(first lecture of wk10 is contained in wk9.pdf)
(second lecture, covering volumes of revolution and averages, was taught for me by Dr. Haskell - see scans2.pdf)

Work

Warning: I largely follow Stewart here. This is very much a "Just-So" account of the physics involved. I will leave it to your physics lecturers to give you the full story.

Definition: Suppose a particle moves along a line from $x=a$ to $x=b$ while a force acts on the particle along the line of motion, and suppose the force in the direction of motion is a continuous function $F(x)$ of position. Then the work done by the force is

$$
W=\int_{a}^{b} F(x) d x
$$

If x and F are measured in metres and Newtons respectively, then W is measured in Joules.

Example: I hold a 5000 kg anvil 10 m above the ground, then let it drop. As it falls, it is acted on by gravity with a force of $g=9.8$ Newtons. So the work done by gravity as the anvil falls is

$$
\int_{10}^{0}-m g d h=\int_{10}^{0}-490000 d h=4900000
$$

Joules, i.e. 4.9 MJ .
(Enough to power a 15 W light bulb for nearly 4 days)
Generally: for a constant force in the direction of motion, work is force times distance travelled

$$
W=F d ;
$$

integration is needed when the force is varying.

Example: How much work do I have to do to reset the previous experiment - i.e. lift the anvil back up 10 m ?

In lifting it, I have to counteract the force of gravity - but can apply arbitrarily small forces beyond that. So the work I have to do is

$$
\int_{0}^{10} m g d h=\int_{0}^{10} 490000 d h=4900000
$$

(Fact: it actually doesn't matter what forces I apply in lifting the anvil; as long as it ends up at rest 10 m above the ground, the work done by the forces will be the same, 4.9 MJ .)

Example: The force exerted by a compressed or stretched spring is approximately proportional to the difference between its length and its relaxed length

$$
F=-k x
$$

(Hooke's law).
I pull back the spring on a pinball table by 0.05 m and then let it go. If $k=1000$ for this spring, what is the work done by the spring as it springs back?
(Again, it turns out that this is the same as the work I had to do in pulling back the spring.)

Solution:

$$
\begin{aligned}
\int_{-0.05}^{0}-k x d x & =\int_{-0.05}^{0}-1000 x d x \\
& =-1000\left[\frac{x^{2}}{2}\right]_{-0.05}^{0} \\
& =-1000 *(0-0.0025 / 2)=1.25 \mathrm{~J}
\end{aligned}
$$

Example: The CN tower collapses. How much energy is released by the falling tower?

Solution: for simplicity, let's assume that the entirety of the tower falls to ground level.

We take the height of the tower to be $H=550$ metres and its total mass to be $120 * 10^{6} \mathrm{~kg}$.

First, suppose we know that how the mass of the tower is distributed along its height. Suppose that at height h, the mass per unit height is $M(h) \mathrm{kgm}^{-} 1$.

Then the energy is an integral: if we divide the tower into n segments of equal length $\Delta_{n}=\frac{H}{n}$, and estimate the mass of the $i^{t h}$ as $M\left(h_{i}^{*}\right) \Delta_{n}$, then as in the anvil example we estimate the energy released by the falling of the $i^{\text {th }}$ segment as $M\left(h_{i}^{*}\right) \Delta_{n} g h_{i}^{*}$, and hence the entire energy as

$$
\sum_{i=1}^{n} M\left(h_{i}^{*}\right) \Delta_{n} g h_{i}^{*} .
$$

Taking the limit as $n \rightarrow \infty$, we get

$$
g \int_{0}^{H} h M(h) d h .
$$

Now let's estimate $M(h)$: for simplicity, let's assume a linear relationship. (So in particular we entirely ignore the SkyPod...) So if the mass per unit height at height h is $M(h)=(500-h) k$, then

$$
120 * 10^{6}=\int_{0}^{500}(500-h) k d h=k\left[500 h-\frac{h^{2}}{2}\right]_{0}^{500}=k \frac{500^{2}}{2}
$$

So

$$
k=\frac{120 * 10^{6}}{\frac{500^{2}}{2}}=960 \mathrm{kgm}^{-1} .
$$

So the work done by gravity as the tower falls is

$$
\begin{aligned}
g \int_{0}^{500} h(500-h) k d h & =k g\left[\frac{500 h^{2}}{2}-\frac{h^{3}}{3}\right]_{0}^{500} \\
& =k g \frac{500^{3}}{3} \\
& =960 * 9.8 * \frac{500^{3}}{3} \\
& =0.39 * 10^{12} J \\
& =0.39 T J
\end{aligned}
$$

(Again, this is also the energy spent fighting gravity to construct the tower... for comparison, the Hiroshima bomb is said to have released 67TJ.)

Integration by parts

$$
\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

so

$$
f(x) g(x)=\int\left(f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right) d x
$$

so

$$
\int f^{\prime}(x) g(x) d x=f(x) g(x)-\int f(x) g^{\prime}(x) d x .
$$

Example:

$$
\int x \cos (x) d x=\int \sin ^{\prime}(x) x d x=\sin (x) x-\int \sin (x) 1 d x=x \sin (x)+\cos (x)+C .
$$

Remark: Setting $u=f(x)$ and $v=g(x)$ (and assuming u is a function of v and v is a function of u) we can use the Substitution rule to rewrite this as

$$
\int v d u=u v-\int u d v .
$$

