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1 Aut([0, 1], λ)

Let MALG be the Lebesgue measure algebra

MALG := {X ⊆ [0, 1] : XLebesgue measurable}/(λ(X∆Y ) = 0)

= {X ⊆ [0, 1] : XBorel}/(λ(X∆Y ) = 0).

Let Aut([0, 1], λ) := Aut((MALG;λ,∨,¬)). This has two natural topologies:

• Aut([0, 1], λ)p: topology of pointwise convergence, i.e. the topology inher-

ited from the product topology on MALGMALG;

• Aut([0, 1], λ)u: topology of uniform convergence, defined by the metric

∂(α, β) := sup
x∈M

λ(α(x)∆β(x)).

Fact 1.1. f 7→ (X 7→ f(X)) induces a group isomorphism

Bijλ([0, 1])/(λ(supp(fg−1)) = 0)
∼−→ Aut([0, 1], λ),

where Bijλ([0, 1]) is the group of measure-preserving bijections.

Theorem 1.2. Any homomorphism from Aut([0, 1], λ)p to a separable topolog-
ical group is continuous.

Outline of proof. (I) (Ryzikov,Kittrell-Tsankov,BBM): Using a result of Ryzikov
that every element of Aut([0, 1], λ) is a product of 3 involutions, Aut([0, 1], λ)u
has the (38)-Steinhaus property and so has this automatic continuity
property;

(II) (Kechris-Rosendal): The automorphism group of the countable dense
measure subalgebra A ⊆ MALG generated by dyadic rational intervals
has ample generics;

(III) (BBM): Hence Aut([0, 1], λ) has ample generics as a “topometric struc-
ture”, and so the automatic continuity of Aut([0, 1], λ)u lifts to Aut([0, 1], λ)p.
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2 Metric structures

Definition 2.1. M = (M ; d, (Pi)i∈I , (fi)i∈I′) is a metric structure if

• (M ; d) is a complete bounded metric space,

• each Pi : Mki → R is a uniformly continuous bounded map,

• each fi : Mk′i →M is a uniformly continous map.

M is Polish if (M ; d) is Polish (i.e. if (M ; d) is separable).
An isomorphism of metric structures is an isometry preserving the predicates

and functions.

Example 2.2. MALG := (MALG; d,∨,¬) with metric d(A,B) := λ(A∆B) is a
Polish metric structure.

3 Topometric groups

Definition 3.1. A topometric space (X; τ, ∂) is a topological space (X; τ)
equipped with a metric ∂ which refines the topology τ , such that ∂ is topologi-
cally lower semi-continuous, i.e. {(x, y) : ∂(x, y) ≤ r} is τ -closed for r ∈ R.

A topometric group (G; τ, ∂) is a topometric space with a group structure
such that (G; τ) is a topological group and ∂ is bi-invariant.

Fact 3.2. If (M ; d) is a Polish metric space, then Iso((M ; d)), with the topology
of pointwise convergence is a Polish group.

Proof sketch. Say A ⊆ M is countable dense. Then Iso((M ; d)) is homeomor-
phic to the space of isometric embeddings of A into M , which embeds as a
closed subspace of MA, which is Polish since it is the countable product of Pol-
ish spaces (explicitly: the product measure ∂(α, β) := Σi2

−1γ(d(α(ai), β(ai)),
where γ : R≥0 → [0, 1);x 7→ x

1+x , is a complete metrisation of MA, and MA is
second countable by definition of the product topology).

Fact 3.3. Let M = (M ; d, . . .) be a Polish metric structure. Consider Aut(M)
with the topology τ of pointwise convergence.

Then Aut(M) is a closed subgroup of Iso((M ; d)), so is Polish.
Let ∂M(α, β) := supx∈M d(α(x), β(x)) be the metric of uniform convergence

on Aut(M).
Then ∂M is bi-invariant, lower semi-continuous, and refines τ .

Definition 3.4. ForM as in the previous fact, we consider Aut(M) as a Polish
topometric group with the topometric structure (Aut(M); τ, ∂M).

Example 3.5. Aut([0, 1];λ) := Aut(MALG) as a topometric group. (So Aut([0, 1];λ)p
is the τ topology, Aut([0, 1];λ)u is the ∂ topology.

Remark 3.6. Any Polish group is isomorphic as a topological group to Aut(M)
for some Polish metric structure M in a countable language (and M can be
taken approximately ultrahomogeneous).

(No analagous statement given for Polish topometric groups).



4 TOPOMETRIC GROUPS WITH AMPLE GENERICS 3

4 Topometric groups with ample generics

Definition 4.1. A Polish topometric group (G, τ, ∂) has ample generics if
for each n, the diagonal conjugacy action on Gn has an orbit with comeagre
∂-closure.

Theorem 4.2. If (G; τ, ∂) is a topometric group with ample generics and φ :
(G; ∂)→ H is a morphism of topological groups, where H is separable (or, more
generally, H has uniform Souslin number1 ≤ 2ℵ0), then φ : (G; τ) → H is
continuous.

The proof is analagous to Kechris-Rosendal.

Remark 4.3. Metric version of the small index property: if (G; τ, ∂) is a Polish
topometric group with ample generics, then any ∂-closed subgroup of index
< 2ℵ0 is open.

5 Lifting ample generics

Definition 5.1. If (X; τ, ∂) is a topometric space, A ⊆ X, and ε > 0, define

(A)ε := {x : ∂(x,A) < ε}.

A ⊆ X has open enlargements in X if (A)ε ⊆ X is open for any ε > 0.

Definition 5.2. Let M = (M ; d, . . .) be a Polish metric structure. A good
countable approximating substructure is a classical countable structure N
such that

(i) the universe N of N is a dense subset of (M ; d);

(ii) any automorphism of N extends (necessarily uniquely) to an automor-
phism of M;

(iii) with this embedding, Aut(N ) ⊆ Aut(M) is dense;

(iv) Consider Aut(N ) with the topology of pointwise convergence where N has
the discrete topology.

If U ⊆op Aut(N ) is open as a subset of Aut(N ), then U has open enlarge-
ments in Aut(M).

Lemma 5.3. Let A = (A;∨,¬) ⊆ MALG be the measure subalgebra generated
as a boolean algebra by the dyadic intervals, being the subintervals of [0, 1] whose
endpoints are dyadic rationals (i.e. of form m2−n).

Then A is a good countable approximating substructure.

Theorem 5.4. Suppose N is a good countable approximating substructure of a
Polish metric structure M, and the Polish group Aut(N ) has ample generics.
Then the Polish topometric group Aut(M) has ample generics.

1the uniform Souslin number of a group G is the least κ such that if 1 ∈ V ⊆op G then
κ left-translates of V cover G.
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5.1 Banach-Mazur

Let X be a topological space, A ⊆ X. The Banach-Mazur game for A ⊆ X
is as follows:

• Players P1 and P2 alternate making moves.

• At any time, the game state is a non-empty open subset of X.

• a move consists of playing a non-empty open subset of the current game
state; the game state is then replaced by this set.

• The initial game state is X, and P1 plays first.

• P2 wins a game whose successive game states are X = V0 ⊇ V1 ⊇ . . . if⋂
i∈ω Vi ⊆ A.

A winning strategy for P2 is a deterministic choice of what to play on a
given P2 move given the history of the game up to that point, such that if P2
plays according to the strategy, then P2 wins however P1 plays.

Theorem 5.5. P2 has a winning strategy iff A is comeagre.

Proof in the case that X is second countable. (Adapted from a math.stackexchange.org
post by Andreas Blass.)

Suppose A is comeagre, so say A ⊇
⋂
i∈ω Ui with Ui open dense. Then the

following is a winning strategy for P2: if on P2’s ith move the state is V , play
V ∩ Ui.

Conversely, suppose P2 has a winning strategy. Let B be a countable base
for X; we may assume ∅ /∈ B.

Suppose it is P1 to move, and the game state is V , so far P1 has always
played sets from B, and P2 has played according to the strategy. Let K ⊆ V be
the set of points k ∈ V such that for any set from B which P1 could play, P2’s
response (playing according to P2’s strategy) doesn’t contain k.

Then K is nowhere dense: if it were dense in an open, then it would be
dense in some V ⊇ U ∈ B, but then K would intersect P2’s response to U .

Now there are countably many such K, and they cover X \A: if x ∈ X \A
is not covered by the K then P1 can play such that x survives throughout the
game, contradicting P2’s strategy being winning.

5.2 Lifting comeagreness

Theorem 5.6 (BBM). Let (X, τ, ∂) be a Polish topometric space. Let Y ⊆ X
be a dense subset equipped with a Polish topology refining the subspace topology,
with complete metric dY . Suppose that any open (i.e. dY -open) U ⊆ Y has open
enlargements in X, and so does any open (i.e. τ -open) U ⊆ X.

Let A ⊆ Y be comeagre in Y . Then A
∂

is comeagre in X.

Proof. Say A ⊇
⋂

1≤n<ω On with On ⊆ Y open dense in Y . Since Y is dense in
X, also On is dense in X.

A
∂

=
⋂
n(A) 1

n
, so it suffices to show that for any ε > 0, (A)2ε is comeagre in

X. We give a winning strategy for P2 in the Banach-Mazur game for (A)2ε ⊆ X.
Set W0 := Y . On P2’s ith move (i ≥ 1), if the game state is Ui, the strategy

tells P2 to choose Wi ⊆ Y an open non-empty dY -ball of radius < 2−i such that
Wi ⊆Wi−1 ∩ (Ui)ε ∩Oi, then play Vi := Ui ∩ (Wi)ε.
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Claim 5.7. Such a Wi exists.

Proof. Ai := Wi−1 ∩ (Ui)ε is non-empty; this holds for i = 1 because W0 = Y
is dense, and for i > 1 because ∅ 6= Ui ⊆ (Wi−1)ε by the rules of the game.

Now Ai is open in Y since Ui has open enlargements and the topology on Y
refines the subspace topology, so Ai intersects the dense open Oi in a non-empty
open set.

Now Vi is open since Wi has open enlargements, and is non-empty since
∅ 6= Wi ⊆ (Ui)ε.

Now say x ∈
⋂
Ui for a game where P2 plays according to this strategy.

Then for each i, x ∈ Ui+1 ⊆ (Wi)ε, so say yi ∈ Wi with ∂(x, yi) < ε. Let
y := limdY

i yi. Then A ⊇
⋂
On ⊇

⋂
Wi = {y}.

Now by topological lower semi-continuity of ∂, ∂(x, y) ≤ ε. So x ∈ (A)2ε. So
the strategy is winning.

5.3 Proof of Theorem 5.4

Proof of Theorem 5.4. Let A ⊆ Aut(N )n be a comeagre orbit of the diagonal
conjugation action of Aut(N ). Let A′ ⊆ Aut(M)n be the orbit of the diagonal
conjugation action of Aut(M) containing A.

It suffices to show that the conditions of Theorem 5.6 hold for the pair

Aut(N )n ⊆ Aut(M)n, since then A′
∂ ⊇ A∂ is comeagre as required.

Claim 5.8. The topology on Aut(N )n ⊆ Aut(M)n refines the subspace topol-
ogy.

Proof. Assume n = 1; the same proof goes through in general.
Let U ⊆ Aut(M) be a subbasic open set of the form

U = {β ∈ Aut(M) : d(β(a), b) < ε}.

Let β ∈ U ∩ Aut(N ). Let a′ ∈ N such that r := ε − d(β(a′), b) > 0 and
d(a, a′) < r

2 .
Let V := {β′ ∈ Aut(N ) : d(β′(a′), β(a′)) < r

2} ⊆op Aut(N ). Then β ∈ V ,
and V ⊆ U ∩Aut(N ) since if β′ ∈ V then

d(β′(a), b) ≤ d(β′(a), β′(a′)) + d(β′(a′), β(a′)) + d(β(a′), b)

= d(a, a′) + d(β′(a′), β(a′)) + d(β(a′), b)

<
r

2
+
r

2
+ (ε− r)

= ε.

So U ∩Aut(N ) ⊆op Aut(N ).

Claim 5.9. Any open subset U ⊆ Aut(M)n has open enlargements.

Proof. (U)ε = ({1})ε · U .

The other conditions follow immediately from the definition of a good ap-
proximating substructure.
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6 Automatic contiuity for Aut([0, 1], λ)p

Fact 6.1 (Kechris-Rosendal). A is the Frassé limit of the class of finite measured
boolean algebras where the measure takes dyadic rational values.

Proof of Lemma 5.3. (i) By regularity of Lebesgue measure, everyX ∈ MALG
is of the form X =

∧
i<ω Ui where Ui is open, so X =

∧
i<ω

∨
j<ω Iij where

Iij is a dyadic interval.

(ii) Extend σ ∈ Aut(A) to MALG by continuity, σ limiXi := limi σXi if
Xi ∈ A.

Then σ preserves λ, and σ preserves boolean operations since they are
continuous, e.g. σ¬ limiXi = σ limi ¬Xi = limi σ¬Xi = limi ¬σXi =
¬ limi σXi = ¬σ limiXi.

(iii) It suffices to show that if β ∈ Aut(MALG) and B1, . . . , Bn ∈ MALG and
ε > 0, then there exists β′ ∈ Aut(A) with d(β(Bi), β

′(Bi)) < ε.

We may assume B1, . . . , Bn are the atoms of a finite subalgebra of MALG.

Take approximations from below Bi ⊇ B′i ∈ A for i > 1 with λ(Bi \B′i) <
ε/n. Set B′1 := ¬(

∨
i>1B

′
i) ∈ A, so λ(B′1 \B1) < ε.

Similarly obtain disjoint approximations C ′i ∈ A to β(Bi) with λ(B′i) =
λ(C ′i).

Then B′i 7→ C ′i extends to an isomorphism of the generated finite dyadic
rational subalgebras, so by homogeneity extends to β′ ∈ Aut(A).

(iv) In fact we show this not for ∂ but for the equivalent metric ∂′

∂′(α, β) := λ(supp(α−1β)).

Take U ⊆ Aut(A) a basic open neighbourhood of id,

U = {α :

n∧
i=1

α(Bi) = Bi}.

WLOG B1, . . . , Bn are the atoms of a finite subalgebra of A.

Claim 6.2.

(U)ε = {β : Σni=1λ(Bi \ β−1(Bi)) < ε} =: U ′ε.

Proof. ⊆ is clear.

For the converse, note λ(Bi \ β−1(Bi)) = λ(Bi \ β(Bi)); indeed,

λ(Bi \ β−1(Bi)) = λ(Bi)− λ(Bi ∩ β−1(Bi))

= λ(β−1(Bi))− λ(Bi ∩ β−1(Bi))

= λ(β−1(Bi) \Bi)
= λ(Bi \ β(Bi)).

Let β ∈ U ′ε. Define β′ setting it on Bi \ β−1(Bi) to be an arbitrary
isomorphism with Bi \β(Bi), and otherwise to agree with β. Then β′ ∈ U .
So β ∈ (U)ε by definition of U ′ε and of ∂′.
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So (U)ε is open, as required.

Fact 6.3 (Kechris-Rosendal). Aut(A) has ample generics.

Fact 6.4. Any homomorphism from Aut([0, 1], λ)p to a separable group is con-
tinuous.

Corollary 6.5. The topometric group (Aut(MALG); τ, ∂′) has ample generics,
hence by Theorem 4.2, any homomorphism from Aut([0, 1], λ)u to a separable
group is continuous.


