1 Setup

1.1 Pseudofinite dimension

- $\mathcal{U} \subseteq \mathbb{P}(\omega)$ non-principal ultrafilter.
- $K := \mathbb{C}^{\mathcal{U}}$.
- $X \subseteq K^n$ is **internal** if $X = \prod_{s \to \mathcal{U}} X_s$ for some $X_s \subseteq \mathbb{C}^n$.
- Then set $|X| := \prod_{s \to \mathcal{U}} |X_s| \in \mathbb{N}^{\mathcal{U}} \cup \{\infty\}.$
- Fix $\xi \in \mathbb{N}^{\mathcal{U}}$ with $\xi > \mathbb{N}$.

Definition 1.1 (Coarse pseudofinite dimension δ). For X internal,

$$\boldsymbol{\delta}(X) = \boldsymbol{\delta}_{\xi}(X) := \mathrm{st}\left(\frac{\log(|X|)}{\log(\xi)}\right) \in \mathbb{R}_{\geq 0} \cup \{-\infty, \infty\}$$

• Note that internality is closed under cardinality quantifiers: If $R \subseteq K^n \times K^m$ is internal and $\alpha \in \mathbb{R}^{\mathcal{U}}$, then $\{\overline{y} \in K^n : \exists_{\geq \alpha} \overline{x}. R(\overline{x}, \overline{y})\}$ is internal.

1.2 \mathcal{L}_{int} monster

- \mathcal{L}_{int} : predicate for each internal $X \subseteq K^n$.
- $\mathbb{K} \succ K$ monster model in \mathcal{L}_{int} .
- For $\phi \in \mathcal{L}_{int}$, set $\delta(\phi) := \delta(\phi(K))$.
- δ has a unique extension to $(\mathcal{L}_{\mathrm{int}})_{\mathbb{K}}$ such that

$$tp(\overline{b}) \mapsto \boldsymbol{\delta}(\phi(\overline{x}, \overline{b}))$$
$$S_{\overline{y}}(\emptyset) \to \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$$

is well-defined and continuous for each $\phi(\overline{x}, \overline{y}) \in \mathcal{L}_{int}$.

- Explicitly, $\delta(\phi(\overline{x},\overline{a})) := \sup\{q \in \mathbb{Q} : \mathbb{K} \vDash \exists_{\geq \xi^q} \overline{x}. \phi(\overline{x},\overline{a})\}.$
- For Φ a partial type, $\delta(\Phi) := \inf\{\delta(\phi) : \Phi \vDash \phi\}.$
- $\delta(a/C) := \delta(\operatorname{tp}(a/C)).$

Fact 1.2. For $C \subseteq \mathbb{K}$ small and $a, b \in \mathbb{K}^{<\omega}$,

- (i) $a \equiv_C b \Rightarrow \delta(a/C) = \delta(b/C).$
- (*ii*) $\delta(ab/C) = \delta(a/bC) + \delta(b/C)$.
- (iii) A partial type Φ over C has a realisation $a \in \Phi(\mathbb{K})$ with $\delta(a/C) = \delta(\Phi)$.

1.3 acl^0

We have $\mathbb{C} \leq \mathbb{C}^{\mathcal{U}} \leq \mathbb{K}$.

Definition 1.3. Superscript 0 means: reduct to $ACF_{\mathbb{C}}$. Work in $\mathbb{K}^{eq0} := \{ACF - \text{imaginaries}\} (= \mathbb{K}^{<\omega}).$

- $d^0(B) := \operatorname{trd}(B/\mathbb{C})$
- $a \in \operatorname{acl}^0(B)$ iff $d^0(a/B) = \operatorname{trd}(a/\mathbb{C}(B)) = 0.$

Remark 1.4. $a \in \operatorname{acl}^0(B) \Rightarrow \delta(a/B) = 0.$

2 Coherence

Definition 2.1. $P \subseteq \mathbb{K}$ is **coherent** if for any tuple $\overline{a} \in P^{<\omega}$,

$$\boldsymbol{\delta}(\overline{a}) = d^0(\overline{a}).$$

In other words, $\boldsymbol{\delta}$ is equal on $P^{<\omega}$ to the dimension function of the pregeometry $(P; \operatorname{acl}^0)$.

More generally:

Definition 2.2. $a \in \mathbb{K}^{eq0}$ is in **coarse general position** (or is **cgp**) if for any $B \subseteq \mathbb{K}$,

$$d^0(a/B) < d^0(a) \Rightarrow \delta(a/B) = 0.$$

Any $a \in \mathbb{K}$ is cgp.

Definition 2.3. $P \subseteq \mathbb{K}^{eq0}$ is coherent if

- every $a \in P$ is cgp, and
- for any tuple $\overline{a} \in P^{<\omega}$,

 $d^0(\overline{a}) = \boldsymbol{\delta}(\overline{a}).$

Then

- $(P; \operatorname{acl}^0)$ is a pregeometry,
- if $d^0(a) = k \ (\forall a \in P)$, then $\delta(\overline{a}) = k \dim_P(\overline{a})$ for any $\overline{a} \in P^{<\infty}$.

2.1 Modularity of coherence

Definition 2.4. For $P \subseteq \mathbb{K}^{eq0}$,

$$\operatorname{ccl}(P) := \{ x \in \operatorname{acl}^0(P) : \{ x \} \text{ is coherent} \}.$$

Lemma 2.5. If P is coherent, so is ccl(P).

Proposition 2.6. Suppose $P = \operatorname{ccl}(P)$ is coherent. Then $(P; \operatorname{acl}^0)$ is a modular pregeometry. (*i.e.* for $a, b \in P$ and $C \subseteq P$, if $a \in \operatorname{acl}^0(bC) \setminus (\operatorname{acl}^0(C) \cup \operatorname{acl}^0(b))$ then exists $c \in \operatorname{acl}^0(C)$ such that $a \in \operatorname{acl}^0(bc)$.)

3 ELEKES-SZABÓ CONSEQUENCES

(Eventual) consequence of Szemeredi-Trotter theorems

Example 2.7. Suppose G is a complex abelian algebraic group, $F \leq \operatorname{End}^{0}(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$ a division ring, $A \subseteq G(\mathbb{K})$ independent generics. Let $Q := \{ \sum_{i} \eta_{i}(a_{i}) : \eta_{i} \in F \cap \operatorname{End}(G); a_{i} \in A \} \subseteq \mathbb{K}^{\operatorname{eq} 0}.$

Then $(Q; \operatorname{acl}^0)$ is a modular pregeometry.

Theorem 2.8. Up to acl^0 -interalgebraicity, any coherent $P \subseteq \mathbb{K}^{eq^0}$ is contained in a union of finitely many orthogonal such Q.

 $Proof\ ingredients.$ Veblen-Young co-ordinatisation, plus generalisation of Evans-Hrushovski. $\hfill\square$

3 Elekes-Szabó consequences

Definition 3.1. Say a finite subset X of a variety W is τ -cgp if for any proper subvariety $W' \subsetneq W$ of complexity $\leq \tau$, we have $|X \cap W'| < |X|^{\frac{1}{\tau}}$.

Definition 3.2. If $V \subseteq \prod_i W_i$ are irreducible complex algebraic varieties, with $\dim(W_i) = m$ and $\dim(V) = dm$, say V admits a powersaving if for some τ and $\epsilon > 0$

$$\left|\prod_{i} X_{i} \cap V\right| \le O(N^{d-\epsilon})$$

for τ -cgp $X_i \subseteq W_i$ with $|X_i| \leq N$.

Lemma 3.3. V admits no powersaving iff exists coherent generic $\overline{a} \in V(\mathbb{K})$.

Definition 3.4. $H \leq G^n$ is a **special subgroup** if G is a commutative complex algebraic group and $H = \ker(A)^o$ for some $A \in \operatorname{Mat}(F \cap \operatorname{End}(G))$ for some division subalgebra $F \leq \operatorname{End}^0(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(G)$.

Example 3.5. $G = \mathbb{C}^n$; then $\operatorname{End}^0(G) = \operatorname{End}(G) = \operatorname{Mat}_n(\mathbb{C})$, and $H \leq G^l$ is special iff it is a subspace defined by *F*-linear equations for some division subalgebra $F \leq \operatorname{Mat}_n(\mathbb{C})$.

Theorem 3.6. $V \subseteq \prod_i W_i$ admits no powersaving iff it is in co-ordinatewise algebraic correspondence with a product of special subgroups.

Where

Definition 3.7. Co-ordinatewise algebraic correspondence blah blah.

4 Applications

4.1 Generalised sum-product phenomenon

Corollary 4.1. Let $(G_1, +_1)$ and $(G_2, +_2)$ be one-dimensional non-isogenous connected complex algebraic groups, and for i = 1, 2 let $f_i : G_i(\mathbb{C}) \to \mathbb{C}$ be a rational map. Then there are $\epsilon, c > 0$ such that if $A \subset \mathbb{C}$ is a finite set lying in the range of each f_i , then setting $A_i = f_i^{-1}(A) \subseteq G_i(\mathbb{C})$ we have

$$\max(|A_1 + A_1|, |A_2 + A_2|) \ge c|A|^{1+\epsilon}.$$

5 SHARPNESS

Proof. Else,

 $\{(g_1, h_1, g_1 + 1, h_1, g_2, h_2, g_2 + 2, h_2) : f_1(g_1) = f_2(g_2), f_1(h_1) = f_2(h_2)\}$

admits no powersaving, so get group (G; +) such that Γ_{+i} is in co-ordinatewise correspondence with Γ_{+} , i = 1, 2.

But then (by Ziegler) G_i is isogenous to G.

Similarly in higher dimension, with a cap assumption.

4.2 Intersections of varieties with approximate subgroups

Theorem 4.2. $\Gamma \leq G(\mathbb{K}) \ a \ \emptyset - \bigwedge$ -definable subgroup of a 1-dimensional algebraic group G, with $\delta(\Gamma) = \dim(G)$.

Then any coherent tuple $\overline{\gamma} \in \Gamma^n$ is generic in a coset of an algebraic subgroup of G^n .

Similarly in higher dimension, with a cgp assumption.

Corollary 4.3. Let G be a commutative complex algebraic group. Suppose V is a subvariety of G^n which is not a coset of a subgroup. Then there are $N, \epsilon, \eta > 0$ depending only on G and the complexity of V such that if $A \subseteq G$ is a finite subset such that A - A is τ -cgp and $|A + A| \leq |A|^{1+\epsilon}$ and $|A| \geq N$, then $|A^n \cap V| < |A|^{\frac{\dim(V)}{\dim(G)} - \eta}$.

4.3 Diophantine connection

Example 4.4. G = E complex elliptic curve.

 $E[\infty] := \bigcup_m E[m]$ torsion subgroup.

Suppose $V \subseteq E^n$ is an irreducible closed complex subvariety such that $V(\mathbb{C}) \cap E[\infty]$ is Zariski dense in V. Let $d := \dim(V)$.

By Manin-Mumford, V is a coset of an algebraic subgroup. Hence for any $\epsilon > 0$, for arbitrarily large $r \in \mathbb{N}$,

$$|V(\mathbb{C}) \cap E[r!]^n| \ge |E[r!]|^{d-\epsilon}$$
.

Suppose conversely that we only know this consequence of Manin-Mumford on the asymptotics of the number of torsion points in V. Then V has a coherent generic non-standard torsion point, and so by above theorem V is a coset.

Similarly for Mordell-Lang.

5 Sharpness

Consider case $G = \mathcal{G}_a^n$, so $\operatorname{End}^0(G) = \operatorname{End}(G) = \operatorname{Mat}_n(\mathbb{C})$.

Want to show: if $F \leq \operatorname{Mat}_n(\mathbb{C})$ is a division ring, and $H \leq G^l$ is a subspace defined by F-linear equations, then exists $\overline{\zeta} \in H$ coherent generic.

Fact 5.1 (Amitsur-Kaplansky). Any division subring $F \subseteq Mat_n(\mathbb{C})$ has finite dimension over its centre.

Corollary 5.2. Exists finitely generated subring $\mathcal{O} \subseteq F$ such that H is defined by linear equations with coefficients from \mathcal{O} and \mathcal{O} is **constrainedly filtered**: there are finite $\mathcal{O}_n \subseteq \mathcal{O}$ such that

(CF0) $\mathcal{O}_n \subseteq \mathcal{O}_{n+1}; \bigcup_{n \in \mathbb{N}} \mathcal{O}_n = \mathcal{O}$ (CF1) $\exists k. \forall n. \mathcal{O}_n + \mathcal{O}_n \subseteq \mathcal{O}_{n+k};$ (CF2) $\forall a \in \mathcal{O}. \exists k. \forall n. a \mathcal{O}_n \subseteq \mathcal{O}_{n+k};$ (CF3) $\forall \epsilon > 0. \ \frac{|\mathcal{O}_{n+1}|}{|\mathcal{O}_n|} \le O(|\mathcal{O}_n|^{\epsilon}).$ (e.g. $\mathbb{Z} = \bigcup_n [-2^n, 2^n]$ is constrainedly filtered.) Let " $X_k := \prod_{s \to \mathcal{U}} (\sum_{i=1}^s \mathcal{O}_{s-k}\gamma_i)$ " with $\gamma_i \in G$ generic independent. Then $X := \bigcap_k X_k$ is an \mathcal{O} -submodule and $\delta(X) = \delta(X_0)$, and $\overline{\zeta} \in H \cap X^l$ with $\delta(\overline{\zeta}) = \delta(H \cap X^l)$ is coherent.

General G similar; always $\operatorname{End}^{0}(G)$ embeds in $\operatorname{Mat}^{\dim(G)}(\mathbb{C})$, by Lie theory.

Relaxing general position 6

Remark 6.1. $V := \text{graph of } (a_1, b_1) * (a_2, b_2) = (a_1 + a_2 + b_1^2 b_2^2, b_1 + b_2), X_i := \{-N^4, \dots, N^4\} \times \{-N, \dots, N\} \subseteq \mathbb{C}^2 =: W_i.$

Then $|X_i^3 \cap V| \ge \Omega(|X_i|^2)$, but not in coarse general position, and V is not in co-ordinatewise correspondence with the graph of a group operation.