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Abstract. We classify infinite sharply n-transitive groups definable in o-minimal structures, for
n=2,3. For n =2 we show that these are definably isomorphic to the general affine linear
groups G = K+ > K* where K is either a real closed field £, its algebraic closure (i) or the
skew field H(Z) of quaternions over %Z. For n = 3, these groups are definably isomorphic to
groups of the form PGL;,(K) for K = # or K = #(i). There are no 4-transitive groups defin-
able in o-minimal structures.

1981 Mathematics Subject Classification: 03C, 20B.

1 Preliminaries: Group actions and near-domains

We classify infinite sharply 2-transitive and sharply 3-transitive groups definable in
o-minimal structures. Tits [Ti4] showed that there are no infinite sharply n-transitive
groups for n >4, and in fact we show here that in o-minimal structures there are
no infinite 4-transitive groups at all. Note that we do not assume the groups to be
definably connected. For background about groups definable in o-minimal structures
refer to [Pi] and [PPS1].

Let us first collect some general facts about 2-transitive groups. Note first that 2-
transitivity easily implies that the action is primitive. Assume that G acts effectively
(i.e. only the identity fixes all elements of X) and 2-transitively on a set X with
|X| > 2.

The following facts are well-known:

1.1 Facts. (i) For any x € X, the stabilizer G, is a maximal subgroup of G (see eg. [Ja],
Thm 1.12) and clearly, the action of G on X is equivalent to the action of G by left
multiplication on the coset space G/G,.

(i) Any nontrivial normal subgroup N of G acts transitively. If N is an abelian, the
action of NV is regular and G is a semidirect product G = N X G,. This clearly implies
that G is centerless and does not contain finite normal subgroups if X is infinite.

(iii) In particular, we will make use of the fact due to Tits that for a sharply
2-transitive group G the following are equivalent (see [Ti2], p. 208):
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66 K. Tent

(a) G has a non-trivial normal subgroup.
(b) G has a non-trivial abelian normal subgroup.

(c) Theset I> ={i-j:i*> =j> =1,i,j € G,i,j # 1} is a subgroup of G in which case
it is abelian and normal.

In this case we say that G splits.

The study of sharply 2-transitive groups is equivalent to the study of so called near-
domains. A near-domain is a structure (D,+,-,0,1), where (D*,-,1) is a group,
(D,+,0) is a loop (i.e. x+0=0+ x = x holds for all xe D, and the equations
a+x=>b and x +a = b have unique solutions in x for all a,b € D) with 0-a =
a-0=0 and (a+b)-c=ac+ bc. Furthermore, for any a,b € D there exists a
unique d,p € D* with a+ (b+x) = (a+b)+d,px. A near-domain D where
(D,+,0) is a (necessarily commutative) group is called nearfield, hence a nearfield
satisfies all axioms of a field except possibly the left distributive law. Note that if
(D*,-, 1) is an abelian group, then the nearfield is in fact a commutative field.

In any sharply 2-transitive group, one naturally defines an associated near-domain,
and conversely in any near-domain one can easily define a sharply 2-transitive group,
see e.g. [BN] p. 225. A near-domain D is a nearfield if and only if the associated
group G is split, i.e. G = A X H, in which case H = G, is the stabilizer of a point
x€ X and 4 is an abelian normal subgroup acting regularly on X. Then H acts
regularly on 4\{0}, so A has the structure of a K-vector space for some field K. We
call a subgroup of GL(n, K) regular if it acts regularly on K"\{0}.

1.2 Examples. Typical examples of sharply 2-transitive groups are the general affine
groups over any field K. The Kalscheuer nearfields (D, +,+*,0,1) (s. [Ka]), which are
defined on the quaternions as so-called Dickson nearfields are less obvious examples.
Here we have (D, +) =~ (IR*,+) (so we consider (D*,-) as a subgroup of GL(4,R))
and the nearfield multiplication is defined by x % y = x®*P(logl) ., for fixed r e R,
where the right-hand side is evaluated in the quaternions and the identification is via
the regular action on IR*. For r = 0, this just yields the quaternions (s. [S. et al.] 64.20
for a description of these examples).

Finite sharply 2-transitive groups split, and all finite nearfields have been classified by
Zassenhaus [Za]. Continuous nearfields over the reals were classified by Kalscheuer
[Ka], but it turns out that the (proper) Kalscheuer nearfields are nevertheless not
compatible with o-minimality. Locally compact nearfields in characteristic 0 were
classified by Tits and Grundhofer (see [Ti2, Ti3, Gr87]). The close connection
between Lie algebras and groups definable in o-minimal structures developed in
[PPS1] allows us to transfer results from [Gr87] to the o-minimal situation.

Cherlin, Grundhofer et al. [CGNV] showed that the only nearfields of finite
Morley rank in characteristic 0 are algebraically closed fields. In other characteristics
the problem is open.

In the o-minimal context, related results about groups acting definably on sets of
dimension 1 were obtained by Mosley in his Ph.D. thesis, see Sec. 6-8 of [MMT].
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Sharply n-transitive groups 67

One of the main results in [MMT], which were obtained after this paper has first been
submitted, is that any definably primitive permutation group in an o-minimal struc-
ture is semialgebraic. However, the proof of this fact is rather involved and does not
in general simplify the arguments of this paper significantly. So we prefer giving
direct proofs wherever possible. Under the additional assumption of uniform elimi-
nation of imaginaries, [NPR] classified connected groups of dimension 2 and 3 defin-
able in o-minimal structures.

I would like to thank Th. Grundhéfer and L. Kramer for helpful discussions. Also
I thank the referee for suggestions concerning the organization of the paper and
simplifying some arguments.

2 Sharply 2-transitive groups

In this section we prove the following

2.1 Theorem. Let G be a group definable in an o-minimal structure M, acting definably
and sharply 2-transitively on an infinite definable set X. Then G is definably isomorphic
as a permutation group to the general affine linear groups G =~ K+ > K* acting on the
affine line of K where K is either a real closed field R, its algebraic closure Z(i) or the
skew field H(R) of quaternions over R. In particular, any near-domain definable in an
o-minimal structure M is isomorphic to R, R(i) or H(R) for a real closed field .

We will use the following results from [PPS1]:

2.2 Fact (i) (([PPS1], Thm. 4.1). Any connected centerless group in an o-minimal struc-
ture either has a nontrivial abelian normal definable subgroup, or is a direct product of
definably simple groups.

(ii) ([PPS1], Cor. 4.4). Any definably simple group in an o-minimal structure is defin-
ably isomorphic to a semialgebraic linear group over some real closed field.

We will also make repeated use of the following fact:

2.3 Proposition. A connected centerless group definable in an o-minimal structure does
not contain infinite subgroups of bounded exponent.

Proof. By [PPS1] Thm. 3.2 we may assume that such a group is a direct product of
subgroups of GL(n;, #;) for real closed fields #; and numbers n;. But by Burnside’s
theorem [Ro], 8.1.11, GL(n;, %Z;) does not contain infinite subgroups of bounded
exponent. [

2.4 Lemma. An effective 2-transitive group G in an o-minimal structure cannot be a
direct product of non-trivial definable subgroups.

Proof. If G = H, x H;, then both H, and H, act transitively by 1.1 (ii). Since ele-
ments of different factors commute, the stabilizers in each factor have to be trivial
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(for if a" = a for some ae X and he H,, then for all 4’ € H, we have a
a™ = a" | so hfixes all of X), hence each factor has to act regularly. So both factors
are isomorphic via the map f, : Gy 3 g — ¢’ € G, with a%’ = a which is easily seen to
be an isomorphism. So we can identify X and H = H;, say, so that G acts on H via
(91,92) : h — g7 'hg,. Note that the stabilizer of 1 € H is G, = {(g,9) : g € H}. Since
G) acts transitively on H\{1} this implies that all elements of H are conjugate. On
the other hand, H must be simple as any normal subgroup of H is normal in G and
therefore must be transitive. By [PPS2] Thm. 1.1., H is isomorphic to the k-rational
points of a k-simple algebraic group defined for some real closed field or its algebraic
closure k. Thus, either H is k-isotropic, in which case it contains unipotent and
semisimple elements which cannot be conjugate, or it is anisotropic and then contains
elements of any finite order. |

Unless stated otherwise, throughout this section we assume G and X to satisfy the
assumptions of Theorem 2.1.

In [PPS1] it was shown that if G acts transitively on X, then X can be equipped in a
unique way with a manifold structure such that the action of G on X is continuous.
The topologies that are being referred to below are these manifold topologies,
as opposed to the topology induced from the order topology on the ambiente
structure ..

2.5 Lemma. X is definably connected. If dim X > 1, then G and the stabilizer G of any
x € X are definably connected as well.

Proof. By general properties of o-minimal structures, X has only finitely many
definably connected components. Let A = X be a connected component, and x #
ye€ A. For any z € X, there is some g € G, with yY = z. Since the action of ¢ is
continuous, it takes connected components to connected components, and x € 49 N
A, so A9 = A. Hence we must have z € 4, so X is definably connected.

If dim X =k > 1, then by the transitive action of G every x € X has an open
neighbourhood of dimension k, and hence X\{x} is still definably connected. Since
G, acts regularly on X'\ {x}, this easily implies that G, is definably connected. Now
G = G° - G, so G is definably connected as well. O

The following lemma I learned from K. Peterzil. I thank him for allowing me to
include it here.

2.6 Lemma. If G is definably simple, then any maximal definable subgroup H of G is
semi-algebraic.

Proof- Any definably simple group is semi-algebraic, so we may assume that the
o-minimal structure .# is in fact an o-minimal expansion of a real closed field and we
can consider the Lie algebra structure of G. Let H? be the .#-connected component
of H, i.e. the minimal ./-definable subgroup of finite index in H. Note that H° is
non-trivial since otherwise H and hence X would be finite. The Lie algebra g of G is
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Sharply n-transitive groups 69

definable in the field structure of %, and the Lie algebra ) of H? is a Lie subalgebra
of g, hence also definable in the field structure. For any g € G, a(g) : x — g~ 'xg is
an Z-definable automorphism of G, hence adj(g) = d.(a(g)) is an %-definable
automorphism of g, by [PPS1], Claim 2.28. By [PPS1], 2.19 and 2.30, the normalizer
of H® is #-definable as N(H’) = {g e G : adj(9)h = b}. Since H is a maximal
definable subgroup and H° is not normal in G, we must have N(H°) = H, so H is
indeed Z-definable. O

2.7 Lemma. If G is a sharply 2-transitive group definable in an o-minimal structure M,
then G is split.

Proof. First assume that dimX =1, so dim G = dim G’ = 2. Then G’ must be
centerless, since its center would be an abelian normal subgroup in G and hence
regular on X contradicting the sharp 2-transitivity of G. So G° can neither be defin-
ably simple nor a product of definably simple groups because semi-algebraic groups
of dimension at most 2 are solvable. So G° must have an abelian normal subgroup A4
of dimension 1, which must be normal in G and hence acts regularly on X, showing G
to be split.

Quoting [MMT] we could alternatively argue as follows: G° is isomorphic to
AT > R, for some real closed field . As G acts transitively on 2\{0}, there must
be some element a € G, taking 1 to —1. This element induces a definable auto-
morphism of the additive group of # and therefore must be #-linear, so it must be
multiplication by —1. This shows that G, is the multiplicative group of % acting on
the additive group of Z. The argument is a special case of the more general Lemma
2.9 below.

Suppose now that dim X > 1. Then G is connected and thus either definably simple
by Lemma 2.4 or split. Assume towards a contradiction that G is definably simple
and hence semialgebraic. Using the previous lemma, we may therefore assume that
M carries only the field structure of some real closed field %. But by [Ti2, Ti3], all
continuous locally compact not totally disconnected sharply 2-transitive groups are
split. Hence in the reals the following is true for any formula ¢ in the language of
real closed fields: If ¢ defines a sharply 2-transitive group G, then 1% = {ij;i, j € G,
i> = j?> =1,i,j # 1} is a subgroup; hence G is split. By the completeness of the the-
ory of real closed fields, the same is true in any real closed field %, so there are no
definably simple sharply 2-transitive groups definable in an o-minimal structure. []

2.8 Remark. We could have used the transfer argument immediately after quoting
from [MMT] that all primitive permutation groups in o-minimal structures are semi-
algebraic. However this direct argument is much shorter than the argument for the
general primitive case in [MMT].

2.9 Lemma. There is a definable real closed field # and some n such that G is definably
isomorphic to a semidirect product A <X H of an n-dimensional vector space A and a
subgroup H < GL(n, ).
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70 K. Tent

Proof. By Lemma 2.7, we know that G = A > H for some abelian normal subgroup
A on which H acts regularly as a group of automorphisms. By [PPS1] Thm. 3.2, we
may assume that G° = 4 < H° < GL(m, %) for some m and some real closed field
2. Hence A is either an elementary abelian p-group, which is impossible by Propo-
sition 2.3, or a torsion-free divisible abelian group. Thus A4 is a vector space over the
rationals, which is irreducible as an H-module. By Schur’s Lemma, the centralizer K
of H in the ring of H-endomorphisms of A is a division ring, and 4 is a K-vector
space with H < GLg(A4). For fixed v € 4\{0} and o € K with a(v) = w we must have
a(v?) =v* = wY for all g € H. Thus K can be (definably) identified with the set of
w € A for which the map w : 4 — A defined by v? — wY is an H-endomorphism. The
center of K is an infinite definable field containing the rationals, so K is isomorphic
either to £, its algebraic closure £ (i) or the skew field H(Z) of quaternions over #
by [OPP]. Since the o-minimal dimension of A4 is finite, 4 is a finite dimensional
K-vector space, so also a finite dimensional #-vector space with H < GL4(4). [

Thus we may now assume that ./ is in fact an o-minimal expansion of a real closed
field, and hence quotients of definable groups by definable subgroups are again
definable (see [vdD], Ch. 8).

The additive group of the quaternions IH(Z) being isomorphic to a 4-dimensional
A-vector space, its multiplicative group IH(#)" has a standard embedding into
GL(4, %), as described in the Kalscheuer examples in the introduction. Clearly, a real
closed field # definable in an o-minimal structure cannot have non-trivial definable
automorphisms as the fixed field always contains the rationals. Therefore any defin-
able #-semilinear transformation of a definable #-vector space must be %-linear.
Hence the only non-trivial definable field automorphism of £(i) is complex
conjugation and all definable automorphisms of the quaternions H(#) must be %-
linear. It follows as over the reals that the group of #-linear automorphisms of IH(2)
consists of inner automorphisms and is isomorphic to SO3(£%) (see [S. et al.] 11.29).
Therefore, the group T'Lg(IH(Z)) of %-linear IH(%)-semilinear transformations of
the 1-dimensional quaternionic vector space IH(Z) is a semidirect product H(2%)" >
SO;(#) and thus itself has a natural embedding into GL(4,#). Note that if Z is
a real closed field with non-trivial automorphisms, then I'Lx(H(Z#)) is a proper
subgroup of TL(IH(#)). Thus TLg(IH(Z)) is exactly the group of semialgebraic
H(%)-semilinear transformations of the 1-dimensional IH(Z)-vectorspace H(Z).

As usual, for any skewfield K we let GL(1,K) denote the group of invertible
K-linear transformations of the 1-dimensional K-vectorspace K. Of course, this is
exactly K*.

The proof of Theorem 2.1 will use the following result of [Gr87]:

2.10 Theorem ([Gr87] Thm. 2 and 3). Let R be a real closed field and let L be a Lie
subalgebra of gl(n, &) which has dimension n over R and such that every nonzero ele-
ment of L is invertible. Then n = 1,2 or 4. Moreover, if D is the unique division ring
over R of dimension n, then L < Lie(T'L»(1,D)), L=Z(L) ® L' and L' = D’ where
D’ denotes the commutator algebra of D* < GL(4, %).

We will also make repeated use of the following fact:

Brought to you by | Universitats- und Landesbibliothek Minster
Authenticated
Download Date | 5/28/18 1:11 PM



Sharply n-transitive groups 71

2.11 Fact ([PPS1], 2.19). If H; and H, are definably connected definable subgroups of
a definable group G with respective Lie algebras b; and b,, then H, = H, if and only

if b < by.

Proof of Theorem 2.1. By Lemma 2.7, G splits as A X H and by 2.9 4 is a finite
dimensional Z-vector space with H < GL(n,#) where n = dimy 4. Since H acts
regularly on A\{0}, the dimension of H and its Lie algebra ) must equal n. The
stabilizer in H of any element in A4 is trivial, so it follows from [PPS1], Theorem
2.18.1 that h\{0} consists of invertible elements, so h\{0} = GL(n, Z). We can apply
2.10, to conclude that ) has a direct sum decomposition as h = Z(h) @)’ where
b’ = D’ is the commutator algebra of some skew field D < End(#") with dimy, D =
n. In particular, n = 1,2 or 4.

If n=1, clearly the only regular subgroup of GL(1,%) is H = GL(1,%), so
G = R™ X #* and the nearfield associated to G is the real closed field 2.

Let now n > 2. We know that H is definably connected. If b’ = 0, then b is com-
mutative, so H is abelian by [PPS1], Claim 2.31.1. Hence the nearfield associated to G
is the commutative field K = 2 or (i), and G =~ K+ < K*.

If )’ = D' # 0, then we must have n =4 and D is the skew field of quaternions
H(2#) over #. By 2.11 and 2.10 we have H < I'Lg(1, D) = GL(1,D) > SO3(%). We
have to show that in fact H = GL(1, D).

It is well-known that §' = su(2,2) < GL(4, %) u {0}, and that the commutator
subgroup (D*)" of the multiplicative group D* = GL(1, D) is canonically isomorphic
to the semialgebraic group SU(2,2(i)). So (D*)' is a definable group with Lie
algebra b’ = D’. By 2.10 and 2.11 again, H contains (D*)" and is an almost direct
product of (D*)" and Z(H )0. Therefore Z(H)" is abelian of dimension 1 and must be
torsion-free as otherwise Z(H )0, thus H and consequently 4\{0} would be definably
compact which is impossible.

The projection of H < I'Lg(1, D) = GL(1, D) > SO3(£) onto SO3(Z) is a defin-
able homomorphism ¢ : H — SO3(2) which is trivial on (D*)" as (D*)’ is contained
in GL(1,D). Since we have definable quotients, we therefore obtain a definable
homomorphism ¢’ : Z(H)® — SO3(R). As Z(H)" has no finite subgoups, ¢’ is either
trivial or an embedding. Assume towards a contradiction that ¢'(Z(H)") # 0, so it is
a definably connected abelian subgroup of SO3(#). Then its Lie algebra i is a defin-
able 1-dimensional subalgebra of the 3-dimensional Lie algebra so(3, %), on which
SO(3,#) acts by the adjoint representation. The only 3-dimensional non-trivial
representation of SO(3, #) is the standard representation (see [S. et al.], p. 623, [Gh))
and this action is transitive on the 1-dimensional subspaces of %°. Hence SO(3, %)
acts transitively and definably on the 1-dimensional Lie subalgebras of so(3, %),
which means that j is definably isomorphic to so(2, #) under the adjoint map of some
element g € SO(3, #). The Lie algebra of the conjugate of SO(3,#) under g is i,
hence ¢'(Z(H)") = SO(2, ) by Fact 2.11. But SO,(#) contains elements of finite
order so that ker¢’ is an infinite proper definable subgoup of Z(H)O which is
impossible.

Hence H < GL(1,D) and since both groups act regularly on #* we must have
equality, showing that definably G =~ D™ > D*. O
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2.12 Corollary. Suppose that a group G acts definably and freely with finitely many
orbits on a definably connected abelian group A in some o-minimal structure M. Then
A X G is isomorphic to R* X R% or to one of the sharply 2-transitive groups in The-
orem 2.1. This applies in particular, if G is a regular subgroup of GL(n, Z) definable in
an o-minimal structure.

Proof. By considering 4 > G°, we define a real closed field % as in Lemma 2.9 by
fixing representatives for each orbit and a finite dimensional %-vector space structure
on 4 such that G° < GL(n, #). Hence the Lie algebra of G° is n-dimensional without
eigenvalue 0, and as above we can apply [Gr89] Thm. 3. If n = 1, then G = % or
G = R*. The rest follows as in Theorem 2.1. O

2.13 Corollary. All nearfield planes definable in o-minimal structures are desarguesian.

Proof. This follows immediately from Theorem 2.1 since any nearfield plane defines a
nearfield through coordinatization.

Note that this is not true any more for the next weaker class of projective planes:
There are proper semifields definable in o-minimal structures (i.e. structures (4, +, o)
where (A4,+) is a group, aox = b and x o a = b have unique solutions in x for all
a,b e A and both distributive laws hold, but o need not be associative.) Take for
example (4,+) = (H(R), +) and for 7 # § € R define o, by a o, b = tab + (1 — t)ba
where the right hand-side is evaluated in the quaternions.

3 Sharply 3-transitive groups

Assume now that G is a sharply 3-transitive group definable in an o-minimal structure
M, acting definably and effectively on some infinite set X in some o-minimal structure
. Again for dim X > 1, since G, acts sharply 2-transitively on X\{x}, G, is defin-
ably connected and hence G° = G.

If dimX =1, then X\{x} is definably connected since G, acts sharply 2-
transitively. So G? is still transitive on X\{x}, implying that G° is a Zassenhaus
group. As before, G is centerless and cannot be a direct product of definably simple
subgroups by 2.4.

3.1 Lemma. G does not split.

Proof. Assume towards a contradiction that G splits as G = 4 > H. But if H acted
2-transitively on A\{0}, any element of 4 would have to have order 2. Since A4 is
connected, and G° = 4 > HY is centerless we contradict Proposition 2.3. O

3.2 Lemma. [f dim X > 1, then G is definably simple.

Proof. By the previous lemma, G does not have a nontrivial abelian normal sub-
group. By Lemma 2.4 and 2.2 (i), G must be definably simple. ]
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Sharply n-transitive groups 73

3.3 Proposition. If' G acts sharply 3-transitively on a 1-dimensional set X, then G is
definably isomorphic to PGL(2, %) for some real closed field R.

Proof. If dim X = 1, then it is not hard to see that G° is a semi-algebraic Zassenhaus
group acting on the projective line of a real closed field, i.e. G° acts 2-transitively and
only the identity fixes three distinct elements, hence using transfer from the reals,
G =~ PSL(2, %) acting on the projective line of # (alternatively, this follows again
from [MMT]). Now let H < G be the stabilizer of co. Then H acts sharply 2-
transitively on the affine line of # and after fixing 0 € # acts as multiplication.
Therefore PGL(2,#) = PSL(2,%) - H < G, but since PGL(2, %) is 3-transitive we
must have equality. O

3.4 Theorem. If G is sharply 3-transitive, then G is definably permutation equivalent to
PGL,(K) acting on the projective line of K for some real closed field # or its algebraic
closure R(i).

Proof. For dim X =1 this was proved in Proposition 3.3. For dim X > 1, we may
assume by Lemma 2.6 that ./ is just a real closed field. The stabilizer G, acts sharply
2-transitively on X\{x}, so by Theorem 2.1 it induces on X {x} the structure of the
affine line of some skew field K. As before, the group action is continuous and X not
totally disconnected. Thus, over the reals any such group satisfies the assumptions
of [Ti3], Thm. 1, so G acts on X as the group PGL,(K) of transformations y —
(a-y+b)/(c-y+ d) with the structure of a commutative field induced by G,. This is
first-order expressible, so the result follows from the completeness of the theory of
real closed fields. L]

3.5 Proposition. There are no definable 4-transitive groups in o-minimal structures.

Proof. Suppose towards a contradiction that G acts 4-transitively on some infinite set
X inside some o-minimal structure .#. Then for any x, y € X the stabilizer G, , is 2-
transitive on X'\ {x, y}, and hence G | is primitive on X\{x, y} by [DM] 7.2D. Thus,
G is 2-primitive, and if G° contdlned an abelian normal subgroup H, then H would
be an infinite elementary abelian 2-group by [DM] 7.2A. This is impossible by
Proposition 2.3. As G° is 3-transitive, it must therefore be definably simple by
Lemma 2.4, and hence semi-algebraic. Using transfer it follows that we must have
G ~ PO,’1+1(§i’, 1) for some real closed field Z (see [S. et al.] 96.18 and [Til] IV.F).
But in PO, (£, 1), the stabilizer of three suitably chosen points fixes a projective line
over # through these points pointwise. Since G° .- has finite index in Gy, -, it
follows that G, , - cannot act transitively on X. So G is not 4-transitive after all. O

3.6 Remark. Alternatively we could argue as follows: By [MMT] Thm 1.1, all 4-
transitive groups in o-minimal structures are semi-algebraic, but over the reals there
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are no semi-algebraic 4-transitive groups by [Til] IV.F.1.3. Using transfer we get a
contradiction.
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