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SO3

Theorem (Nesin-Pillay 1991)

» X C SO3(R)" is definable in the pure group
(SO3(R); ) iff it is definable in the field (R; +, -).

» More generally, same for any simple centerless
compact Lie group G definable in (R; +, -).

Example

{(A, B) € SO3(R) : det(A — B) > 0} is definable in
(SO3(R); ).

Sketch of proof:
» Define a copy of SO3(R) in (G; *);
» Reconstruct the field from the projective plane of
involutions of SO3(R).
» See that this yields a bi-interpretation of (G; x) with
(R; +, )
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Problem

Which (R; +, -, ©)-definable subsets of (SO°)" are
(SO «)-definable?



(SO2°; %)
» Lie algebra g(R) = so03(R) =

0 -z y
z 0 x) } ~R3 = {(x,y,2)}.
-y X 0

» Infinitesimal Lie algebra: g, := st™'(0) = m3 < RS.
» Matrix exponentiation yields a homeomorphism
exp,, : gm — SO3.
> expy,(X) xexp,(Y) = exp,(X + Y) + € where
v(l[ell) = v(lIXIT) + v YD
» If X and Y are collinear then
exp,, (X) x exp,(Y) = exp, (X + Y).
» For x € SO and h € SO3(R), group conjugation
x — x":= hx x « h~1 agrees with the matrix action of
SO3(R) on m3:

exp, (X)" = exp,(hX).



Main theorem
Theorem

(i) X C (SOP)" is (SOY°; x)-definable iff it is
(R; +, -, O)-definable.

(i) Moreover, the interpretation of (SO3°; ) in
(R;+,-,O) can be completed to a bi-interpretation.

Example

{(A, B) € SO : v(det(A — B)) > o} is definable in
(SO; «).

Outline of proof:
» Find an (SOY°; x)-definable ordered interval J;
» apply trichotomy to get a field K in J;
» use adjoint representation to see the pair
SO < SO3(R) in K, yielding a bi-interpretation;
» the characterisation of definable sets follows.



Finding an ordered interval

» Let G:=SO3(R) and G := SO°.

» Let bec G\ {el.

» CZ:={he G: hxb=bxh}=S0s(R);

» C8” = C¢n G = SO = m.

» bChC = ¢(G?) where £(h, i) = b x b .

» b%hC = exp,,(B) where B C m® is the closed ball of
radius ||b?||.

» bGbCn CF” is the interval [b2, b?)].

» By definable choice for the (R; +, -)-definable map &,
X := %" b 1 CE” contains some interval [h, b?)].

» Translating, get (G°; x)-definable interval

[e,p) C CEOO, hence J := (p~', p) as an ordered
interval.

» Explicitly: p:= b?h~1, then [e,p] = "' X N B2X~".



Trichotomy

» bG” spans R3, so for appropriate hy, h, € G and
after shrinking J,

¢ L — G2 p(x0, X1, X2) = Xo * X[ % X0?

is a bijection with a neighbourhood of e € G%.

» (J;*,<) and ¢ are definable both in (G%; ) and in
(R; +, )

» Pulling back the G°° group structure via ¢ puts
“non-linear” structure on J.

» By the Peterzil-Starchenko o-minimal trichotomy, a
real closed field (K; +,-) on aninterval K C J is
definable in this structure on J.

» So (K;+, ) is definable both in (G%; %) and in
(R; +, )



Bi-interpretation
» (K;+,) is definable both in (G%°; x) and in (R; +, ).
» Otero-Peterzil-Pillay: exists (R; +, -)-definable
isomorphism ¢ : (R; +,-) = (K; +, ).
» ¢ induces g : G = SO3(R) — SO3(K).
Claim
0G| : SO3(R)% = SO3z(K)% is (G; x)-definable.

Proof of main theorem.

» O is definable in (R; +, -, G°),

» 5o (R; +,-,0) is interpreted on K in (G%; ) via 0,
since SO3(K)% is (G; x)-definable by the claim.

» (G, x) is interpreted in (R; +, -, O) tautologically.

» The composed interpretations are 6 and 6| g0,
which are definable in (R; +, -, G%) resp. (G%; x).



Proof of claim

Claim
0] oo : SO3(R)% =5 SO3(K) is (G%; x)-definable.

Proof.
» Differentiation in K yields via ¢ an adjoint embedding
Ad : SO3(R) — GL3(K)

» Adis (R; +, -)-definable.
» Ad| g is (G%; x)-definable.
> n:=Adof;' : SO3(K) — GLg(K) is

(K; +, -)-definable by purity, hence (G°; x)-definable.
» So GG’GOO = 7771 o Ad ‘Goo is (GOO; *)-definable.
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