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Abstract. We classify in®nite sharply n-transitive groups de®nable in o-minimal structures, for
n � 2; 3. For n � 2 we show that these are de®nably isomorphic to the general a½ne linear
groups G GK�cK � where K is either a real closed ®eld R, its algebraic closure R�i� or the
skew ®eld H�R� of quaternions over R. For n � 3, these groups are de®nably isomorphic to
groups of the form PGL2�K� for K � R or K � R�i�. There are no 4-transitive groups de®n-
able in o-minimal structures.

1981 Mathematics Subject Classi®cation: 03C, 20B.

1 Preliminaries: Group actions and near-domains

We classify in®nite sharply 2-transitive and sharply 3-transitive groups de®nable in
o-minimal structures. Tits [Ti4] showed that there are no in®nite sharply n-transitive
groups for nV 4, and in fact we show here that in o-minimal structures there are
no in®nite 4-transitive groups at all. Note that we do not assume the groups to be
de®nably connected. For background about groups de®nable in o-minimal structures
refer to [Pi] and [PPS1].

Let us ®rst collect some general facts about 2-transitive groups. Note ®rst that 2-
transitivity easily implies that the action is primitive. Assume that G acts e¨ectively
(i.e. only the identity ®xes all elements of X ) and 2-transitively on a set X with
jX j > 2.

The following facts are well-known:

1.1 Facts. (i) For any x A X , the stabilizer Gx is a maximal subgroup of G (see eg. [Ja],
Thm 1.12) and clearly, the action of G on X is equivalent to the action of G by left
multiplication on the coset space G=Gx.

(ii) Any nontrivial normal subgroup N of G acts transitively. If N is an abelian, the
action of N is regular and G is a semidirect product G � N cGx. This clearly implies
that G is centerless and does not contain ®nite normal subgroups if X is in®nite.

(iii) In particular, we will make use of the fact due to Tits that for a sharply

2-transitive group G the following are equivalent (see [Ti2], p. 208):
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(a) G has a non-trivial normal subgroup.

(b) G has a non-trivial abelian normal subgroup.

(c) The set I 2 � fi � j : i2 � j2 � 1; i; j A G; i; j 0 1g is a subgroup of G in which case
it is abelian and normal.

In this case we say that G splits.

The study of sharply 2-transitive groups is equivalent to the study of so called near-

domains. A near-domain is a structure �D;�; �; 0; 1�, where �D�; �; 1� is a group,
�D;�; 0� is a loop (i.e. x� 0 � 0� x � x holds for all x A D, and the equations
a� x � b and x� a � b have unique solutions in x for all a; b A D) with 0 � a �
a � 0 � 0 and �a� b� � c � ac� bc. Furthermore, for any a; b A D there exists a
unique da;b A D� with a� �b� x� � �a� b� � da;bx. A near-domain D where
�D;�; 0� is a (necessarily commutative) group is called near®eld, hence a near®eld
satis®es all axioms of a ®eld except possibly the left distributive law. Note that if
�D�; �; 1� is an abelian group, then the near®eld is in fact a commutative ®eld.

In any sharply 2-transitive group, one naturally de®nes an associated near-domain,
and conversely in any near-domain one can easily de®ne a sharply 2-transitive group,
see e.g. [BN] p. 225. A near-domain D is a near®eld if and only if the associated
group G is split, i.e. G � AcH, in which case H � Gx is the stabilizer of a point
x A X and A is an abelian normal subgroup acting regularly on X. Then H acts
regularly on Anf0g, so A has the structure of a K-vector space for some ®eld K. We
call a subgroup of GL�n;K� regular if it acts regularly on K nnf0g.

1.2 Examples. Typical examples of sharply 2-transitive groups are the general a½ne
groups over any ®eld K. The Kalscheuer near®elds �D;�; �; 0; 1� (s. [Ka]), which are
de®ned on the quaternions as so-called Dickson near®elds are less obvious examples.
Here we have �D;��G �R4;�� (so we consider �D�; �� as a subgroup of GL�4;R��
and the near®eld multiplication is de®ned by x � y � xexp�ir logjyj� � y for ®xed r A R,
where the right-hand side is evaluated in the quaternions and the identi®cation is via
the regular action on R4. For r � 0, this just yields the quaternions (s. [S. et al.] 64.20
for a description of these examples).

Finite sharply 2-transitive groups split, and all ®nite near®elds have been classi®ed by
Zassenhaus [Za]. Continuous near®elds over the reals were classi®ed by Kalscheuer
[Ka], but it turns out that the (proper) Kalscheuer near®elds are nevertheless not
compatible with o-minimality. Locally compact near®elds in characteristic 0 were
classi®ed by Tits and GrundhoÈfer (see [Ti2, Ti3, Gr87]). The close connection
between Lie algebras and groups de®nable in o-minimal structures developed in
[PPS1] allows us to transfer results from [Gr87] to the o-minimal situation.

Cherlin, GrundhoÈfer et al. [CGNV] showed that the only near®elds of ®nite
Morley rank in characteristic 0 are algebraically closed ®elds. In other characteristics
the problem is open.

In the o-minimal context, related results about groups acting de®nably on sets of
dimension 1 were obtained by Mosley in his Ph.D. thesis, see Sec. 6±8 of [MMT].
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One of the main results in [MMT], which were obtained after this paper has ®rst been
submitted, is that any de®nably primitive permutation group in an o-minimal struc-
ture is semialgebraic. However, the proof of this fact is rather involved and does not
in general simplify the arguments of this paper signi®cantly. So we prefer giving
direct proofs wherever possible. Under the additional assumption of uniform elimi-
nation of imaginaries, [NPR] classi®ed connected groups of dimension 2 and 3 de®n-
able in o-minimal structures.

I would like to thank Th. GrundhoÈfer and L. Kramer for helpful discussions. Also
I thank the referee for suggestions concerning the organization of the paper and
simplifying some arguments.

2 Sharply 2-transitive groups

In this section we prove the following

2.1 Theorem. Let G be a group de®nable in an o-minimal structure M, acting de®nably

and sharply 2-transitively on an in®nite de®nable set X. Then G is de®nably isomorphic
as a permutation group to the general a½ne linear groups G GK�cK � acting on the

a½ne line of K where K is either a real closed ®eld R, its algebraic closure R�i� or the

skew ®eld H�R� of quaternions over R. In particular, any near-domain de®nable in an

o-minimal structure M is isomorphic to R, R�i� or H�R� for a real closed ®eld R.

We will use the following results from [PPS1]:

2.2 Fact (i) ([PPS1], Thm. 4.1). Any connected centerless group in an o-minimal struc-

ture either has a nontrivial abelian normal de®nable subgroup, or is a direct product of

de®nably simple groups.

(ii) ([PPS1], Cor. 4.4). Any de®nably simple group in an o-minimal structure is de®n-

ably isomorphic to a semialgebraic linear group over some real closed ®eld.

We will also make repeated use of the following fact:

2.3 Proposition. A connected centerless group de®nable in an o-minimal structure does

not contain in®nite subgroups of bounded exponent.

Proof. By [PPS1] Thm. 3.2 we may assume that such a group is a direct product of
subgroups of GL�ni;Ri� for real closed ®elds Ri and numbers ni. But by Burnside's
theorem [Ro], 8.1.11, GL�ni;Ri� does not contain in®nite subgroups of bounded
exponent. r

2.4 Lemma. An e¨ective 2-transitive group G in an o-minimal structure cannot be a

direct product of non-trivial de®nable subgroups.

Proof. If G � H1 �H2, then both H1 and H2 act transitively by 1.1 (ii). Since ele-
ments of di¨erent factors commute, the stabilizers in each factor have to be trivial
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(for if ah � a for some a A X and h A H1, then for all h 0 A H2 we have ah 0h �
ahh 0 � ah 0 , so h ®xes all of X ), hence each factor has to act regularly. So both factors
are isomorphic via the map fa : G1 C g 7! g 0 A G2 with agg 0 � a which is easily seen to
be an isomorphism. So we can identify X and H � H1, say, so that G acts on H via
�g1; g2� : h 7! gÿ1

1 hg2. Note that the stabilizer of 1 A H is G1 � f�g; g� : g A Hg. Since
G1 acts transitively on Hnf1g this implies that all elements of H are conjugate. On
the other hand, H must be simple as any normal subgroup of H is normal in G and
therefore must be transitive. By [PPS2] Thm. 1.1., H is isomorphic to the k-rational
points of a k-simple algebraic group de®ned for some real closed ®eld or its algebraic
closure k. Thus, either H is k-isotropic, in which case it contains unipotent and
semisimple elements which cannot be conjugate, or it is anisotropic and then contains
elements of any ®nite order. r

Unless stated otherwise, throughout this section we assume G and X to satisfy the
assumptions of Theorem 2.1.

In [PPS1] it was shown that if G acts transitively on X, then X can be equipped in a
unique way with a manifold structure such that the action of G on X is continuous.
The topologies that are being referred to below are these manifold topologies,
as opposed to the topology induced from the order topology on the ambiente
structure M.

2.5 Lemma. X is de®nably connected. If dim X > 1, then G and the stabilizer Gx of any

x A X are de®nably connected as well.

Proof. By general properties of o-minimal structures, X has only ®nitely many
de®nably connected components. Let AHX be a connected component, and x0
y A A. For any z A X , there is some g A Gx with yg � z. Since the action of g is
continuous, it takes connected components to connected components, and x A Ag X
A, so Ag � A. Hence we must have z A A, so X is de®nably connected.

If dim X � k > 1, then by the transitive action of G every x A X has an open
neighbourhood of dimension k, and hence Xnfxg is still de®nably connected. Since
Gx acts regularly on Xnfxg, this easily implies that Gx is de®nably connected. Now
G � G0 � Gx, so G is de®nably connected as well. r

The following lemma I learned from K. Peterzil. I thank him for allowing me to
include it here.

2.6 Lemma. If G is de®nably simple, then any maximal de®nable subgroup H of G is

semi-algebraic.

Proof. Any de®nably simple group is semi-algebraic, so we may assume that the
o-minimal structure M is in fact an o-minimal expansion of a real closed ®eld and we
can consider the Lie algebra structure of G. Let H 0 be the M-connected component
of H, i.e. the minimal M-de®nable subgroup of ®nite index in H. Note that H 0 is
non-trivial since otherwise H and hence X would be ®nite. The Lie algebra g of G is
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de®nable in the ®eld structure of R, and the Lie algebra h of H 0 is a Lie subalgebra
of g, hence also de®nable in the ®eld structure. For any g A G, a�g� : x 7! gÿ1xg is
an R-de®nable automorphism of G, hence adj�g� � de�a�g�� is an R-de®nable
automorphism of g, by [PPS1], Claim 2.28. By [PPS1], 2.19 and 2.30, the normalizer
of H 0 is R-de®nable as N�H0� � fg A G : adj�g�hJ hg. Since H is a maximal
de®nable subgroup and H 0 is not normal in G, we must have N�H 0� � H, so H is
indeed R-de®nable. r

2.7 Lemma. If G is a sharply 2-transitive group de®nable in an o-minimal structure M,
then G is split.

Proof. First assume that dim X � 1, so dim G � dim G0 � 2. Then G0 must be
centerless, since its center would be an abelian normal subgroup in G and hence
regular on X contradicting the sharp 2-transitivity of G. So G0 can neither be de®n-
ably simple nor a product of de®nably simple groups because semi-algebraic groups
of dimension at most 2 are solvable. So G0 must have an abelian normal subgroup A

of dimension 1, which must be normal in G and hence acts regularly on X, showing G

to be split.
Quoting [MMT] we could alternatively argue as follows: G0 is isomorphic to

R�cR�>0 for some real closed ®eld R. As Gx acts transitively on Rnf0g, there must
be some element a A Gx taking 1 to ÿ1. This element induces a de®nable auto-
morphism of the additive group of R and therefore must be R-linear, so it must be
multiplication by ÿ1. This shows that Gx is the multiplicative group of R acting on
the additive group of R. The argument is a special case of the more general Lemma
2.9 below.

Suppose now that dim X > 1. Then G is connected and thus either de®nably simple
by Lemma 2.4 or split. Assume towards a contradiction that G is de®nably simple
and hence semialgebraic. Using the previous lemma, we may therefore assume that
M carries only the ®eld structure of some real closed ®eld R. But by [Ti2, Ti3], all
continuous locally compact not totally disconnected sharply 2-transitive groups are
split. Hence in the reals the following is true for any formula j in the language of
real closed ®elds: If j de®nes a sharply 2-transitive group G, then I 2 � fij; i; j A G;
i2 � j2 � 1; i; j 0 1g is a subgroup; hence G is split. By the completeness of the the-
ory of real closed ®elds, the same is true in any real closed ®eld R, so there are no
de®nably simple sharply 2-transitive groups de®nable in an o-minimal structure. r

2.8 Remark. We could have used the transfer argument immediately after quoting
from [MMT] that all primitive permutation groups in o-minimal structures are semi-
algebraic. However this direct argument is much shorter than the argument for the
general primitive case in [MMT].

2.9 Lemma. There is a de®nable real closed ®eld R and some n such that G is de®nably
isomorphic to a semidirect product AcH of an n-dimensional vector space A and a

subgroup H UGL�n;R�.
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Proof. By Lemma 2.7, we know that G � AcH for some abelian normal subgroup
A on which H acts regularly as a group of automorphisms. By [PPS1] Thm. 3.2, we
may assume that G0 � AcH 0 UGL�m;R� for some m and some real closed ®eld
R. Hence A is either an elementary abelian p-group, which is impossible by Propo-
sition 2.3, or a torsion-free divisible abelian group. Thus A is a vector space over the
rationals, which is irreducible as an H-module. By Schur's Lemma, the centralizer K

of H in the ring of H-endomorphisms of A is a division ring, and A is a K-vector
space with H UGLK�A�. For ®xed v A Anf0g and a A K with a�v� � w we must have
a�vg� � vag � wg for all g A H. Thus K can be (de®nably) identi®ed with the set of
w A A for which the map ~w : A! A de®ned by vg 7! wg is an H-endomorphism. The
center of K is an in®nite de®nable ®eld containing the rationals, so K is isomorphic
either to R, its algebraic closure R�i� or the skew ®eld H�R� of quaternions over R
by [OPP]. Since the o-minimal dimension of A is ®nite, A is a ®nite dimensional
K-vector space, so also a ®nite dimensional R-vector space with H UGLR�A�. r

Thus we may now assume that M is in fact an o-minimal expansion of a real closed
®eld, and hence quotients of de®nable groups by de®nable subgroups are again
de®nable (see [vdD], Ch. 8).

The additive group of the quaternions H�R� being isomorphic to a 4-dimensional
R-vector space, its multiplicative group H�R�� has a standard embedding into
GL�4;R�, as described in the Kalscheuer examples in the introduction. Clearly, a real
closed ®eld R de®nable in an o-minimal structure cannot have non-trivial de®nable
automorphisms as the ®xed ®eld always contains the rationals. Therefore any de®n-
able R-semilinear transformation of a de®nable R-vector space must be R-linear.
Hence the only non-trivial de®nable ®eld automorphism of R�i� is complex
conjugation and all de®nable automorphisms of the quaternions H�R� must be R-
linear. It follows as over the reals that the group of R-linear automorphisms of H�R�
consists of inner automorphisms and is isomorphic to SO3�R� (see [S. et al.] 11.29).
Therefore, the group GLR�H�R�� of R-linear H�R�-semilinear transformations of
the 1-dimensional quaternionic vector space H�R� is a semidirect product H�R��c
SO3�R� and thus itself has a natural embedding into GL�4;R�. Note that if R is
a real closed ®eld with non-trivial automorphisms, then GLR�H�R�� is a proper
subgroup of GL�H�R��. Thus GLR�H�R�� is exactly the group of semialgebraic
H�R�-semilinear transformations of the 1-dimensional H�R�-vectorspace H�R�.

As usual, for any skew®eld K we let GL�1;K� denote the group of invertible
K-linear transformations of the 1-dimensional K-vectorspace K. Of course, this is
exactly K �.

The proof of Theorem 2.1 will use the following result of [Gr87]:

2.10 Theorem ([Gr87] Thm. 2 and 3). Let R be a real closed ®eld and let L be a Lie

subalgebra of gl�n;R� which has dimension n over R and such that every nonzero ele-

ment of L is invertible. Then n � 1; 2 or 4. Moreover, if D is the unique division ring

over R of dimension n, then LULie�GLR�1;D��, L � Z�L�lL 0 and L 0 � D 0 where

D 0 denotes the commutator algebra of D�UGL�4;R�.
We will also make repeated use of the following fact:
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2.11 Fact ([PPS1], 2.19). If H1 and H2 are de®nably connected de®nable subgroups of
a de®nable group G with respective Lie algebras h1 and h2, then H1 JH2 if and only
if h1 J h2.

Proof of Theorem 2.1. By Lemma 2.7, G splits as AcH and by 2.9 A is a ®nite
dimensional R-vector space with H UGL�n;R� where n � dimR A. Since H acts
regularly on Anf0g, the dimension of H and its Lie algebra h must equal n. The
stabilizer in H of any element in A is trivial, so it follows from [PPS1], Theorem
2.18.1 that hnf0g consists of invertible elements, so hnf0gJGL�n;R�. We can apply
2.10, to conclude that h has a direct sum decomposition as h � Z�h�l h 0 where
h 0 � D 0 is the commutator algebra of some skew ®eld DJEnd�Rn� with dimR D �
n. In particular, n � 1; 2 or 4.

If n � 1, clearly the only regular subgroup of GL�1;R� is H � GL�1;R�, so
G GR�cR� and the near®eld associated to G is the real closed ®eld R.

Let now nV 2. We know that H is de®nably connected. If h 0 � 0, then h is com-
mutative, so H is abelian by [PPS1], Claim 2.31.1. Hence the near®eld associated to G

is the commutative ®eld K � R or R�i�, and G GK�cK �.
If h 0 � D 00 0, then we must have n � 4 and D is the skew ®eld of quaternions

H�R� over R. By 2.11 and 2.10 we have H UGLR�1;D� � GL�1;D�c SO3�R�. We
have to show that in fact H � GL�1;D�.

It is well-known that h 0 � su�2;R�JGL�4;R�W f0g, and that the commutator
subgroup �D��0 of the multiplicative group D� � GL�1;D� is canonically isomorphic
to the semialgebraic group SU�2;R�i��. So �D��0 is a de®nable group with Lie
algebra h 0 � D 0. By 2.10 and 2.11 again, H contains �D��0 and is an almost direct
product of �D��0 and Z�H�0. Therefore Z�H�0 is abelian of dimension 1 and must be
torsion-free as otherwise Z�H�0, thus H and consequently Anf0g would be de®nably
compact which is impossible.

The projection of H UGLR�1;D� � GL�1;D�c SO3�R� onto SO3�R� is a de®n-
able homomorphism j : H ! SO3�R� which is trivial on �D��0 as �D��0 is contained
in GL�1;D�. Since we have de®nable quotients, we therefore obtain a de®nable
homomorphism j 0 : Z�H�0 ! SO3�R�. As Z�H�0 has no ®nite subgoups, j 0 is either

trivial or an embedding. Assume towards a contradiction that j 0�Z�H�0�0 0, so it is
a de®nably connected abelian subgroup of SO3�R�. Then its Lie algebra j is a de®n-
able 1-dimensional subalgebra of the 3-dimensional Lie algebra so�3;R�, on which
SO�3;R� acts by the adjoint representation. The only 3-dimensional non-trivial
representation of SO�3;R� is the standard representation (see [S. et al.], p. 623, [Gh])
and this action is transitive on the 1-dimensional subspaces of R3. Hence SO�3;R�
acts transitively and de®nably on the 1-dimensional Lie subalgebras of so�3;R�,
which means that j is de®nably isomorphic to so�2;R� under the adjoint map of some
element g A SO�3;R�. The Lie algebra of the conjugate of SO�3;R� under g is j,
hence j 0�Z�H�0�G SO�2;R� by Fact 2.11. But SO2�R� contains elements of ®nite
order so that ker j 0 is an in®nite proper de®nable subgoup of Z�H�0 which is
impossible.

Hence H UGL�1;D� and since both groups act regularly on R4 we must have
equality, showing that de®nably G GD�cD�. r
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2.12 Corollary. Suppose that a group G acts de®nably and freely with ®nitely many

orbits on a de®nably connected abelian group A in some o-minimal structure M. Then
AcG is isomorphic to R�cR�>0 or to one of the sharply 2-transitive groups in The-

orem 2.1. This applies in particular, if G is a regular subgroup of GL�n;R� de®nable in

an o-minimal structure.

Proof. By considering AcG0, we de®ne a real closed ®eld R as in Lemma 2.9 by
®xing representatives for each orbit and a ®nite dimensional R-vector space structure
on A such that G0 UGL�n;R�. Hence the Lie algebra of G0 is n-dimensional without
eigenvalue 0, and as above we can apply [Gr89] Thm. 3. If n � 1, then G GR�>0 or
G GR�. The rest follows as in Theorem 2.1. r

2.13 Corollary. All near®eld planes de®nable in o-minimal structures are desarguesian.

Proof. This follows immediately from Theorem 2.1 since any near®eld plane de®nes a
near®eld through coordinatization.

Note that this is not true any more for the next weaker class of projective planes:
There are proper semi®elds de®nable in o-minimal structures (i.e. structures �A;�; ��
where �A;�� is a group, a � x � b and x � a � b have unique solutions in x for all
a; b A A and both distributive laws hold, but � need not be associative.) Take for
example �A;�� � �H�R�;�� and for t0 1

2 A R de®ne �t by a �t b � tab� �1ÿ t�ba

where the right hand-side is evaluated in the quaternions.

3 Sharply 3-transitive groups

Assume now that G is a sharply 3-transitive group de®nable in an o-minimal structure

M, acting de®nably and e¨ectively on some in®nite set X in some o-minimal structure

M. Again for dim X > 1, since Gx acts sharply 2-transitively on Xnfxg, Gx is de®n-
ably connected and hence G0 � G.

If dim X � 1, then Xnfxg is de®nably connected since Gx acts sharply 2-
transitively. So G0

x is still transitive on Xnfxg, implying that G0 is a Zassenhaus
group. As before, G0 is centerless and cannot be a direct product of de®nably simple
subgroups by 2.4.

3.1 Lemma. G does not split.

Proof. Assume towards a contradiction that G splits as G � AcH. But if H acted
2-transitively on Anf0g, any element of A would have to have order 2. Since A is
connected, and G0 � AcH 0 is centerless we contradict Proposition 2.3. r

3.2 Lemma. If dim X > 1, then G is de®nably simple.

Proof. By the previous lemma, G does not have a nontrivial abelian normal sub-
group. By Lemma 2.4 and 2.2 (i), G must be de®nably simple. r
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3.3 Proposition. If G acts sharply 3-transitively on a 1-dimensional set X, then G is

de®nably isomorphic to PGL�2;R� for some real closed ®eld R.

Proof. If dim X � 1, then it is not hard to see that G0 is a semi-algebraic Zassenhaus
group acting on the projective line of a real closed ®eld, i.e. G0 acts 2-transitively and
only the identity ®xes three distinct elements, hence using transfer from the reals,
G0 GPSL�2;R� acting on the projective line of R (alternatively, this follows again
from [MMT]). Now let H < G be the stabilizer of y. Then H acts sharply 2-
transitively on the a½ne line of R and after ®xing 0 A R acts as multiplication.
Therefore PGL�2;R� � PSL�2;R� �H UG, but since PGL�2;R� is 3-transitive we
must have equality. r

3.4 Theorem. If G is sharply 3-transitive, then G is de®nably permutation equivalent to
PGL2�K� acting on the projective line of K for some real closed ®eld R or its algebraic

closure R�i�.

Proof. For dim X � 1 this was proved in Proposition 3.3. For dim X > 1, we may
assume by Lemma 2.6 that M is just a real closed ®eld. The stabilizer Gx acts sharply
2-transitively on Xnfxg, so by Theorem 2.1 it induces on Xfxg the structure of the
a½ne line of some skew ®eld K. As before, the group action is continuous and X not
totally disconnected. Thus, over the reals any such group satis®es the assumptions
of [Ti3], Thm. 1, so G acts on X as the group PGL2�K� of transformations y 7!
�a � y� b�=�c � y� d� with the structure of a commutative ®eld induced by Gx. This is
®rst-order expressible, so the result follows from the completeness of the theory of
real closed ®elds. r

3.5 Proposition. There are no de®nable 4-transitive groups in o-minimal structures.

Proof. Suppose towards a contradiction that G acts 4-transitively on some in®nite set
X inside some o-minimal structure M. Then for any x; y A X the stabilizer Gx;y is 2-
transitive on Xnfx; yg, and hence G0

x;y is primitive on Xnfx; yg by [DM] 7.2D. Thus,
G0 is 2-primitive, and if G0 contained an abelian normal subgroup H, then H would
be an in®nite elementary abelian 2-group by [DM] 7.2A. This is impossible by
Proposition 2.3. As G0 is 3-transitive, it must therefore be de®nably simple by
Lemma 2.4, and hence semi-algebraic. Using transfer it follows that we must have
G0 GPO 0n�1�R; 1� for some real closed ®eld R (see [S. et al.] 96.18 and [Ti1] IV.F).

But in PO 0n�1�R; 1�, the stabilizer of three suitably chosen points ®xes a projective line
over R through these points pointwise. Since G0

x;y; z has ®nite index in Gx;y; z, it
follows that Gx;y; z cannot act transitively on X. So G is not 4-transitive after all. r

3.6 Remark. Alternatively we could argue as follows: By [MMT] Thm 1.1, all 4-
transitive groups in o-minimal structures are semi-algebraic, but over the reals there
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are no semi-algebraic 4-transitive groups by [Ti1] IV.F.1.3. Using transfer we get a
contradiction.
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