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Abstract

We give an algebraic description of the structure of the analytic uni-
versal cover of a complex abelian variety which suffices to determine the
structure up to isomorphism. More generally, we classify the models of
theories of “universal covers” of rigid divisible commutative finite Morley
rank groups.

1 Introduction

1.1 Characterising universal covers of abelian varieties

Let G be an abelian variety defined over C. Considering G(C) as a complex Lie
group, the exponential map provides a surjective analytic homomorphism

ρ : T0(G(C)) � G(C).

Let O := {η ∈ End(T0(G(C))) | η(ker ρ) ⊆ ker ρ} ∼= End(G) be the ring of C-
linear endomorphisms which induce endomorphisms of G(C); these are precisely
the algebraic endomorphisms of G. Consider T0(G(C)) as an O-module.

In this paper, we use model theoretic techniques and Kummer theory to give
a purely algebraic characterisation of the algebraic consequences of this analytic
picture. To state this precisely, we first define a notion of isomorphism which
captures these “algebraic consequences”.

Let k0 ≤ C be a field over which G and the action on G of each η ∈ O are
defined. Say that a surjective O-homomorphism ρ′ : V � G(C) from an O-
module V is algebraically isomorphic to ρ if there is an O-module isomorphism
σ : T0(G(C))→ V and a field automorphism τ ∈ Aut(C/k0) of C fixing k0 such
that τρ′σ = ρ.

Say that such an isomorphism is over a submodule of V if σ fixes the sub-
module pointwise.

Let 〈ker ρ〉Q ≤ T0(G(C)) be the divisible subgroup generated by ker ρ, so

〈ker ρ〉Q = ρ−1(Tor(G)). We prove:

Theorem 1.1. Suppose k0 is a number field. Then ρ : T0(G(C)) � G(C) is, up
to algebraic isomorphism over 〈ker ρ〉Q, the unique surjective O-homomorphism
with kernel ker ρ which extends ρ�〈ker ρ〉Q .
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We require here that k0 is a number field in order to have Kummer theory
available. We have a corresponding result in the case that G is a split semia-
belian variety defined over a number field, but general semiabelian varieties are
problematic due to failure of Kummer theory.

We prove Theorem 1.1 by classifying the models of the first order theory of
ρ. Our proof can be split into three stages:

(i) Kummer theory for abelian varieties (due to Faltings, Ribet, Serre, Bogo-
molov) explains the behaviour for finite extensions of k0, and suffices to
show uniqueness of the restriction of ρ to ρ−1(G(Q̄));

(ii) a function-field analogue of this Kummer theory allows us to extend the
uniqueness to G(F ) for F an algebraically closed field of cardinality ≤ ℵ1;

(iii) we extend to arbitrary cardinals (in particular the continuum, which with-
out assuming the continuum hypothesis is not covered by (ii)) using ar-
guments involving independent systems, based on arguments involved in
Shelah’s Main Gap theorem.

In [BGH11], it was found that the geometric Kummer theory of (ii) actu-
ally follows from a general model-theoretic principle, Zilber’s Indecomposability
Theorem, and hence holds in the generality of rigid (see below) commutative
divisible finite Morley rank groups.

This also turns out to be a natural level of generality for (iii), and it is
in this context that we will actually work for most of this paper. We corre-
spondingly obtain an analogue of Theorem 1.1 in this generality, Theorem 3.11
below - although since there is no analogue of (i) in such generality we get a
correspondingly weaker result.

This does allow us to remove the restrictions in Theorem 1.1 and still get
a uniqueness result: if G is an abelian variety over a field k0 ≤ C, then the
exponential map ρ : T0(G(C)) � G(C) is, up to algebraic isomorphism over
ρ �kalg0

, the unique surjective End(G)-homomorphism with kernel ker ρ which

extends ρ�kalg0
. We obtain an analogous result for semiabelian varieties, but it

admits no statement of this form.
We also obtain similar results for complex tori which are not abelian varieties,

and for semiabelian varieties in positive characteristic.

1.2 Pro-algebraic covers and the model-theoretic setup

Let us now explain the model-theoretic setup used in the remainder of the paper
from the point of view of algebraic groups.

The algebraic group G can be viewed as a definable group in ACF0, and
as such inherits the structure of a finite Morley rank group. Explicitly, we
consider G(K) for K an algebraically closed extension of k0 as a structure in
the language with a predicate for each k0-Zariski-closed subset of each Cartesian
power Gn(K). This structure is bi-interpretable with the field (K; +, ·, (c)c∈k0)
with parameters for k0, and is a finite Morley rank group of rank dim(G).

As in Grothendieck’s construction of the étale fundamental group, we may
consider the inverse limit of finite étale covers of G as an “étale universal cover”
of G. Any finite étale cover of G is dominated by a multiplication-by-n homo-
morphism [n] : G � G, meaning that it suffices to consider the projective limit
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of copies of G(K) with these maps between them, Ĝ(K) := lim←−[n] : G � G.
This can be considered as a purely algebraic substitute for the analytic universal
cover; we will see below one justification for this: in an appropriate language,
the latter is an elementary submodel of the former.

We can parallel this construction for an abstract commutative divisible finite
Morley rank group G, defining the “pro-definable universal cover” Ĝ := lim←−[n] :
G � G. If we consider definable finite group covers as a substitute for étale
maps, again any is dominated by some [n], so this is the analogue of the étale
universal cover.

The results described in the previous subsection result from classifying the
models of the theory of this structure in an appropriate language, which in
the algebraic case corresponds to the notion of “algebraic isomorphism” defined
above.

1.3 The literature

We discuss the previous work on which this work builds. For G = Gm the multi-
plicative group, Theorem 1.1 was proven in [ZCovers, BZCovers]. It was proven
for G an abelian variety in [Gav06] under the assumption of the continuum hy-
pothesis, i.e. with only the first two of the three steps described above. A path
toward the full result was discussed in [Zil02], and for G an elliptic curve the
full result was obtained in [Bay09]. These previous proofs of (iii) use algebraic
techniques analogous to but substantially more complicated and limited than
the model theoretic techniques of the present work.

In previous work, the problem was considered one of categoricity in infinitary
logic, and correspondingly the techniques applied were those of Shelah’s theory
of excellent classes, and more specifically Zilber’s adaptation to Quasiminimal
Excellent (QME) classes. It was key to the developments in this paper to instead
consider the problem in terms of first-order classification theory; the argument
which allows us to get (iii) in the generality we do is an adaptation of Shelah’s
“NOTOP” argument, which reduces the condition of excellence in the first-order
case to a simpler condition.

In fact, while the current paper was in preparation, it was found that this
same idea applies in the context of QME classes [BHH+13]. For the benefit of
any readers familiar with that paper, we mention how it relates to this paper.
Our main results do not fit into the definition of QME, even if we assume
the kernel to be countable: we consider finite Morley rank groups which are
not necessarily almost strongly minimal; correspondingly, the covers are not
even almost quasiminimal. In the case of a semiabelian variety G discussed
above, however, the covers structure can be seen as almost quasiminimal - and
moreover it is bi-interpretable with the quasiminimal structure induced on the
inverse image in the cover of a Kummer-generic (in the sense of [BGH11]) curve
in G which generates G as a group. So in this case, (iii) above could be deduced
from the main result of [BHH+13].

1.4 Acknowledgements

This paper grew out of the thesis of the first author, supervised by Boris Zilber,
and many of the ideas are due eventually to Zilber. The first author was also
strongly influenced by the work of Misha Gavrilovich. We would like to thank
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Udi Hrushovski for first suggesting the relevance of NOTOP/PMOP. The first
author would also like to thank John Baldwin, Juan Diego Caycedo, Martin
Hils and Jonathan Kirby for helpful pointers and discussion at various stages of
this project.

2 First-order theory of pro-definable universal
covers of divisible commutative finite Morley
rank groups

If G is a commutative group and [n] is the multiplication-by-n map, let Ĝ :=

lim←−[n] : G → G. Let ρn : Ĝ � G be the corresponding maps, so [n]ρnm = ρm.

Let ρ := ρ1. We often write elements of Ĝ in the form γ = (gn)n, and then
ρn(γ) = gn.

If θ : G→ H, define θ̂ : Ĝ→ Ĥ by θ̂((gn)n) = (θ(gn)n.
Say a commutative group G is divisible-by-finite if its divisible hull Go :=⋂

n nG ≤ G has finite index in G. We first note some elementary homological
algebraic properties of the functor ·̂ on divisible-by-finite groups:

Lemma 2.1. Suppose 0→ A→ B → C → 0 is an exact sequence of divisible-
by-finite groups. Then

(I) 0→ Â→ B̂ → Ĉ → 0 is exact.

(II)
0→ π1(A)→ π1(B)→ π1(C)→ π0(A)→ π0(B)→ π0(C)→ 0

is exact, where π1(A) := ρ−1(0) ≤ Â and π0(A) := A/Ao

Proof. (I) The only difficulty is the surjectivity of B̂ → Ĉ. We may assume
A→ B is an inclusion. Factoring θ via B/(Ao), we see that it suffices to

prove the surjectivity of B̂ → Ĉ under the assumption that A is divisible
or finite.

(a) Suppose A is divisible. We first show that given any n ∈ N, b ∈ B
and c′ ∈ C such that θ(b) = [n]c′, there is b′ ∈ B such that [n]b′ = b
and θ(b′) = c′. Say θ(b′′) = c′; then θ([n]b′′) = [n]c′ = θ(b), so
b − [n]b′′ ∈ A. Say a′ ∈ A with [n]a′ = b − [n]b′′. Then b′ := b′′ + a′

is as required.

0 // A //

[n]

��

B //

[n]

��

C //

[n]

��

0

0 // A // B // C // 0

Given ĉ, we can therefore inductively define bn! such that [n]b(n+1)! =

bn! and θ(bn!) = ρn!(ĉ). Easily, there is a unique b̂ ∈ B̂ such that

ρn!(̂b) = bn!, and θ̂(̂b) = ĉ.
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(b) Suppose A is finite, say [n]A = 0. Then θ factors [n] - indeed, define
φ such that the left triangle in the following diagram commutes, then
note that the right triangle does:

B
[n]

//

θ
��

@@@@@@@ B
θ

��
@@@@@@@

C
[n]

//

φ
??~~~~~~~

C

But [̂n] is surjective, hence so is θ̂.

(II) Snake Lemma applied to the diagram

Â //

ρ

��

B̂ //

ρ

��

Ĉ //

ρ

��

0

0 // A // B // C

,

noting that each column has kernel π1 and cokernel π0.

Now let G be a connected commutative finite Morley rank group, and sup-
pose moreover that it is divisible. Then [n] : G � G has finite kernel, and it
follows that any definable subgroup A ≤ G is divisible-by-finite, and its divisible
hull Ao is its connected component in the model-theoretic sense (the smallest
subgroup of finite index).

Let T := Th(G); we assume (by appropriate choice of language) that T has
quantifier elimination. We also assume that the language of T is countable.

Let T̂ be the theory of (Ĝ,G) in the two-sorted language consisting of the
maps ρn for each n, the full T -structure on G, and, for each acleq(∅)-definable

connected subgroup H of Gn, a predicate Ĥ interpreted as the subgroup Ĥ =
{x |

∧
n ρn(x) ∈ H} of Ĝn.

For quantifier elimination purposes, we actually assume (by expanding T by
constants if necessary) that every acleq(∅)-definable connected subgroup of Gn
is ∅-definable.

We say that T is rigid if for G a saturated model of T , every definable
connected subgroup of Gn is defined over acleq(∅). Although the results of this
section do not require rigidity, our language is chosen with it in mind.

Notation 2.1. If (M̃,M) |= T̂ and ã ∈ M̃ is a tuple, then we will write an for
ρn(ã), and a for ρ(ã), and â for (an)n.

We will often just write M̃ |= T̂ rather than (M̃,M) |= T̂ ; we recover M as

ρ(M̃). We say in this situation that M̃ is over M .

Ĝ and Ĥ will always refer to the predicates corresponding to ∅-definable
connected subgroups G and H of a cartesian power of G. Ĉ will refer to a coset
of some Ĥ.

Ĝ(ã) is the definable set {x̃ | (x̃, ã) ∈ Ĝ}, a coset of Ĝ(0).
ker is the definable set ker(ρ).
ker0 is the

∧
-definable set

∧
n ρn(x) = 0.
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Abusively, ker and ker0 also refer to the corresponding sets in cartesian
powers of G.

Ĥ0 := Ĥ ∩ ker0, a Q-subspace of the Q-vector space ker0.

Proposition 2.2. T̂ has quantifier elimination (QE), and is axiomatised by T̂ ′:

(A1) T

(A2) if Γ+ is the graph of the group operation on G, then Γ̂+ is the graph of a
commutative divisible torsion free group operation, which we write as “+”
and work with respect to in the following axioms;

(A3) if ∆ is the diagonal subgroup (the graph of equality), then ∆̂ is the respec-
tive diagonal subgroup;

(A4) each Ĥ is a subgroup;

(A5) [m]ρnm = ρn;

(A6) ρn(Ĥ) = H;

(A7) H ⊆ G iff Ĥ ⊆ Ĝ;

(A8) If H ⊆ G and Tor(H) = Tor(G), then Ĥ ∩ ker = Ĝ ∩ ker;

(A9) if a co-ordinate projection pr induces a map pr : G � H with kernel K
then

(I) the corresponding co-ordinate projection induces a map pr : Ĝ� Ĥ

with kernel K̂o;

(II) if K/Ko has exponent N , then pr : Ĝ ∩ ker � N(Ĥ ∩ ker).

In particular, Th(Ĝ) does not depend on the choice of G |= T .

Remark 2.1. Note that to express these axioms, we require our assumption that
connected subgroups are ∅-definable.

Proof. That Ĝ satisfies (A1)-(A8) is easily checked; by Lemma 2.1, it also sat-
isfies (A9). We proceed to show completeness and QE.

Note that by (A6) applied to the graphs of the group operations, the ρn are

homomorphisms, and it follows from (A6) and torsion-freeness that each Ĥ is
divisible.

Suppose given ω-saturated models M̃, Ñ |= T̂ ′, tuples m̃ ≡qf ñ from each,
and a point m̃′.

Let Ĥ be the group locus of m̃ over 0, the smallest Ĥ containing m̃. Such
exists by ω-stability of T , since G 7→ Ĝ is a lattice isomorphism by (A7).

Let Ĝ be the group-locus of (m̃, m̃′) over 0, let pr be the corresponding
co-ordinate projection.

T̂ ′ |= pr(Ĝ) = p̂r(G) by (A9), and we deduce that pr : Ĝ� Ĥ and pr : G�
H.

Claim 2.2.1. pr : Ĝ0(Ñ) � Ĥ0(Ñ)
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Proof. Let K be the kernel of pr : G � H, and suppose K/Ko has exponent
N , so by (A9)

T̂ ′ |= pr : Ĝ ∩ ker � N(Ĥ ∩ ker).

Then for each m:

T̂ ′ |= pr : m(Ĝ ∩ ker) � mN(Ĥ ∩ ker).

But then by ω-saturation,

Ñ |= pr :
⋂
m

m(Ĝ ∩ ker) �
⋂
m

mN(Ĥ ∩ ker)

i.e.
Ñ |= pr : Ĝ0 � Ĥ0.

Now by QE in T and ω-saturation, we can find ñ′ such that

(m̂, m̂′) ≡qf (n̂, n̂′)

in particular, ρn(ñ, ñ′) ∈ G, so (ñ, ñ′) ∈ Ĝ(Ñ) + ker0(Ñ). By the claim, we can

then find such ñ′ with (ñ, ñ′) ∈ Ĝ(Ñ).

Now suppose the group locus of (ñ, ñ′) = Ĝ′ < Ĝ. Then ρn(m̃, m̃′) ∈ G′

for each n, so (m̃, m̃′) ∈ Ĝ′ + ζ for some ζ ∈ Ĝ0 \ Ĝ′0. So Ĝ′0(M̃) < Ĝ0(M̃),

so, by (A8), Tor(G′) < Tor(G), and so by divisibility Ĝ′0(Ñ) < Ĝ0(Ñ). Since

pr(Ĝ′) = Ĥ = pr(Ĝ), we have a corresponding strict inclusion Ĝ′0(0) < Ĝ0(0)

in Ñ for the fibres above 0 ∈ Ĥ. Hence by translating, we can find ñ′ such
that (ñ, ñ′) /∈ Ĝ′. Now Ĝ0(0) is not covered by any finitely many such Ĝ′0(0),
since they are proper Q-subspaces. So we can avoid any finitely many such
proper subgroups simultaneously, and so, applying saturation, we find ñ′ such
that (ñ, ñ′) has group locus Ĝ.

Then, using (A3), it follows that (m̃, m̃′) ≡qf (ñ, ñ′) as required.

In Corollary 4.2.1 below we see that the analytic universal cover of an abelian
variety, as discussed in the introduction, is, in the appropriate language, a model
of T̂ .

Definition 2.2. Let Ã ⊆ M̃ |= T̂ , and ã ∈ M̃ . Then grploc(ã/Ã), the group

locus of ã over Ã, is the smallest coset definable over Ã containing ã.

Corollary 2.2.1. T̂ is superstable of finite rank, and tp(ã/B̃) forks over Ã ⊆ B̃
iff tp(a/B̂) forks over Â or grploc(ã/B̃) 6= grploc(ã/Ã).

Proof. By the QE, tp(ã/Ã) is determined by tp(â/Â) and grploc(ã/Ã). For the

former, there are only finitely many possibilities for tp(ai/Âa), and the latter is

determined by a choice of coset over Ã. So by ω-stability of T , if |Ã| = λ ≥ 2|T |

then |S(Ã)| ≤ (λ2ℵ0)(|T |λ) = λ. So T̂ is superstable.

Now suppose tp(ã/B̃) forks over Ã; say φ(x, b̃) ∈ tp(ã/B̃) divides over Ã.

Let Ĉ := grploc(ã/B̃). WLOG, φ(x, b̃) |= x ∈ Ĉ.
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Suppose Ĉ is over Ã. Then also φ(x, b̃′) |= x ∈ Ĉ for any b̃′ ≡Ã b̃. Now by
the QE,

φ(x)← x ∈ (Ĉ \
⋃
i

Ĉ ′i) ∧ ψ(ρn(x))

where Ĉ ′i 6≤ Ĉ and ψ(x) is a T -formula over B̂, WLOG implying x ∈ ρn(Ĉ \⋃
i Ĉ
′
i). So since φ divides over Ã, ψ must divide over Â. So tp(an/B̂) forks

over Â, and since a is algebraic over an, so does tp(a/B̂).

For the converse: if Ĉ is not over Ã, then, since distinct conjugates of Ĉ are
cosets of the same subgroup and hence disjoint, Ĉ forks over Ã.

Finite rankedness of T̂ follows from finite rankedness of T and Noetherianity
of the subgroups in T .

Remark 2.2. As in the proof of Lemma 2.1, any definable finite group cover of
G is dominated by some [n].

Note that this argument uses divisibility - for example, the Artin-Schreier
map x 7→ xp − x is a finite definable group cover of the additive group in ACFp
which isn’t handled by our setup (c.f. [BGH11] where this issue is discussed).

Remark 2.3. It follows from the QE that ker0 is indeed the connected component
of the kernel in the model-theoretic sense, and more generally that Ĥ + ker0 is
the connected component of ρ−1(H) = Ĥ + ker.

Lemma 2.3. Let Ã ⊆ M̃ |= T̂ , and ã ∈ M̃ . Let Ĉ := grploc(ã/Ã).

Suppose ker(M̃) ⊆ Ã.

Then p′ := tp(â/Â) ∪ {ã ∈ Ĉ} |= tp(ã/Ã)

Proof. By the QE, we need only see that if b̃ |= p′ in an elementary extension,

then for all Ĥ and all c̃ ∈ Ã, ã ∈ Ĥ(c̃) iff b̃ ∈ Ĥ(c̃).

Now ã ∈ Ĥ(c̃) iff Ĉ ≤ Ĥ(c̃), so the forward direction is clear.

For the converse, suppose b̃ ∈ Ĥ(c̃). Then b ∈ H(c), hence a ∈ H(c). So

(ã, c̃) ∈ Ĥ + ker(M̃), i.e. ã ∈ Ĥ(c̃ + ζ) + ξ for some ζ, ξ ∈ ker(M̃). But

ker(M̃) ⊆ Ã, so Ĉ ≤ Ĥ(c̃+ ζ) + ξ. So b̃ ∈ Ĥ(c̃) ∩ (Ĥ(c̃+ ζ) + ξ); but this is

an intersection of cosets of Ĥ(0), so they are equal, and so ã ∈ Ĥ(c̃).

2.1 Further remarks on T̂

Proposition 2.4. Let M̃ |= T̂ be a monster model.

(i) ker0 is stably embedded, in the sense that every relatively definable set

is relatively definable with parameters from ker0. Consider ker0(M̃) as a

structure with the ∅-relatively-definable sets as predicates, and let T̂ 0 :=
Th(ker0(M̃)). Then T̂ 0 is an ω-stable 1-based group of finite Morley rank
bounded above by the Morley rank of T .

In particular, ker0 has finite relative Morley rank in the sense of [BBP09].

(ii) Every type in T̂ eq is analysable in ker0 and im(ρ).

(iii) ker0 is orthogonal to im(ρ).

(iv) A regular type in T̂ eq is non-orthogonal to one of
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(a) a strongly minimal type in T eq;

(b) Ĝ0/Ĥ0
for H ≤ G connected subgroups of G with no intermediate con-

nected subgroup.

Proof. (i) By the QE, the only structure on ker0 is the abelian structure given

by the Ĥ. Stable embeddedness and 1-basedness follow easily.

Since ker0 is torsion-free and Ĥ ∩ Ĝ = ̂(H ∩G)o, the definable subgroups

are precisely those of the form Ĥ. So there is is no infinite chain of definable
subgroups of ker0, so T̂ 0 is of finite Morley rank. The rank is bounded by
the longest length of such a chain, which is bounded by the rank of T .

(ii) Consider a strong type q = stp(ã/Ã). If b̃ ∈ M̃ is an independent realisa-

tion of q1 = stp(ã/aÃ), then since â ⊆ acl(a), we have ã− b̃ ∈ ker0. So q1

is internal to ker0, and clearly stp(a/Ã) is internal to T .

(iii) By the QE, there are no non-constant definable functions (ker0)n → im(ρ).

(iv) By (i), the types in (b) are minimal, and ker0 is analysed in them. So this
follows from (ii).

3 Classification of models of T̂

In this section, we prove the main model-theoretic result of this paper, Theorem
3.11 below, which classifies the models of T̂ . The classification proceeds as
follows. First, recall the classification of models of T : by [Las85, Theorem
6], T is almost ℵ1-categorical, so there is a finite set of mutually orthogonal
strongly minimal sets Di defined over the prime model such that any model M
is primary (i.e. constructible) and minimal over M0B where M0 ⊆ M is the
prime model and B is the union of arbitrary bases for the Di(M), and conjugate
strongly minimal sets have the same dimension [Bue96, 7.1]. So the models are
determined by the dimensions of the strongly minimal sets.

We will show that this picture lifts to T̂ . We will show that a model M̃ |= T̂

is primary and minimal over M̃0B where M̃0 = ρ−1(M0) and B is as above. So

models of T̂ are determined by a choice of model of T and a choice of lift of the
prime model M0 (which in particular involves a choice of kernel).

3.1 Preliminaries

We make use of l-isolation, a technique due to Lachlan [Lac73].

Definition 3.1. A type p is l-isolated if for each φ there exists ψ ∈ p such that
ψ |= p|φ. l-atomicity and l-primariness are then defined by analogy with the
usual notions.

Lemma 3.1. (a) Work in a monster model M of a complete stable theory T ′.

(i) l-primary models exist over arbitrary A ⊆Meq.
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(ii) If M � M and φ is a formula over M and φ(M) ⊆ A ⊆ Meq and
dcleq(A) ∩ φ(M) = φ(M) and b is l-isolated over A and |= φ(b), then
b ∈ φ(M).

(b) If M̃ |= T̂ and N |= T , M � N , and Ñ is l-primary over A := M̃ ∪N , then

ker(Ñ) = ker(M̃) and ρ(Ñ) = N , and so Ñ is minimal over A.

Proof. (a) (i) [She90, IV.2.18(4), IV.3.1(5)]

(ii) If b /∈ φ(M), then by l-isolation, there is a formula ψ ∈ tp(b/A) such
that

ψ(x) |= φ(x) ∧ x /∈ φ(M).

By stable embeddedness of φ, we may take ψ to be over dcleq(A) ∩
φ(M) ⊆M . But then ψ is realised in M , which is a contradiction.

(b) Follows from (a)(ii), since by the QE there are no non-constant definable

functions from ker ρ to im ρ or vice-versa, and N̂ is a model of T̂ with
ρ(N̂) = N .

Minimality is clear, since ρ is a homomorphism.

For getting primariness when the kernel is uncountable:

Lemma 3.2. Suppose M̃ |= T̂ and A ⊆ M̃ eq with ker(M̃) ⊆ A, suppose M is

countable, and suppose M̃ is (l-)atomic over A. Then M̃ is (l-)primary over A.

Proof. Take an arbitrary section of S of π : M̃ →M . Then S is countable and
(l-)atomic hence (l-)primary over A, and M̃ = S + ker is primary over S.

3.2 ω-stability over models

From now on, in order to make the following lemma work, we make the following
additional assumption.

Assumption: T is rigid - for G a saturated model of T , every connected
definable subgroup of Gn is defined over acleq(∅) (and hence has in the language

of T̂ a predicate Ĥ corresponding to it).

Lemma 3.3. Suppose M |= T and b is a tuple in an elementary extension, and

let M(b) be the prime model over Mb. Let M̃ |= T̂ over M , and suppose M̃ has

a kernel-preserving extension M̃(b) |= T̂ over M(b). Then M̃(b) is atomic over

M̃b. If M is countable, M̃(b) is primary over M̃b.

Furthermore, such an M̃(b) exists.

Proof. Existence is by Lemma 3.1(b).

Let c̃ ∈ M̃(b). Let Ĥ + d̃ = grploc(c̃/M̃). Replacing c̃ with c̃ − d̃, we may

assume d̃ = 0.
Since M̃ contains ker(M̃(b)) and T is rigid, c is free in H over M , i.e. in no

proper coset defined over M . By [BGH11, 6.4], for some n,

tp(cn/M) ∪ {c̃ ∈ Ĥ} ∪ {ci = ρi(c̃) | i} |= tp(ĉ/M).
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Now by ω-stability, tp(b/Mc) has finite multiplicity, i.e. finitely many ex-
tensions to acleq(Mc) ⊇ ĉ. Hence tp(ĉ/M) ∪ tp(c/Mb) has only finitely many
extensions to Mb. So again, for some n,

tp(cn/Mb) ∪ {c̃ ∈ Ĥ} ∪ {ci = ρi(c̃) | i} |= tp(ĉ/Mb).

So by Lemma 2.3,

tp(cn/Mb) ∪ {c̃ ∈ Ĥ} |= tp(c̃/M̃b).

But cn ∈M(b), so tp(cn/Mb) is isolated, so tp(c̃/M̃b) is isolated.
This proves atomicity. Primariness assuming countability follows by Lemma

3.2.

Remark 3.1. Note that M̃(b) will not be primary, or prime, over M̃ ∪M(b):

indeed, if ã ∈ M̃(b) \ M̃ , then each an ∈ M(b) \M , so easily tp(ã/M̃ ∪M(b))
is not isolated.

Remark 3.2. If we don’t assume rigidity, there could be subgroups definable over
M(b) which aren’t definable over M , which could cause a failure of atomicity.

Remark 3.3. Lemma 3.3 implies that we have ω-stability over models in the
following sense: if M̃ |= T̂ is countable, then there are only countably many

types over M̃ realised in kernel-preserving extensions of M̃ . Indeed, by the
Lemma any such type is isolated over M̃b for some b, and by ω-stability of T
there are only countably many possible types tp(b/M̃) a tp(b/M).

3.3 Independent systems

Countability of M was crucial to get primariness in Lemma 3.3. For such
primariness of extensions in higher cardinals, we require primariness over inde-
pendent systems of models. [She90, XII] and [Har87] are the sources for the
techniques used here.

Definition 3.2. If I is a downward-closed set of sets, an I-system in a stable
theory T is a collection (Ms | s ∈ I) of elementary submodels of a model of T ,
such that for s ⊆ t, Ms is an elementary submodel of Mt. For J ⊆ I, define
MJ :=

⋃
s∈J Ms.

Define < s := P−(s) := P (s) \ {s}, and 6≥ s := I \ {t | t ⊇ s}.
The system is (l-)primary if Ms is (l-)primary over M<s for all s ∈ I with

|s| > 1.
The system is independent if Ms ^

M<s

M 6≥s for all s ∈ I.

I is Noetherian if each s ∈ I is finite.
|n| := {0, ..., n− 1}.
An enumeration of I is a sequence (si)i∈λ such that I = {si|i ∈ λ} and

si ⊆ sj → i ≤ j. We write s<i for {sj | j < i}.

Definition 3.3. Let M be a (possibly multi-sorted) structure. If A ⊆ B ⊆M ,
we say A is Tarski-Vaught in B, A ⊆TV B, if every formula over A which is
realised in B is realised in A.

Lemma 3.4. Suppose C ⊆TV B.

11



(i) If a type tp(a/C) is l-isolated, then tp(a/C) |= tp(a/B).

(ii) If A is (l-)primary over C then A is (l-)primary over B.

(iii) If A is l-atomic over C, then A^
C
B.

Proof. (i) is straightforward, and (ii) and (iii) follow.

The following is [She90, Lemma XII.2.3(2)], to which we refer for the proof.

Lemma 3.5 (TV Lemma). If (Ms)s is an independent I-system in a stable
theory, if J ⊆ I, and if ∀s ∈ I.(s ⊆

⋃
J → s ∈ J), then MJ ⊆TV MI .

Lemma 3.6. Let (Ms)s be an (l-)primary Noetherian independent I-system.
Let S be the set of singletons S := {{i} | i ∈

⋃
I}. Then MI is (l-)primary over

A := MS.
If moreover each M{i} is (l-)primary over some M∅Bi, then MI is (l-)primary

over A′ = M∅
⋃
i∈

⋃
I Bi.

Proof. Let (si)i<λ be an enumeration of I.
If |si| > 1, then Msi is (l-)primary over M<si ; but M<si ⊆TV Ms<i∪S by

the TV Lemma, so Msi is (l-)primary over Ms<i∪S = AMs<i
. This also holds

when |si| ≤ 1, trivially, so we conclude by induction on i.
For the moreover clause, the same proof works, using the given assumption

when |si| = 1.

Lemma 3.7. Suppose
⋃
I is finite.

An l-primary I-system is independent iff for each i ∈
⋃
I,

M{i} ^
M∅

M 6≥{i}.

Proof. Suppose inductively that for any downward closed proper subset J of I,
the restriction of the I-system to a J-system is independent.

So it suffices to show that for s ∈ I maximal, Ms ^
M<s

MI\{s}.

If |s| = 1, this holds by assumption.
If |s| > 1, then if t ⊆ s and t ∈ I \ {s} then t ∈ < s, so by the TV Lemma

applied to the restricted independent (I \ {s})-system,

M<s ⊆TV MI\{s}.

But Ms is l-atomic over M<s, so we conclude the independence by Lemma
3.4(iii).

Now let M |= T extending the prime model M0, and say Bi is an acl-basis
for Di(M) over M0. Let B :=

⋃
iBi, and let Pfin(B) be the set of finite subsets

of B. Let M∅ = M0, and for s ∈ Pfin(B) inductively let Ms ⊆ M be a copy of
the prime model over M<s ∪ s.

Lemma 3.8. (Ms | s ∈ Pfin(B)) is a primary independent system, and
⋃
sMs =

M .
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Proof.
⋃
sMs is an elementary submodel of M which contains M0B, but M is

minimal over M0B, so
⋃
sMs = M .

For independence, by finite character of forking and Lemma 3.7 it suffices
to see that M{b} ^

M0

Ms when b /∈ s ∈ Pfin(B).

We may assume inductively that the restriction of the system to s is inde-
pendent. So by Lemma 3.6, Ms is primary over M0s.

Now b /∈ Ms since (by orthogonality of the Di) tp(b/M0s) is not algebraic
and hence not isolated.

So b ^
M0

Ms. So by the coheir property of forking independence, bM0 ⊆TV

bMs. By atomicity, it follows (as in the proof of Lemma 3.7) that M{b} ^
bM0

Ms,

and hence M{b} ^
M0

Ms by symmetry and transitivity.

Definition 3.4. An I-∼-system is an I-system (M̃s)s in T̂ such that

• setting Ms := ρ(M̃s) |= T , (Ms)s is an independent primary I-system in
T

• M̃s = ρ−1(Ms) in M̃n (i.e. the submodels contain all the kernel, i.e. the
embeddings preserve the kernel)

Lemma 3.9. An I-∼-system (M̃s)s is an independent l-primary I-system in

T̂ .

Proof. • Independence: We want to see M̃s ^
M̃<s

M̃ 6≥s for all s ∈ I.

If ã ∈ M̃s and Ĉ = grploc(ã/M̃ 6≥s), then ρ(grploc(ã/M̃<s)) = ρ(Ĉ)
by the TV lemma applied to T , and so since there is no new kernel,
grploc(ã/M̃<s) = Ĉ. So we conclude by Corollary 2.2.1.

• l-primariness: By Lemma 3.1(a), there is an l-primary model over M̃<s.

But M̃<s contains Ms and the kernel, so M̃s is minimal over M̃<s.

The key point is that we can strengthen “l-primary” in the previous lemma
to “primary”:

Proposition 3.10. Let (M̃s)s be an I-∼-system with each Ms countable and I
Noetherian. Then the system is primary.

Proof. We may assume that I = P(|n|), n > 1, and assume inductively the
result for 1 < n′ < n.

We show that M̃|n| is atomic over M̃<|n|, hence primary by Lemma 3.2.

Claim 3.10.1. (M̃s)s extends to a P(|n + 1|)-∼-system such that M̃|n| is iso-

morphic over M̃|n−1| to M̃|n−1|∪{n}, say by an isomorphism σ.
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Proof. Let t := |n− 1| ∪ {n}.

{3}

�������������������������

3333333333333333333333333
[4]

t

  

[3]

��

{1}

[2]
ppppppppppppp

NNNNNNNNNNNNN

{0} {2}

We define an enumeration si of P(|n+ 1|), and define M̃si such that

Msi ^
M<si

Ms<i

and Msi is primary over M<si , and the embeddings preserve the kernel.

Begin with an enumeration of P(|n|); the corresponding M̃si are already
given.

Continue with an enumeration of P(t). Let M̃t be an independent realisa-

tion of tp(M̃[n]/M̃[n−1]), and for n ∈ si ⊆ t, let M̃si � M̃t be the image of

M̃(si\{n})∪{n−1}. The independence conditions follow from Mt ^
M[n−1]

M[n].

For the remaining si: let M ′si be a primary model over M<si , let M̃ ′si be an

l-primary model over M̃<siM
′
si , and let M̃si be a realisation of tp(M̃ ′si/M̃<si)

independent from M̃s<i over M̃<si .
The resulting system is a P(|n+1|)-∼-system (c.f. [ShCT Lemma XII.2.3(1)]).

Define

∆̃ := M̃|n| ∆̃′ := M̃|n+1|

di ∆̃ := M̃|n|\{i−1} di ∆̃′ := M̃|n+1|\{i−1}

d ∆̃ :=
⋃

1≤i≤n

di ∆̃ d ∆̃′ :=
⋃

1≤i≤n

di ∆̃′

Λ̃ :=
⋃

1≤i<n

di ∆̃ Λ̃′ :=
⋃

1≤i<n

di ∆̃′

d di ∆̃ :=
⋃

j∈|n|\{i−1}

M̃|n|\{i−1,j}

We also define the corresponding sets in T , e.g. Λ := ρ(Λ) =
⋃
i<n−1M|n|\{i}.

In this notation, the isomorphism of the previous claim is

σ : ∆̃
∼=−→dn ∆̃ dn ∆̃′.
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Note that it induces an isomorphism

σ : ∆
∼=−→dn ∆ dn ∆′.

A diagram for n = 3:

M̃{3}

���������������������������

6666666666666666666666666666
∆̃′ = M̃|4|

dn ∆̃′

##

∆̃ = M̃|3|

��

M̃{1}

dn ∆̃ppppppppppppp

PPPPPPPP

M̃{0}
_______________ M̃{2}

the dashed lines indicate Λ̃, and the faces above them form Λ̃′.
Let ã ∈ ∆̃ be a tuple; we want to show that tp(ã/d ∆̃) is isolated.

Claim 3.10.2. There exists b0 ∈ dn ∆ such that, setting A := acleq(d dn ∆b0),

tp(â/AΛ) |= tp(â/d ∆).

Proof. Let b0 ∈ dn ∆ such that tp(a/d ∆) a tp(a/b0Λ). First note that any
extension of tp(am/b0Λ) to d ∆ doesn’t fork. Indeed, that holds for m = 1 by
isolation, and hence for any m by interalgebraicity of am with a. So it suffices to
see that tp(am/AΛ) has a unique non-forking extension to d ∆. So suppose c1, c2
realise two such extensions. Then dn ∆ ^

AΛ
ci. Now tp(dn ∆/A) is stationary,

and since dn ∆ doesn’t fork from AΛ over A, also tp(dn ∆/AΛ) is stationary.
So c1 ≡d ∆ c2.

Claim 3.10.3.
tp(â/σ(â)Λ′b0) |= tp(â/AΛ)

Proof. Say |= φ(an, b, e) where b ∈ A and e ∈ Λ.
Say θ is an algebraic formula isolating tp(b/d dn ∆b0).
Let

ψ(x) := ∀y ∈ θ.(φ(x, y, e)↔ φ(σan, y, σe)),

a formula in tp(an/σan,Λ
′, b0).

Then ψ(x) |= φ(x, b, e), since |= φ(σan, b, σe), since b ∈ dn ∆ and σ :

∆
∼=−→dn ∆ dn ∆′.

Now d ∆̃ ⊆TV d ∆̃′ by the TV lemma, and tp(ã/d ∆̃) is l-isolated, so

tp(ã/d ∆̃) |= tp(ã/d ∆̃′).

Let b̃0 ∈ ρ−1(b0) ⊆ dn ∆̃, and let b̃0 ⊆ b̃′0 ∈ dn ∆̃ be such that grploc(ã/d ∆̃)

is over b̃′0Λ̃. Then by Lemma 2.3 and the above Claims, we have:

tp(ã/d ∆̃) a` tp(ã/σ(ã)Λ̃′b̃′0).
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So it suffices to see that the latter type is isolated. If n = 2, it follows
from Lemma 3.3 that tp(ãσ(ã)̃b′0/Λ̃

′b′0) is isolated, since Λ̃′ = M̃{1,2} and for an
appropriate embedding of the prime model M{1,2}(b

′
0) into ∆′, we have a, σ(a) ∈

M{1,2}(b
′
0). Meanwhile if n > 2, we have tp(ãσ(ã)̃b′0/Λ̃

′) is isolated by the

inductive hypothesis applied to the P(|n−1|)-∼-system (M̃ ′s)s defined by M̃ ′s :=

M̃s∪{n−1,n}, since Λ̃′ = M̃ ′<|n−1| and M̃ ′|n−1| = M̃|n+1| = ∆̃′.

3.4 Classification

Theorem 3.11 (Classification). Let M |= T , and let M̃0 |= T̂ with M0 ⊆ M
prime over ∅. Let Bi be an acl-basis over M0 for Di(M); let B :=

⋃
iBi.

Then there is M̃ |= T̂ primary over BM̃0, with ker(M̃0) = ker(M̃).

Hence any model M̃ of T̂ is primary and minimal over such a BM̃0, and so
is determined up to isomorphism by the isomorphism types of M = ρ(M̃) |= T

and M̃0 = ρ−1(M0) where M0 ⊆M is prime.

Proof. Let I := Pfin(B).
Let (Ms | s ∈ I) be as given by Lemma 3.8.

Let M̃ be an l-primary model over MM̃0, and let M̃s = ρ−1(Ms) ⊆ M̃ , so

(M̃s)s is an I-∼-system.

By Proposition 3.10, (M̃s) is a primary independent system, so, by Lemma

3.3 and Lemma 3.6, M̃ = M̃I is primary over M̃0B.
A model M̃ |= T̂ is minimal over Bρ−1(M0) for a corresponding B, since M

is minimal over BM0. The classification of models follows once we note that,
by the quantifier elimination, tp(BM̃0) is determined by tp(M̃0) and tp(B/M0).

4 Abelian varieties over number fields

Suppose G(C) is a complex abelian variety, or the product A×Gnm of an abelian
variety and a (split) torus. Suppose G and its endomorphisms are defined over
k0 ≤ C. Let T be the theory of G(C) in the language consisting of a predicate
for each k0-Zariski-closed subset of Gn(C). This is a commutative divisible
rigid group of finite Morley rank. Every connected subgroup of Gn(C) is the
connected component of the kernel of an endomorphism (see below), so is over
k0.

Now let
ρ : T0(G(C)) � G(C)

be the Lie exponential map. We can view this as a structure UG in the language
of T̂ by defining ρn := ρ( x/n), and interpreting Ĥ as the analytic connected
component of ρ−1(H(C)) containing 0, which is a C-subspace of T0(G(C)) of
the same dimension as H.

That UG |= T̂ can be seen quite directly by analytic means - see section 5.3.
In this section we work algebraically.

Lemma 4.1. (i) Any connected algebraic subgroup H ≤ Gn is the connected
component of the kernel of an endomorphism η ∈ End(Gn) ∼= Matn,n(O),
and
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(ii) Ĥ(UG) is then the kernel of the action of η on (T0(G(C)))n.

Proof. (i) By Poincaré’s complete reducibility theorem, there exists an alge-
braic subgroup H ′ such that the summation map Σ : H ×H ′ → G is an
isogeny. So say θ : G → H × H ′ is an isogeny such that θΣ = [m], and
let π2 : H × H ′ → H ′ be the projection. Then π2θΣ(h, h′) = mh′, so
ker(π2θ)

o = Σ(H ×H ′[m])o = (H +H ′[m])o = H.

(ii) η takes values in ker(ρ)n on Ĥ(UG), so by connectedness and continuity it
is zero. Conversely, ρ(ker(η)) is a divisible subgroup of ker(η), and hence
is contained in ker(η)o = H(C). So ker(η) is a subgroup of ρ−1(H(C))

containing Ĥ(UG); but ker(η) is a C-subspace so is connected, so ker(η) =

Ĥ(UG).

Note that (i) can fail for G a semiabelian variety.

Proposition 4.2. If K is an algebraically closed field extension of k0, any
surjective O := End(G)-module homomorphism ρ : V � G(K) from a divisible

torsion-free O-module V with finitely generated kernel is a model of T̂ , where
Ĥ is interpreted as the kernel of the action of η on V n if H is the connected
component of the kernel of η ∈ End(Gn) ∼= Matn,n(O).

Proof. We check the axioms T̂ ′ above. All but those considered below are
immediate from the definitions.

For (A6): we have H ≤ Gn. By working in Gn, we may assume n = 1. We

wish to show ρk(Ĥ) = H. It is not hard to see that η(Tor(G)) = Tor(im η), and
it follows that η(Λ0) = im η ∩ Λ0 where Λ0 is the divisible hull of Λ := ker ρ; so
since Λ is finitely generated as an abelian group, im η ∩ Λ is of finite index in
η(Λ). By the snake lemma, it follows that ρ(Ĥ) is of finite index in ker(η), so

by divisibility of Ĥ, we have ρk(Ĥ) = ker(η)o = H.

Λ //

��

Λ ∩ im η //

��

· · ·

Ĥ //

��

V //

ρ

��

im η //

��

0

0 // ker η //

��

G //

��

im η

· · · // Finite // 0

For (A9): by (A6), ρ(pr(Ĝ)) = pr(G) = (ker η′)o say, and also ρ(ker η′) =

(ker η′)o; so pr(Ĝ) + Λ = ker η′ + Λ, so by divisibility of both sides and finite

generation of Λ, we have pr(Ĝ) = ker η′ = p̂r(G).

Corollary 4.2.1. UG |= T̂ .
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Note that x 7→ (ρ(x/n))n is an embedding of U(G) into Ĝ, which, by the
QE, is elementary.

Suppose now that k0 is a number field. So G is an abelian variety over a
number field, or a torus, or the product of one with the other. In this case we
may appeal to Kummer theory to reduce consideration of the prime model to
consideration of the kernel. This is essentially the same argument as in [Gav07,
Lemma 4].

Lemma 4.3. Let G = A×Grm be the product of an abelian variety and a (split)
torus.

Suppose that A is defined over a number field k0, and moreover that every
endomorphism of A is also defined over k0.

Note that G is rigid.
Let T := Th(G(C)) in the language with a predicate for each subvariety

defined over k0 of a cartesian power of G.
Then any M̃0 |= T̂ over the prime model M0 = G(Q̄) is primary over ker.

Proof. By Lemma 3.2, it suffices to show atomicity. Let c̃ ∈ M̃0.
Translating, we may assume that grploc(c̃/ ker) = Ĥ, some H a semi-abelian

subvariety of G.
By Lemma 2.3, it suffices to isolate

tp(ĉ/k̂er) = tp(ĉ/Tor(G)).

This is equivalent to the existence of an n such that

tp(cn/Tor(G)) ∪ {c̃ ∈ Ĥ} |= tp(ĉ/Tor(G)),

which in turn is equivalent to the image of Gal(Q̄/k0(Tor(G)) under the map

σ 7→ ĉ− σĉ

being a finite index subgroup of TH .
For G = A an abelian variety, this is [Ber10, Theorem 5.2]; see also references

cited there.
For G = A × Grm, we argue that the proof of [Ber10, Theorem 5.2] goes

through. This extension is addressed in [Rib79, Section 2], and the arguments
there directly handle the mod l claim for sufficiently large primes l. It remains
to show the l-adic result for all primes l. Define Ql-vector spaces:

Gl := Tl(G)⊗Q
Al := Tl(A)⊗Q
µl := Tl(Gm)⊗Q

and
Γl := Gal(k0(Torl∞(G))/k0);

we need to see

(B′1) EndΓl
Gl ∼= End(G)⊗Ql

(B′2) Gl is semi-simple as a Ql(Γl)-module
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(B′3) H1(Γl, Gl) = 0;

the result then follows as in the l-adic part of [Ber10, Theorem 5.2].
(B′1)-(B′3) are known to hold for an abelian variety by Faltings and Bogomolov-

Serre. That they follow for the product of an abelian variety with a torus seems
also to be well-known, but we could not find an explicit reference - so we indicate
how the arguments of [Rib79, Section 2] adapt to this l-adic case.

First note that by the existence of the Weil pairing and a polarisation,

Torl∞(G) ⊆ G(k0(Torl∞(A))),

so
k0(Torl∞(G)) = k0(Torl∞(A)),

so Γl is also the corresponding Galois group for A, and (B′1)-(B′3) hold for A
with this same Galois group Γl.

(B′2) follows, since the product of semi-simple modules is semi-simple.
Now

HomΓl
(µl, Al) = 0;

indeed, by (B′1) and (B′2) for Al, the image of such a homomorphism must be
of even Ql-dimension, so must be a point - and the only k0-rational point of Al
is 0.

Via the l-adic Weil pairing and a polarisation, elements of

HomΓl
(Al, µl)

also correspond to k0-rational points of Al, and again 0 is the only such.
As in the proof of [Rib79, Theorem 2.4], (B′1) follows.
For (B′3): by Bogomolov, some σ ∈ Gl acts on Al as some θ ∈ Q∗l \ {1,−1},

and hence via the Weil pairing σ acts as θ2 6= 1 on µl; we conclude by Sah’s
lemma.

Remark 4.1. This can fail when G is a semi-abelian variety over a number field,
due to the existence of deficient points - see [JR87].

So by Lemma 4.3 and Theorem 3.11, we conclude:

Conclusion 4.4. Let T be as in the previous lemma. Then a model M̃ of T̂
is determined up to isomorphism by the isomorphism types of M = ρ(M̃) |= T

and ker, the latter equipped with all structure induced from T̂ .

Corollary 4.4.1 (Categoricity). The model UG |= T̂ of Corollary 4.2.1 is the

unique structure M̃ in the language of T̂ satisfying:

(I) T̂ ′

(II) |M̃ | = 2ℵ0

(III) kerM̃ ∼= kerUG , isomorphism of substructures in the language of T̂ .

Moreover, for any such M̃ , the isomorphism of (III) extends to an isomor-

phism of M̃ with UG.
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Proof. This follows from the above conclusion on noting that T is bi-interpretable
with ACF0 (with k0 as parameters), and hence is uncountably categorical.

We indicate explicitly how to construct the isomorphism for the moreover
clause: first by Lemma 4.3 extend the isomorphism to M̃0, then extend to BM̃0

where B is an arbitrary transcendence basis for the field over M0, and then by
Theorem 3.11 to M̃ .

We spell out how to deduce the version of this stated in the introduction:

Theorem 4.5 (Theorem 1.1). Suppose ρ′ : T0(G(C)) � G(C) is another sur-
jective O-module homomorphism, ker ρ′ = ker ρ, and ρ′�〈ker ρ′〉Q= ρ�〈ker ρ〉Q .

Then there exists an O-module automorphism σ ∈ AutO(T0(G(C))/ ker ρ)
and a field automorphism τ ∈ Aut(C/k0) of C fixing k0 such that τρ′σ = ρ.

Proof. By Corollary 4.2.1, the structure M̃ ′ corresponding to ρ′ is a model of
T̂ . By the QE and the assumption on the kernels, (III) in Corollary 4.4.1 holds,

so M̃ ′ ∼= UG. Since the graph of addition and each η ∈ O are interpreta-
tions of appropriate Ĥ, this isomorphism induces an O-module automorphism
of T0(G(C)), and we have σ and τ as required.

Understanding the structure of ker involves an understanding of the action of
Galois on the torsion, which in general is well-known to be a hard problem. But
let us highlight a strengthening of Conclusion 4.4 in the case of the characteristic
0 multiplicative group:

Theorem 4.6. Let G = Gm(C). Then a model M̃ of T̂ is determined up to
isomorphism by the transcendence degree of the algebraically closed field K such
that ρ(M̃) ∼= Gm(K), and the isomorphism type of ker ρ as an abstract group.

Proof. This is immediate from Conclusion 4.4 once we see that the isomorphism
type of ker as a structure in the language of T̂ is determined by its isomorphism
type as an abstract group. But this follows easily from the quantifier elimination
and the fact from cyclotomic theory that any group automorphism of the roots
of unity is a Galois automorphism.

Remark 4.2. In the case of an elliptic curve G = E there are only finitely many
isomorphism types for a kernel with underlying group

〈
Z2; +

〉
([Gav07], [Bay09,

Theorem 4.3.2]).
See also [Gav06, IV.6.3,IV.7.4] for some discussion of the higher dimensional

situation.

Remark 4.3. The assumption that k0 is a number field was used in Lemma
4.3. It is natural to ask whether this is essential. Does an appropriate version
of Kummer theory go through for Abelian varieties over function fields? We
are unaware of this question being fully addressed in the literature, but [Ber10,
Theorem 5.4] goes some way toward it.

5 Other cases

In this section, we make some brief remarks on some other natural examples of
Theorem 3.11.
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5.1 Positive characteristic

We can not in general expect to improve on Theorem 3.11 in positive charac-
teristic: if G is the multiplicative group of a characteristic p > 0 algebraically
closed field, then the prime model is G(Falg

p ), which is also the torsion group of
G. In this case, we recover the main theorem, 2.2, of [BZ10].

5.2 Manin kernels

In the theory DCF of differentially closed fields of characteristic 0, the Kolchin
closures of the torsion of semiabelian varieties, also known as Manin kernels,
are commutative divisible rigid groups of finite Morley rank. Our classification
theorems therefore apply to this case. By considering a local analytic trivialisa-
tion, a natural analytic model of T̂ for G a (non-isoconstant) Manin kernel can
be given; this will be addressed in future work.

5.3 Meromorphic Groups

Let G be a connected meromorphic group in the sense of [PS03], i.e. a connected
definable group in the structure A of compact complex spaces definable over ∅
(equivalently, over C). By [PS03, Fact 2.10], G can be uniquely identified with
a complex Lie group.

Considering G with its induced structure, it is a finite Morley rank group.
Suppose G is commutative and rigid. By the classification in [PS03] and the
fact that any commutative complex linear algebraic group is a product of copies
of Gm and Ga, there is a definable exact sequence of Lie groups

0→ Gnm → G→ H → 0

where H is a complex torus. It is also shown in [PS03] that G is definable in a
Kähler space; the latter may be considered in a countable language by [Moo05],
so we may consider the language of G to be the induced countable language.
Let T = Th(G).

In particular, in the case that G is a complex semiabelian variety, we may
take the language to be that induced from the field, as in Corollary 4.2.1 above.

Now let UG be the analytic universal cover of the Lie group G as a structure
in the language of T̂ , where we interpret ρ as the Lie exponential T0(G) � G,

with ρn(x) = ρ(x/n), and interpret Ĥ for H ≤ Gn as the C-subspace T0(H) of
T0(Gn) = T0(G)n.

Proposition 5.1. UG |= T̂ .

Proof. We show that UG satisfies the axioms T̂ ′ above. These are immediate
from the definitions and basic properties of Lie groups. For (A9), note that the
connected component in the model theoretic sense is the connected component
of the identity in the analytic sense.

So by Theorem 3.11, UG is the unique kernel-preserving extension of its
restriction to the prime model G0 of G, which is a countable structure.

Question 5.0.1. Could the Kummer theory of Lemma 4.3 apply here? Con-
cretely: is π−1(G0) atomic over Λ?
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