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1 Setup

1.1 Pseudofinite dimension
e U C P(w) non-principal ultrafilter.
o K :=CY.

e X C K™ isinternal if X =[] X, for some X, C C".

s—U

e Then set |X|:=1]] | Xs| € N4 U {o0}.

s—U

e Fix £ € NY with £ > N.

Definition 1.1 (Coarse pseudofinite dimension §). For X internal,

e Note that internality is closed under cardinality quantifiers: If R C K™ X
K™ is internal and « € RY, then {y € K" : 35,7.R(Z,%)} is internal.

> € Ry U {—00,00}.

1.2 [, monster
e Lin: predicate for each internal X C K™,
e K > K monster model in Liy.
o For 6 € Lim, sct 8(6) = 8(6(K)).
e 4 has a unique extension to (Ling)x such that
tp(b) — 8(¢(7, b))
S5(0) = {—o0} UR U {00}
is well-defined and continuous for each ¢(Z,7) € Lins.
e Explicitly, 6(¢(Z,a)) :=sup{q € Q : KF I>¢7T. ¢(T,a)}.
e For ® a partial type, 8(®) := inf{d(¢) : ® E ¢}.
e 4(a/C) :=d(tp(a/C)).
Fact 1.2. For C C K small and a,b € K<%,
(i) a=c b= 68(a/C)=8(b/C).
(i1) 6(ab/C) = 6(a/bC) + 6(b/C).

(iii) A partial type ® over C has a realisation a € ®(K) with §(a/C) =
(D).
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1.3 acl’
We have C < CY < K.

Definition 1.3. Superscript 0 means: reduct to ACF¢.
Work in K°® := {ACF —imaginaries} (“=K<“ ).

e d°(B) :=trd(B/C)
e a € acl’(B) iff d°(a/B) = trd(a/C(B)) = 0.

Remark 1.4. a € acl®(B) = &(a/B) = 0.

2 Coherence
Definition 2.1. P C K is coherent if for any tuple @ € P<%,
é(@) = d°(a).

In other words, § is equal on P<%“ to the dimension function of the prege-
ometry (P;acl®).
More generally:

Definition 2.2. a € K*? is in coarse general position (or is cgp) if for any
B CK,
d’(a/B) < d°(a) = &(a/B) = 0.

Any a € K is cgp.
Definition 2.3. P C K% is coherent if
e every a € P is cgp, and

e for any tuple @ € P<%,
d’(@) = &(a).

Then
e (P;acl’) is a pregeometry,

e if d°(a) =k (Va € P), then §(@) = kdimp(a) for any a € P<>.

2.1 Modularity of coherence
Definition 2.4. For P C K%,

ccl(P) := {x € acl’(P) : {z} is coherent}.
Lemma 2.5. If P is coherent, so is ccl(P).

Proposition 2.6. Suppose P = ccl(P) is coherent.

Then (P;acl®) is a modular pregeometry.

(i.e. for a,b € P and C C P, if a € acl’(bC) \ (acl’(C) Uacl’ (b)) then exists
¢ € acl®(C) such that a € acl’(bc).)
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(Eventual) consequence of Szemeredi-Trotter theorems

Example 2.7. Suppose G is a complex abelian algebraic group, F' < EndO(G) =
Q ®z End(G) a division ring, A C G(K) independent generics.

Let Q := {Xni(a;) : ;; € FNEnd(GQ);a; € A} C KeD.

Then (Q;acl’) is a modular pregeometry.

Theorem 2.8. Up to acl’-interalgebraicity, any coherent P C K is contained
in a union of finitely many orthogonal such Q.

Proof ingredients. Veblen-Young co-ordinatisation, plus generalisation of Evans-
Hrushovski. O

3 Elekes-Szabo consequences

Definition 3.1. Say a finite subset X of a variety W is 7-cgp if for any proper
. . 1
subvariety W’ C W of complexity < 7, we have [ X NW’| < |X|~ .

Definition 3.2. If V' C [], W; are irreducible complex algebraic varieties, with
dim(W;) = m and dim(V) = dm, say V admits a powersaving if for some 7

and € >0
HXimV
i

for 7-cgp X; C W; with |X;| < N.

< O(N4=9)

Lemma 3.3. V admits no powersaving iff exists coherent generic a € V(K).

Definition 3.4. H < G" is a special subgroup if G is a commutative complex
algebraic group and H = ker(A)° for some A € Mat(F N End(G)) for some
division subalgebra F < End"(G) := Q ®z End(G).

Ezample 3.5. G = C"; then End’(G) = End(G) = Mat,(C), and H < G
is special iff it is a subspace defined by F-linear equations for some division
subalgebra F' < Mat,, (C).

Theorem 3.6. V C [[, W; admits no powersaving iff it is in co-ordinatewise
algebraic correspondence with a product of special subgroups.

Where

Definition 3.7. Co-ordinatewise algebraic correspondence blah blah.

4 Applications

4.1 Generalised sum-product phenomenon

Corollary 4.1. Let (G1,+1) and (Ga,+2) be one-dimensional non-isogenous
connected complex algebraic groups, and for i = 1,2 let f; : G;(C) — C be a
rational map. Then there are €,¢ > 0 such that if A C C is a finite set lying in
the range of each f;, then setting A; = f; *(A) C G;(C) we have

max(|Ay +1 A1, [As +2 Ag]) > c|A['*.
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Proof. Else,

{(g1,h1,91 +1 h1,92,ha, 92 +2 h2) = fi(g1) = fa(g2), fi(h1) = fa(ha)}

admits no powersaving, so get group (G;+) such that 'y, is in co-ordinatewise
correspondence with I'y, ¢ = 1,2.
But then (by Ziegler) G; is isogenous to G. O

Similarly in higher dimension, with a cgp assumption.

4.2 Intersections of varieties with approximate subgroups

Theorem 4.2. T' < G(K) a (-\-definable subgroup of a 1-dimensional algebraic
group G, with 6(T') = dim(G).
Then any coherent tuple v € T'™ is generic in a coset of an algebraic subgroup

of G™.
Similarly in higher dimension, with a cgp assumption.

Corollary 4.3. Let G be a commutative complex algebraic group. Suppose
V' is a subvariety of G™ which is not a coset of a subgroup. Then there are
N,e,n > 0 depending only on G and the complexity of V' such that if A C G is
a finite subset such that A— A is T-cgp and |[A+ A| < |A|*T€ and |A| > N, then

dim(V)
A" N V| < |A]dme) ~7,

4.3 Diophantine connection

Example 4.4. G = E complex elliptic curve.

Eloo] :=J,,, E[m] torsion subgroup.

Suppose V. C E™ is an irreducible closed complex subvariety such that
V(C) N E[oc] is Zariski dense in V. Let d := dim(V).

By Manin-Mumford, V is a coset of an algebraic subgroup. Hence for any
€ > 0, for arbitrarily large r € N,

\V(C) N E[r"| > |E[]|* .

Suppose conversely that we only know this consequence of Manin-Mumford
on the asymptotics of the number of torsion points in V. Then V has a coherent
generic non-standard torsion point, and so by above theorem V is a coset.

Similarly for Mordell-Lang.

5 Sharpness

Consider case G = G”, so End’(G) = End(G) = Mat,, (C).
Want to show: if F < Mat,,(C) is a division ring, and H < G! is a subspace
defined by F-linear equations, then exists ¢ € H coherent generic.

Fact 5.1 (Amitsur-Kaplansky). Any division subring F C Mat,,(C) has finite
dimension over its centre.

Corollary 5.2. Euzists finitely generated subring O C F such that H is defined
by linear equations with coefficients from O and O is constrainedly filtered:
there are finite O, C O such that
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(CF0) O C Ot Uyyey On = O
(CF1) k. 9n. Op + Op C O i
(CF2) Va € 0. 3k. Vn. a0,, € Opi;
(CF3) Ve > 0. 195l < 0(|0,]9).

(e.g. Z =J,[—2",2"] is constrainedly filtered.)

Let “Xp = [T, ;3051 Os—kv:)” with 4; € G generic independent.

Then X := (0, X} is an O-submodule and §(X) = §(Xy), and ( € H N X!
with 6(¢) = §(H N X!) is coherent.

General G similar; always End®(G) embeds in Mat®™( ) (C), by Lie theory.

6 Relaxing general position

Remark 6.1. V := graph of (a1,b1) * (a2,bs) = (a1 + as + b3b3,by + ba), X; :=
{=N*,... N*} x{=N,...,N} CC%2=W,.

Then | X2 N V| > Q(|X;|?), but not in coarse general position, and V is not
in co-ordinatewise correspondence with the graph of a group operation.



