suppose T1 is stable fcp.

By Theorem 2, there is a regular ultrafilter U on λ := ℵ1 such that

• lcf(U) ≤ λ, hence U does not saturate T2;

• µ(U) > λ, hence U saturates T1.

Proof of Theorem 1

By instability, there is a countable M � T and tuples bi ∈ M<ω for i ∈ ω and
a formula φ(x, y) such that

M � φ(bi, bj)⇔ i ≤ j.

For α ∈ ωU , let bα := (t 7→ bf(t))/U where f ∈ ωλ, α = f/U . Then by  Los,

MU � φ(bα, bβ)⇔ α ≤ β.

Now suppose MU is λ+-saturated. Since cf(U) ≤ λ, there is a coinitial subset
{αj : j ∈ λ} ⊆ ωU \ ω. Let a ∈MU realise {φ(bi, x) : i ∈ ω} ∪ {¬φ(bαj , x) : j ∈
λ}. So

{i ∈ ωU : ∀j < i. MU � φ(bj , a)} = ω.

This contradicts the overspill lemma of non-standard analysis, which states
that there is no infinite internal set of standard elements.
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Alternatively (pointed out by Martin Hils): regularity of U implies ℵ1-
saturation, so there can’t be a countable internal set.

Alternatively: if a = g/U , g ∈ Mλ, then by  Los, ω =
∏
t∈λ{i ∈ ω : ∀j <

i. M � φ(bj , a(t))}. But any subset of ω has the property that if it is bounded
then it has a maximal element, so by  Los this also holds of any ultraproduct
of subsets of ω (apply  Los to ∃x.∀y.(P (y)→ y < x)→ ∃x.(P (x) ∧ ∀y.(P (y)→
y < x)). But ω ⊆ ωU is bounded and has no maximal element.

Proof of Theorem 2.

Let α := 2λ · ℵ1, so |α| = 2λ and cf(α) = ℵ1.

Notation. For σ = φ(g1, . . . , gk) a (possibly infinitary) {<}-sentence with pa-
rameters g1, . . . , gk ∈ ωλ, define [[σ]] := {t : ω � φ(g(t))}. For D a filter on λ,
write ωD � σ to mean [[σ]] ∈ D.

Note that for any A ⊆ λ, A = [[χA = 1]].
(So really this is just a convenient substitute for talking about subsets of λ,

letting us use the notation of propositional logic.)
For Σ a set of sentences, let D 〈Σ〉 be the filter generated by D ∪ {[[σ]] : σ ∈

Σ}.
For a sentence σ, let D 〈σ〉 := D 〈{σ}〉.

Lemma. For D a filter and σ, τ sentences, ωD〈σ〉 � τ iff ωD � σ → τ .

Proof. ωD〈σ〉 � τ iff [[τ ]] ∈ D 〈σ〉
iff [[τ ]] ⊇ A ∩ [[σ]] for some A ∈ D
iff (λ \ [[σ]]) ∪ [[τ ]] ⊇ A for some A ∈ D
iff [[σ → τ ]] ∈ D
iff ωD � σ → τ .

Definition. Say sentences (τi)i partition modulo a filter D if ωD � ¬(τi ∧ τj)
for i 6= j and for any sentence σ,(

∀i. ωD � τi → σ
)
⇒ ωD � σ.

Claim 1. There exist fi ∈ ωλ and regular filters Di for i ≤ α such that

(1) (Di)i is an increasing chain;

(2) if i < j < α and n ∈ ω, then ωDj � fi 6= n;

(3) if j ≤ i < α, then (fi = n)n∈ω partitions mod Dj.

(4) U := ∪i<αDi is an ultrafilter.

Claim. (i) Then fi/U are strictly decreasing, i.e. i < j ≤ α⇒ fj/U < fi/U .

(ii) If g ∈ ωλ and g/U ∈ ωU \ω, then for some i < α we have fj/U < g/U for
all i ≤ j < α.

Proof. (i) ∀n ∈ ω. ωDj � fi 6= n, so ∀n ∈ ω. ωDj � fi > n, so ∀n ∈ ω. ωDj �
(fj = n → fi > fj). But (fj = n)n partitions mod Dj , so ωDj � fi > fj .
Then also ωU � fi > fi, i.e. fi/U > fj/U , as required.
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(ii) We have ∀n ∈ ω. ωU � g > n. Since cf(α) = ℵ1 > ℵ0, already ∀n ∈
ω. ωDi � g > n for some i < α. We then conclude exactly as in (i).

So if g/U ∈ ωU \ ω, for some β < α we have fi/U ∈ g/U for β < i < α, so∣∣{β ∈ ωU : β < g/U}
∣∣ ≥ ∣∣{i : β < i < α = 2λ · ℵ1}

∣∣ = 2λ > λ.

So µ(U) > λ.
Furthermore, by the Claim, (fi/U)i<α is a coinitial decreasing sequence in

ωU \ ω, so
lcf(U) ≤ cf(α) = ℵ1,

as required.
This concludes the proof of Theorem 2 modulo Claim 1.

Proof of Claim 1

Definition. For G ⊆ ωλ, define FI(G) := {h : G0 → ω | G0 ⊆fin G}.
For h ∈ FI(G), let σh be the sentence

∧
g∈dom(h) g = h(g). We write just h

for σh.
For D a filter and sentences τ, σ, say τ decides σ mod D if either ωD �

hi → σ or ωD � hi → ¬σ.
Say σ is supported by G mod D if there are hi ∈ FI(G) for i ∈ ω such that

each hi decides σ mod D and (hi)i partitions mod D.
Say G is independent modulo D if for all h ∈ FI(G),

ωD 6� ¬h.

We build Di such that (1) and (2) hold and also

(i) Di = D0 〈Σi〉 where each σ ∈ Σi is supported by f<i mod D0;

(ii) f≥i is independent mod Di;

(iii) Di is maximal such that (i) and (ii) hold.

(3) and (4) will then follow.
First we find the fi and D0.

Lemma. There are functions gi : λ→ λ for i ∈ 2λ such that for any I0 ⊆fin 2λ

and h : I0 → λ, there exists γ ∈ λ such that ∀i ∈ I0. gi(γ) = h(i).

Proof. Enumerate the pairs (Aγ , Fγ)γ∈λ of finite subsets A ⊆ λ and functions
F : P(A) → λ. For B ⊆ λ, let gB(γ) := Fγ(B ∩ Aγ). Now given h : I0 → λ,
for some finite A ⊆ λ the (B ∩ A)B∈I0 are distinct, and so for some γ we have
Aγ = A and ∀B ∈ I0. Fγ(B ∩A) = h(B), as required.

Applying this lemma, we can find (fi : λ→ ω)i<α and g : λ→ Sℵ0(λ) such
that any finite set of values for ((fi)i, g) occurs somewhere on λ. Let D′0 be the
filter generated by R := {{t ∈ λ : i ∈ g(t)} : i ∈ λ}. Then D′0 is regular since
R is a regularising family, and f<α is independent mod D′0. Extend D0 to a
maximal filter D0 such that f<α is independent mod D0. Then (i)-(iii) hold for
D0.

Let FI := FI(f<α).
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Lemma 1. Suppose G ⊆ ωλ is independent modulo a filter D, and G′ ⊆ G, and
h ∈ G, and τ is supported by G′ mod D, and ωD � h→ τ . Then ωD � h|G′ → τ .

Proof. Say hi ∈ FI(G′), i ∈ ω, partition mod D and each hi decides τ mod D.
Let i ∈ ω. If ωD � hi → τ then clearly ωD � hi → (h|G′ → τ). If

ωD � hi → ¬τ then ωD � hi → ¬h, so ωD � ¬(hi ∧ h), so by independence
hi∪h /∈ FI(G), but then already hi∪h|G′ /∈ FI(G), so ωD � hi → ¬h|G′ , so again
ωD � hi → (h|G′ → τ).

We conclude since the hi partition mod D.

Lemma. For any σ, if ωD0 6� ¬σ then ωD0 � h→ σ for some h ∈ FI.

Proof. Otherwise f≥0 is independent modulo D0 〈¬σ〉, contradicting the maxi-
mality of D0.

Fact. If C ⊆ Sℵ0(λ) := {A : A ⊆fin λ} and |C| > ℵ0, there exists C ′ ⊆ C with
|C ′| > ℵ0 and A0 ⊆fin λ such that ∀A1, A2 ∈ C ′. (A1 6= A2 ⇒ A1 ∩A2 = A0).

Proof. Omitted. See [Shelah-classificationTheory Appendix Theorem 1.4].

Lemma 2. For any σ there is β < α such that σ is supported by f<β mod D0.

Proof. Let H = {hi}i ⊆ FI be maximal such that each hi decides σ mod D0

and i 6= j ⇒ ωD0 � ¬(hi ∧ hj).
Suppose |H| > ℵ0. By the previous Fact, uncountably many have domains

intersecting pairwise in a fixed finite set, so in particular there exist h 6= h′ ∈ H
with h ∪ h′ ∈ FI. But then ωD0 � ¬(h ∧ h′) contradicts independence.

So |H| = ℵ0 < cf(α), so there exists β < α such that each hi ∈ FI(f<β). It
remains to show that H partitions mod D0.

Suppose ∀h ∈ H. ωD0 � h → τ but ωD0 6� τ . Then ωD0 6� σε → τ for some
ε, i.e. ωD0 6� ¬(σε ∧ ¬τ).

Applying the previous Lemma to σε∧¬τ yields h′ ∈ FI which decides σ and
ωD0 � h′ → ¬τ so h′ is inconsistent with each h ∈ H, contradicting maximality
of H.

Given Di, let D′i+1 := Di 〈{fi 6= n : n < ω}〉. Then D′i+1 satisfies (i) since
Di does, and satisfies (ii) since Di does and by Lemma 1. Extend D′i+1 to Di+1

satisfying the maximality condition (iii).
For β < α a limit ordinal, D′β := ∪i<βDi clearly satisfies (i) and (ii). Extend

it to Dβ satisfying the maximality condition (iii).
(1) and (2) are clear from the construction.
We check (4). To show that U is an ultrafilter, let σ be arbitrary, suppose

ωU 6� σ, and we show ωU � ¬σ.
By Lemma 2, say σ is f<β-supported mod D0. Now ωDβ 6� σ, so by (iii)

for Dβ , f≥β is not independent modulo Dβ 〈σ〉. But then say h ∈ FI(f≥β)
and ωDβ〈σ〉 � ¬h. Then ωDβ � σ → ¬h, so ωD � (τ ∧ σ) → ¬h for some
f<β-supported τ with ωDβ � τ . So ωD � h → ¬(τ ∧ σ), and supportedness is
closed under boolean combinations (exercise), so by Lemma 1 ωD � ¬(τ ∧ σ),
so ωDβ � ¬σ, so ωU � ¬σ.

Finally, we check (3). Suppose β ≤ γ < α, let f := fγ , and suppose
∀n ∈ ω. ωDβ � (f = n → σ). Say ωDβ � τn and ωD0 � τn → (f = n → σ) and
τn is supported by f<β mod D0.
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By Lemma 2, say hεi ∈ FI, i ∈ ω, ε ∈ {>,⊥}, partition mod D0 and
ωD0 � hεi → σε.

Let h⊥i,β := h⊥i |f<β . Now ωD0 � ¬σ → (f = n → ¬τn) so ωD0 � (h⊥i ∧ f =
n)→ ¬τn.

Now ωDβ � h⊥i → f 6= n for all n, so clearly f /∈ dom(h⊥i ), so h⊥i ∪ (f 7→
n) ∈ FI, and so by Lemma 1, ωD � h⊥i,β → ¬τn.

Let θ :=
∨
i h
⊥
i,β . Then ωD0 � hεi → (¬θ → σ) for all i, ε, so ωD0 � ¬θ → σ.

Let H be a maximal antichain in {h ∈ FI : (∃i.h ⊇ h⊥i,β)∨(∀i.h∪h⊥i,β /∈ FI)}.

Claim. H partitions mod D0.

Proof. By Lemma 2, it suffices to show that for h′ ∈ FI, if ∀h ∈ H. ωD0 � h→
¬h′ then ωD � ¬h′. Suppose not. Now either ∀i. h′ ∪ h⊥i,β /∈ FI, or h′ extends

to some h′′ = h′ ∪ h⊥i, β ∈ FI. Then by maximality, h′ resp. h′′ ∈ H. But then
ωD � ¬h′, contradiction.

If ∀i.h ∪ h⊥i,β /∈ FI then ωD � h → ¬θ, and meanwhile ωD � h⊥i,β for each i,

so for h ∈ H, ωD0 � h→ (θ → ¬τn), so ωD0 � θ → ¬τn.
So ωDβ � σ as required.
– Martin Bays 2019


