Definability in the group of infinitesimal rotations

Martin Bays¹, Kobi Peterzil²

¹WWU Münster ²University of Haifa

Logic Colloquium, Stockholm, 2017-08-17

Theorem (Nesin-Pillay 1991)

- X ⊆ SO₃(ℝ)ⁿ is definable in the pure group (SO₃(ℝ); *) iff it is definable in the field (ℝ; +, ·).
- ► More generally, same for any simple centerless compact Lie group G definable in (ℝ; +, ·).

Example

```
\{(A,B)\in SO_3(\mathbb{R}): det(A-B)>0\} is definable in (SO_3(\mathbb{R});*).
```

Sketch of proof:

- Define a copy of $SO_3(\mathbb{R})$ in (G; *);
- ► Reconstruct the field from the projective plane of involutions of SO₃(ℝ).
- See that this yields a bi-interpretation of (G; ∗) with (ℝ; +, ·).

$$(\mathcal{R};+,\cdot) := (\mathbb{R};+,\cdot)^{\mathcal{U}} \succeq (\mathbb{R};+,\cdot)$$
$$0 \to \mathfrak{m} \to \mathcal{O} \xrightarrow{\mathsf{st}} \mathbb{R} \to 0$$

$$1 \to SO_3^{00} \to SO_3(\mathcal{R}) \xrightarrow{st} SO_3(\mathbb{R}) \to 1$$

$$\mathrm{SO}_3^{00} = \mathrm{SO}_3(\mathcal{R}) \cap egin{pmatrix} 1+\mathfrak{m} & \mathfrak{m} & \mathfrak{m} \ \mathfrak{m} & 1+\mathfrak{m} & \mathfrak{m} \ \mathfrak{m} & \mathfrak{m} & 1+\mathfrak{m} \end{pmatrix}$$

 $(SO_3^{00}; *)$ is interpretable in $(\mathcal{R}; +, \cdot, \mathcal{O}) \vDash RCVF$.

Problem

Which $(\mathcal{R}; +, \cdot, \mathcal{O})$ -definable subsets of $(SO_3^{00})^n$ are $(SO_3^{00}; *)$ -definable?

(SO₃⁰⁰; *)

$$\begin{array}{l} \leftarrow \text{Lie algebra } \mathfrak{g}(\mathcal{R}) = \mathfrak{so}_3(\mathcal{R}) = \\ \left\{ \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} \right\} \cong \mathcal{R}^3 = \{(x, y, z)\}. \end{array}$$

▶ Infinitesimal Lie algebra: $g_m := st^{-1}(0) \cong m^3 \leq \mathcal{R}^3$.

- Matrix exponentiation yields a homeomorphism exp_m : g_m → SO₃⁰⁰.
- ► $\exp_{\mathfrak{m}}(X) * \exp_{\mathfrak{m}}(Y) = \exp_{\mathfrak{m}}(X + Y) + \epsilon$ where $v(\|\epsilon\|) \ge v(\|X\|) + v(\|Y\|).$
- If X and Y are collinear then exp_m(X) ∗ exp_m(Y) = exp_m(X + Y).
- For x ∈ SO₃⁰⁰ and h ∈ SO₃(R), group conjugation x ↦ x^h := h ∗ x ∗ h⁻¹ agrees with the matrix action of SO₃(R) on m³:

$$\exp_{\mathfrak{m}}(X)^h = \exp_{\mathfrak{m}}(hX).$$

Main theorem

Theorem

(i)
$$X \subseteq (SO_3^{00})^n$$
 is $(SO_3^{00}; *)$ -definable iff it is $(\mathcal{R}; +, \cdot, \mathcal{O})$ -definable.

(ii) Moreover, the interpretation of $(SO_3^{00}; *)$ in $(\mathcal{R}; +, \cdot, \mathcal{O})$ can be completed to a bi-interpretation.

Example

 $\{(A, B) \in SO_3^{00} : v(\det(A - B)) > \alpha\}$ is definable in $(SO_3^{00}; *)$.

Outline of proof:

- Find an $(SO_3^{00}; *)$ -definable ordered interval *J*;
- ► apply trichotomy to get a field *K* in *J*;
- ► use adjoint representation to see the pair SO₃⁰⁰ ≤ SO₃(*R*) in *K*, yielding a bi-interpretation;
- the characterisation of definable sets follows.

Finding an ordered interval

• Let
$$G := SO_3(\mathcal{R})$$
 and $G^{00} := SO_3^{00}$.

▶ Let $b \in G^{00} \setminus \{e\}$.

$$\bullet \ C_b^G := \{h \in G : h * b = b * h\} \cong \mathrm{SO}_2(\mathcal{R});$$

$$\blacktriangleright \ C_b^{G^{00}} := C_b^G \cap G^{00} \cong \mathsf{SO}_2^{00} \cong \mathfrak{m}.$$

- ► $b^G b^G = \xi(G^2)$ where $\xi(h, h') = b^h * b^{h'}$.
- b^Gb^G = exp_m(B) where B ⊆ m³ is the closed ball of radius ||b²||.
- $b^G b^G \cap C_b^{G^{00}}$ is the interval $[b^{-2}, b^2]$.
- ► By definable choice for the $(\mathcal{R}; +, \cdot)$ -definable map ξ , $X := b^{G^{00}} b^{G^{00}} \cap C_b^{G^{00}}$ contains some interval $[h, b^2]$.
- Translating, get (G⁰⁰; ∗)-definable interval [e, p) ⊆ C_b^{G⁰⁰}, hence J := (p⁻¹, p) as an ordered interval.
- Explicitly: $p := b^2 h^{-1}$, then $[e, p] = h^{-1} X \cap b^2 X^{-1}$.

Trichotomy

b^{G⁰⁰} spans R³, so for appropriate *h*₁, *h*₂ ∈ G⁰⁰ and after shrinking *J*,

$$\phi: J^3 o G^{00}; \phi(x_0, x_1, x_2) = x_0 * x_1^{h_1} * x_2^{h_2}$$

is a bijection with a neighbourhood of $e \in G^{00}$.

- (*J*; *, <) and φ are definable both in (*G*⁰⁰; *) and in (*R*; +, ·).
- ► Pulling back the G⁰⁰ group structure via φ puts "non-linear" structure on J.
- By the Peterzil-Starchenko o-minimal trichotomy, a real closed field (K; +, ·) on an interval K ⊆ J is definable in this structure on J.
- So (K; +, ·) is definable both in (G⁰⁰; *) and in (R; +, ·).

Bi-interpretation

- $(K; +, \cdot)$ is definable both in $(G^{00}; *)$ and in $(\mathcal{R}; +, \cdot)$.
- ► Otero-Peterzil-Pillay: exists (*R*; +, ·)-definable isomorphism *θ* : (*R*; +, ·) → (*K*; +, ·).
- θ induces $\theta_G : G = SO_3(\mathcal{R}) \xrightarrow{\sim} SO_3(K)$.

Claim

 $\theta_G|_{G^{00}}: SO_3(\mathcal{R})^{00} \xrightarrow{\sim} SO_3(\mathcal{K})^{00}$ is $(G^{00}; *)$ -definable.

Proof of main theorem.

- \mathcal{O} is definable in $(\mathcal{R}; +, \cdot, G^{00})$,
- so (R; +, ·, O) is interpreted on K in (G⁰⁰; *) via θ, since SO₃(K)⁰⁰ is (G⁰⁰; *)-definable by the claim.
- ► $(G^{00}; *)$ is interpreted in $(\mathcal{R}; +, \cdot, \mathcal{O})$ tautologically.
- ► The composed interpretations are θ and θ_G|_{G⁰⁰}, which are definable in (R; +, ·, G⁰⁰) resp. (G⁰⁰; *).

Proof of claim

Claim

 $\theta|_{G^{00}}: SO_3(\mathcal{R})^{00} \xrightarrow{\sim} SO_3(\mathcal{K})^{00}$ is $(G^{00}; *)$ -definable.

Proof.

- Differentiation in K yields via ϕ an adjoint embedding

 $\text{Ad}:\text{SO}_3(\mathcal{R})\to\text{GL}_3(\textit{K})$

- Ad is $(\mathcal{R}; +, \cdot)$ -definable.
- ► Ad |_{G⁰⁰} is (G⁰⁰; *)-definable.
- ▶ $\eta := \operatorname{Ad} \circ \theta_G^{-1} : \operatorname{SO}_3(K) \to \operatorname{GL}_3(K)$ is $(K; +, \cdot)$ -definable by purity, hence $(G^{00}; *)$ -definable.
- ► So $\theta_G|_{G^{00}} = \eta^{-1} \circ \operatorname{Ad}|_{G^{00}}$ is $(G^{00}; *)$ -definable.