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1 Setup

1.1 Pseudofinite dimension

• U ⊆ P(ω) non-principal ultrafilter.

• K := CU .

• X ⊆ Kn is internal if X =
∏
s→U Xs for some Xs ⊆ Cn.

• Then set |X| :=
∏
s→U |Xs| ∈ NU ∪ {∞}.

• Fix ξ ∈ NU with ξ > N.

Definition 1.1 (Coarse pseudofinite dimension δ). For X internal,

δ(X) = δξ(X) := st

(
log(|X|)
log(ξ)

)
∈ R≥0 ∪ {−∞,∞}.

• Note that internality is closed under cardinality quantifiers: If R ⊆ Kn ×
Km is internal and α ∈ RU , then {y ∈ Kn : ∃≥αx.R(x, y)} is internal.

1.2 Lint monster

• Lint: predicate for each internal X ⊆ Kn.

• K � K monster model in Lint.

• For φ ∈ Lint, set δ(φ) := δ(φ(K)).

• δ has a unique extension to (Lint)K such that

tp(b) 7→ δ(φ(x, b))

Sy(∅)→ {−∞} ∪ R ∪ {∞}

is well-defined and continuous for each φ(x, y) ∈ Lint.

• Explicitly, δ(φ(x, a)) := sup{q ∈ Q : K � ∃≥ξqx. φ(x, a)}.

• For Φ a partial type, δ(Φ) := inf{δ(φ) : Φ � φ}.

• δ(a/C) := δ(tp(a/C)).

Fact 1.2. For C ⊆ K small and a, b ∈ K<ω,

(i) a ≡C b⇒ δ(a/C) = δ(b/C).

(ii) δ(ab/C) = δ(a/bC) + δ(b/C).

(iii) A partial type Φ over C has a realisation a ∈ Φ(K) with δ(a/C) =
δ(Φ).
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1.3 acl0

We have C ≤ CU ≤ K.

Definition 1.3. Superscript 0 means: reduct to ACFC.
Work in Keq0 := {ACF−imaginaries} (“= K<ω ”).

• d0(B) := trd(B/C)

• a ∈ acl0(B) iff d0(a/B) = trd(a/C(B)) = 0.

Remark 1.4. a ∈ acl0(B)⇒ δ(a/B) = 0.

2 Coherence

Definition 2.1. P ⊆ K is coherent if for any tuple a ∈ P<ω,

δ(a) = d0(a).

In other words, δ is equal on P<ω to the dimension function of the prege-
ometry (P ; acl0).

More generally:

Definition 2.2. a ∈ Keq0 is in coarse general position (or is cgp) if for any
B ⊆ K,

d0(a/B) < d0(a)⇒ δ(a/B) = 0.

Any a ∈ K is cgp.

Definition 2.3. P ⊆ Keq0 is coherent if

• every a ∈ P is cgp, and

• for any tuple a ∈ P<ω,
d0(a) = δ(a).

Then

• (P ; acl0) is a pregeometry,

• if d0(a) = k (∀a ∈ P ), then δ(a) = k dimP (a) for any a ∈ P<∞.

2.1 Modularity of coherence

Definition 2.4. For P ⊆ Keq0,

ccl(P ) := {x ∈ acl0(P ) : {x} is coherent}.

Lemma 2.5. If P is coherent, so is ccl(P ).

Proposition 2.6. Suppose P = ccl(P ) is coherent.
Then (P ; acl0) is a modular pregeometry.
(i.e. for a, b ∈ P and C ⊆ P , if a ∈ acl0(bC) \ (acl0(C)∪ acl0(b)) then exists

c ∈ acl0(C) such that a ∈ acl0(bc).)
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(Eventual) consequence of Szemeredi-Trotter theorems

Example 2.7. Suppose G is a complex abelian algebraic group, F ≤ End0(G) :=
Q⊗Z End(G) a division ring, A ⊆ G(K) independent generics.

Let Q := {Σiηi(ai) : ηi ∈ F ∩ End(G); ai ∈ A} ⊆ Keq0.
Then (Q; acl0) is a modular pregeometry.

Theorem 2.8. Up to acl0-interalgebraicity, any coherent P ⊆ Keq0 is contained
in a union of finitely many orthogonal such Q.

Proof ingredients. Veblen-Young co-ordinatisation, plus generalisation of Evans-
Hrushovski.

3 Elekes-Szabó consequences

Definition 3.1. Say a finite subset X of a variety W is τ-cgp if for any proper
subvariety W ′ (W of complexity ≤ τ , we have |X ∩W ′| < |X| 1τ .

Definition 3.2. If V ⊆
∏
iWi are irreducible complex algebraic varieties, with

dim(Wi) = m and dim(V ) = dm, say V admits a powersaving if for some τ
and ε > 0 ∣∣∣∣∣∏

i

Xi ∩ V

∣∣∣∣∣ ≤ O(Nd−ε)

for τ -cgp Xi ⊆Wi with |Xi| ≤ N .

Lemma 3.3. V admits no powersaving iff exists coherent generic a ∈ V (K).

Definition 3.4. H ≤ Gn is a special subgroup if G is a commutative complex
algebraic group and H = ker(A)o for some A ∈ Mat(F ∩ End(G)) for some
division subalgebra F ≤ End0(G) := Q⊗Z End(G).

Example 3.5. G = Cn; then End0(G) = End(G) = Matn(C), and H ≤ Gl

is special iff it is a subspace defined by F -linear equations for some division
subalgebra F ≤ Matn(C).

Theorem 3.6. V ⊆
∏
iWi admits no powersaving iff it is in co-ordinatewise

algebraic correspondence with a product of special subgroups.

Where

Definition 3.7. Co-ordinatewise algebraic correspondence blah blah.

4 Applications

4.1 Generalised sum-product phenomenon

Corollary 4.1. Let (G1,+1) and (G2,+2) be one-dimensional non-isogenous
connected complex algebraic groups, and for i = 1, 2 let fi : Gi(C) → C be a
rational map. Then there are ε, c > 0 such that if A ⊂ C is a finite set lying in
the range of each fi, then setting Ai = f−1i (A) ⊆ Gi(C) we have

max(|A1 +1 A1|, |A2 +2 A2|) ≥ c|A|1+ε.
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Proof. Else,

{(g1, h1, g1 +1 h1, g2, h2, g2 +2 h2) : f1(g1) = f2(g2), f1(h1) = f2(h2)}

admits no powersaving, so get group (G; +) such that Γ+i is in co-ordinatewise
correspondence with Γ+, i = 1, 2.

But then (by Ziegler) Gi is isogenous to G.

Similarly in higher dimension, with a cgp assumption.

4.2 Intersections of varieties with approximate subgroups

Theorem 4.2. Γ ≤ G(K) a ∅-
∧

-definable subgroup of a 1-dimensional algebraic
group G, with δ(Γ) = dim(G).

Then any coherent tuple γ ∈ Γn is generic in a coset of an algebraic subgroup
of Gn.

Similarly in higher dimension, with a cgp assumption.

Corollary 4.3. Let G be a commutative complex algebraic group. Suppose
V is a subvariety of Gn which is not a coset of a subgroup. Then there are
N, ε, η > 0 depending only on G and the complexity of V such that if A ⊆ G is
a finite subset such that A−A is τ -cgp and |A+A| ≤ |A|1+ε and |A| ≥ N , then

|An ∩ V | < |A|
dim(V )
dim(G)

−η.

4.3 Diophantine connection

Example 4.4. G = E complex elliptic curve.
E[∞] :=

⋃
mE[m] torsion subgroup.

Suppose V ⊆ En is an irreducible closed complex subvariety such that
V (C) ∩ E[∞] is Zariski dense in V . Let d := dim(V ).

By Manin-Mumford, V is a coset of an algebraic subgroup. Hence for any
ε > 0, for arbitrarily large r ∈ N,

|V (C) ∩ E[r!]n| ≥ |E[r!]|d−ε .

Suppose conversely that we only know this consequence of Manin-Mumford
on the asymptotics of the number of torsion points in V . Then V has a coherent
generic non-standard torsion point, and so by above theorem V is a coset.

Similarly for Mordell-Lang.

5 Sharpness

Consider case G = Gna , so End0(G) = End(G) = Matn(C).
Want to show: if F ≤ Matn(C) is a division ring, and H ≤ Gl is a subspace

defined by F -linear equations, then exists ζ ∈ H coherent generic.

Fact 5.1 (Amitsur-Kaplansky). Any division subring F ⊆ Matn(C) has finite
dimension over its centre.

Corollary 5.2. Exists finitely generated subring O ⊆ F such that H is defined
by linear equations with coefficients from O and O is constrainedly filtered:
there are finite On ⊆ O such that
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(CF0) On ⊆ On+1;
⋃
n∈NOn = O

(CF1) ∃k. ∀n. On +On ⊆ On+k;

(CF2) ∀a ∈ O. ∃k. ∀n. aOn ⊆ On+k;

(CF3) ∀ε > 0. |On+1|
|On| ≤ O(|On|ε).

(e.g. Z =
⋃
n[−2n, 2n] is constrainedly filtered.)

Let “Xk :=
∏
s→U (

∑s
i=1Os−kγi)” with γi ∈ G generic independent.

Then X :=
⋂
kXk is an O-submodule and δ(X) = δ(X0), and ζ ∈ H ∩X l

with δ(ζ) = δ(H ∩X l) is coherent.

General G similar; always End0(G) embeds in Matdim(G)(C), by Lie theory.

6 Relaxing general position

Remark 6.1. V := graph of (a1, b1) ∗ (a2, b2) = (a1 + a2 + b21b
2
2, b1 + b2), Xi :=

{−N4, . . . , N4} × {−N, . . . , N} ⊆ C2 =: Wi.
Then |X3

i ∩ V | ≥ Ω(|Xi|2), but not in coarse general position, and V is not
in co-ordinatewise correspondence with the graph of a group operation.


