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We introduced the theory Psf of pseudofinite fields. We called a field K
pseudofinite if it has the following properties:

m K is perfect;
w Gal (K¥%/K) ~ 7,
m K is pseudo-algebraically closed (PAC).
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Preparation

Lemma 1 (Facts about regular and linear disjoint extensions)

Let K C E, F C Q be fields. Assume further that E and F are linearly
disjoint over K. Then:

If K is perfect, then E/K is regular iff E N K& = K.

The natural map E ®k F — € given by a ® b+ ab is injective with
image E[F]. (Conversely, this implies linear disjointness.)

Similarly, if A C E is a ring containing K, then the natural map
A®k F — Q is injective with image A[F].

If F/K is algebraic, then E[F] is a field (as union of finite extensions
of E) and hence the image of the map E ®x F — Q is EF. (In
particular, if E/K is regular, then E @ K8 = EK?¢ = E[K?%].)
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Embedding Lemma
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Lemma 2 (Embedding lemma for psudofinite fields)

Let K C E, F be perfect fields such that:
E/K and F/K are regular;
E is countable and Gal(E*2/E) ~ 7
F is N;-saturated and pseudofinite.

Then there exists a K-embedding ¢ : E — F such that F is a regular
extension of ¢(E).

Proof:

m Rough idea: Construct a closed subgroup of Gal(E€F?¢/EF) such
that the restrictions to Gal(E®'8/E) and Gal(F?'8/F) are
isomorphisms. Then consider the fixed field of this subgroup.

m For this we want E€ and F?'8 to be linearly disjoint over K?'&.
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m Let Q be a common algebraically closed extension of E2'8 and F?'8
such that £2'¢ and F?'¢ are algebraically independent over K?'¢.

Theorem (see [Lan02, VIII, Thm. 4.12]). Let Ly, L, C Q be fields free
over a common subfield k with L;/k regular. Then L; and L, are linearly
disjoint over k.

m It follows that £2'8 and F?'8 are linearly disjoint over K2'&.
= Notice that E2'8F28/EF is Galois:
m E and F are perfect, hence EF is perfect as well. (The elements of
> eif )
2 et}
m E28F€/EF is normal: Every EF-embedding of E¥'$F¢ in an
algebraic closure is an automorphism of E¥€F2s.

EF have the form
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Claim. The map
o+ Gal (E¥SF¥S /EF) = Gal (E*/E) X gu(wos ) Gal (F¥/F)
T = (7 | gate, T [ Fete)
is an isomorphism (of topological groups).
Proof:

B 7 — T[gag and 7 — 7 [fag are continuous homomorphisms. By the
universal property of the product, it follows that 7 +— (7 [gas, 7 [ Fais)
is a continuous homomorphism.

m Injectivity is clear (consider the form of the elements of E28F3le).
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m Surjectivity:
m Let 01 € Gal(E™®/E), 02 € Gal(F™/F) with o1 [gag= 02 | xals.
m Since E* and F® are linearly disjoint over K¢, we have
Ealg ®Ka|g Falg i} Ealg[FaIg]
a® b ab.

m Then a® b+ o1(a) ® o2(b) defines a ring automorphism of
E*® ® a5 F*'® and hence of E*'8[F?'%], which fixes E and F.
m It extends to an EF-automorphism of the quotient field E&F€,

O (Claim)

7/24



Preparation Embedding Lemma Emt g ma 2 ( tion Corollar
00000000000 o

Recall: Gal(E®€/E) ~ 7. ~ Gal(F?'/F). We want to consider the graph
of an isomorphism Gal (E?'€/E) = Gal(F?'/F) as a closed subgroup of
Gal (E™8 | E) X gor (ke /1) Gal (F'8/F).

Remark. Let G, H be topological groups and f : G = Han
isomorphism. Then the map

G—->GxH
g+ (g:f(g))
defines an isomorphism of topological groups between G and
graph(f) = {(g,7(g)) | g € G} C G x H (the latter endowed with the

subspace topology). If G is Hausdorff, then graph(f) C G x H is a closed
subgroup.

We need an isomorphism W : Gal (E?'€/E) = Gal(F¢/F), whose graph
lies in Gal (E™'8/E) X gu(koe /i) Gal (F?'8/F). In other words:

Got(e/E) —> Gl (FHI/F)
~_

3 &
W(K“‘zm)
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Facts about Z (see [Cha05, Sec. 3]).

If G is a profinite group, f : 7 — G a continuous epimorphism and
o € G a topological generator of G (i.e. (o) is dense in G), then

'n

f~1(o) contains a topological generator of Z.

Let a,b € Z be topological generators. Then a — b extends to an
automorphism of Z.

We use this to define W:
m Let o € Gal(E?'%/E) ~ 7. be a topological generator.

m The restriction of [ks€ Gal (K8 /K) is a topological generator, i.e.

(o€ ko) = Gal (K8 /K):
By continuity, the preimage of (o [kas) is closed (and it contains

(oE)), hence it is identical to (og) = Gal(E*®/E). The result
follows by surjectivity of the restriction map
Gal(E*8/E) — Gal(K¥'8/K) (using regularity of E/K).

m By Fact (1), o [k extends to a topological generator of
Gal(F8/F) ~ 7, call it 0.
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m By Fact (2), og — of extends to an isomorphism
W : Gal(E¥€/E) =5 Gal(F¥€/F), which is as required:
m By definition, we have og [xae= V(0E) | cals -
m Obviously, this extends to the generated subgroups, i.e. for o € (og),
we have o [ kas= V(o) [ xale .-
m By continuity of W, this property extends to the closure

(o) = Gal(E™*/E).
Using the Remark, we get that

graph(V) = {(07\U(0)) |o e ga[(Ea'g(E)}
- ga[(Ealg/E) Xga[(Kalg/K) ga[(Falg/F)
is a closed subgroup isomorphic to Z with topological generator (cg, oF).

Set
Hy := o *(graph(V)) C Gal(E*8F' /EF),

Ty = 04_1((05701:)) € Hy.
(By definition of «, we have 7y [gas= o and Ty [Fas= 0F.)
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Let M C E'8F2'8 be the fixed field of Ty (whlch is |dent|cal to the fixed

field of Hy = (1y)).

Claim.
M/E and M/F are regular extensions.
E?eF3e — MF2e = M[F?'8]. (In particular, E2'8 C M[F?#].)

Proof:
Since Ty [pae= 0 and Ty [Fae= 0F, we have M N E?'8€ = E and
MnNFe =F.
(Notice that the fixed field of a topological generator is the ground
field.)

The second equality follows from F2'8 being algebraic over M. For
the first, it suffices to show that Gal(E*'8F?'e/MF?'e) = {id}:
m Let 7 € Gal(E*8F?¢/MF?").
m Then 7 € Gal(E*F*8 /M) = Hy ~ graph(¥) and
T patg= idpaig € Gal (F'€/F).
m It follows that 7 [ pae= W' (idpaig) = idzale.
m Consequently, 7 = id gaig palg -

O (Claim)
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m By countability of E, let E C My C M be a countable intermediate
field such that E2'8 C F2'8[My].

m Since M/F is regular, FMy/F is regular.

al
Fa\(ﬂ [ M1 ~ F 3 G;:F[Me]

EA‘J FTAO E a(g
FMo1 JF
#
Mo
7
E

Lemma from last week — statement (2) (see [Cha05, 6.7]). Let F be
a perfect N;-saturated PAC field and A a countable subset of some field
containing F such that F(A)/F is regular. Then there exists an
F-homomorphism F[A] — F.
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m It follows that there is an F-homomorphism F[Mp] — F, which
extends to an F2'8-homomorphism ¢ : F8[M,] — F2'8.

m We show that this is the ¢ we are looking for (more precisely, ¢ [g).
Notice: ¢ [g is a K-embedding E — F (since K C F?¢ and
E C My).

m It remains to show that F/¢(E) is regular.
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Claim. For a € E?'%, we have ¢(0g(a)) = ar(¢(a)).

Proof:
m Write a =Y, m;b; with m; € My and b; € F?8.
m Firstly:

= 6( > mioe(b )) {Tw Im=idy and Ty [Fas=

Il
-M /\

&= idp |

oF
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m Secondly:

= Z(b(m;)ap(b;) {qb(Mo) C F and o [r=idf

O (Claim)
We conclude that F/¢(E) is regular. It suffices to show that
H(E®) N F = ¢(E). Let a € E¥% with ¢(a) € F. Then:
or(¢(a)) = #(a)
= ¢(0e(a) = 6(a) |Claim|
=op(a)=a
—ackE [@ = ga[(Ea'g/E)]
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Embedding Lemma 2

Lemma 3 (Embedding lemma — 2nd version)

Let K C E and K’ C F be perfect fields such that:
o: K = K’ is an isomorphism;
E/K and F/K’ are regular;
E is countable and Gal(E*2/E) ~ 7.
F is Nj-saturated and pseudofinite.

Then there exists an embedding ¢’ : E — F, which extends ¢ and such
that F is a regular extension of ¢'(E).

Proof:

Extend ¢ to an embedding ¢g with domain E and apply the Embedding
Lemma to ¢o(E)/K’.
O
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Proposition 4

Let E and F be pseudofinite fields, which are regular extensions of a
common perfect subfield K. Then E = F.

Proof:
WLOG we may assume:

m E and F are Ry-saturated. (Otherwise consider Y;-saturated
elementary extensions. They are also pseudofinite and — by being
regular extensions of E and F — regular extensions of K.)

m K is countable, otherwise:

m Show E =4 F for all countable subsets A C K.
m By Lowenheim-Skolem, let A C K’ < K be a countable elementary

substructure.
m K’ is perfect, since K is. Furthermore, K/K', E/K and F/K being
regular implies that E/K’ and F/K' are regular.
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We build recursively sequences of partial K-isomorphisms
(i - E ==+ F)icw and (¢; : F --» E);<,, with the following properties:

m dom(¢;) and dom();) are countable subfields containing K.

m dom(¢;) =< E and F/im(¢;) is regular.

m dom(%);) < F and E/im(%);) is regular.

m v); extends (b,-_l and ¢;;1 extends wi_l.
Then |J ¢; is a K-isomorphism between E’ := J;_, dom(¢;) < E and
F':=J;.,, dom(1);) = F. Hence E' =k F’ and so E =k F.
As for the construction:

m ¢o: Let Ey < E be countable containing K. We have that Ey/K is
regular and Ej is pseudofinite. By the embedding lemma, there
exists a K-embedding ¢g : Eg — F, such that F/im(¢) is regular.

m to: Let Fp < F be countable containing im(¢o). We have that
Fo/im(¢o) is regular and Fy is pseudofinite. By the embedding
lemma (version 2), there exists an extension g : Fp — E of gbo_l,
such that E/im(t)o) is regular.

m For the inductive step, proceed as for 1.

18/24



Corollary

Corollary 5

Let E C F be pseudofinite fields. Then E < F iff F/E is regular (i.e.
EdNF =E).
Proof:

“=": Elementary substructures are relatively algebraically closed.
“<": Apply Proposition 4 to K := E.
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Let E and F be pseudofinite fields and K a common subfield. Then
E=x F < ENK ~ FN K.

(“=" holds for arbitrary fields, see [Cha05, remark after (6.13)]).
Proof:

e
m WLOG EN K38 = FN K?e =: K’. (Otherwise, let

f: ENK3¥ = FN K3 be a K-isomorphism, consider an extension
f’ to E, and apply the result to '(E).)

m Since E is perfect, K’ is perfect. Furthermore, it follows that E and
F are regular extensions of K.

m By Proposition 4, it follows E =+ F. In particular, E = F.
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“=": (We work in a common algebraically closed extension.)
Step 1. Let L be a finite Galois extension of K, then ENL ~x FNL:

m By the primitive element theorem and separability, EN L = K(«) for
some o € ENL.

m E = F implies that the minimal polynomial of « over K has a zero
o' € F. By normality, o/ € L and hence K(a/) C FN L.

m The K-embedding ENL — F N L given by the isomorphism
K(a) ~ K(a/) implies [EN K : K] <[FN K : K]. By symmetry, we
have [ENK : K] =[FN K : K], and hence FN K = K(a/). Thus,
the embedding is an isomorphism.
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Step 2. EN K™ ~y F N K=P:
Let AV be the set of all finite Galois extensions of K. For L € N consider

S = {0 € Gal(K®/K) |o(ENL)=FnL}.

Claim: (N, St # 0.

mBystepl, S, #0 forall Le N.
m Finite intersections are non-empty: For L C M € N/, we have
S. 2 Sy In particular, for L, M € N/, we have S; NSy D Sy m.

m 5. C Gal(K*P/K) is closed for all L € N:
m For o € 5, and 7 € Gal(K*? /L), we have 7o € 5;. Hence, S, is a

union of cosets of Gal(K*®/L).
m Furthermore, Gal(K*® /L) is an open and hence clopen subgroup. It
follows that arbitrary unions of cosets are clopen.

m The claim follows by compactness of Gal/(K*P/K).

Any o € [ cpr St restricts to a K-isomorphism E N K= = FnKser.
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Step 3. EN K& ~, FN K?e:

m An isomorphism £ N K% = F N KP extends (uniquely) to an
isomorphism (E N KsP)Perf =5 (F 0 Ksep)perf
m But
(0 K=nyper — £ ) (K)o — E (1 K,

since E is perfect; analogously for F. O
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Completions

Corollary 7 (The completions of Psf)
Let E and F be pseudofinite fields with prime fields Eq and Fy. Then:

E=F< ENE®~FnF"®
= {f(X) € ZIX] | E £ Ix.f(x) =0} =
{f(X) € Z[X] | F £ 3x.f(x) = 0}.

Proof:
The first equivalence follows directly from Theorem 6.

As for the second equivalence: “=-" is obvious. “<" follows from the
proof of the "="-direction of Theorem 6. Notice that also the
characteristic is fixed by the given set of polynomials. Notice further that
for characteristic 0, the polynomials over Q with roots are determined by
those over Z. O

“ "
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