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Fundamental Theorem of Calculus (FTC) Reiterated

Theorem [FTC]:

(I) Let f be continuous on [a, b]. Then

F (x) =

∫ x

a

f (t) dt

is differentiable on (a, b) and continuous on [a, b], and for x in (a, b) we have

F ′ (x) = f (x) .

So for continuous f ,
d

dx

∫ x

a

f (t) dt = f (x) .

(II) If f is continuous on [a, b] and F ′ = f on [a, b], then∫ b

a

f (t) dt = F (b)− F (a) .

In other words: if g is differentiable on [a, b] with continuous derivative, then∫ b

a

g′ (t) dt = [g (t)]ba = g (b)− g (a) .

Idea of proof:

(I)

F ′ (x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

1

h

(∫ x+h

a

f (t) dt−
∫ x

a

f (t) dt

)
= lim

h→0

1

h

∫ x+h

x

f (t) dt

= lim
h→0

1

h
[signed area xetween t=x and t=x+h]

≈ hf (x)

(since f is continuous at x and integrable around x)

= f (x)

(II) By (I),
∫ x
a
g′ (t) dt is an antiderivative of g′ (t) on (a, b). So by the MVT, g (x) =

∫ x
a
g′ (t) dt+ C on

(a, b), and hence by continuity on [a, b].

Since
∫ a
a
g′ (t) dt = 0, we must have C = g (a). So∫ b

a

g′ (t) dt = g (b)− g (a) .

Note that FTC-I makes sense of the indefinite integral notation for antiderivatives, since

d

dx

∫
f (x) dx = f (x) ,
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Substitution

Examples and intuition

We know
∫ 3

2
cos (x) dx = sin (3)− sin (2) (= −0.768).

Consider
∫ 3

2
cos (2x).
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Let u = 2x. The area between x = 2 and x = 3 for cos (2x) corresponds to the area between u = 4 and
u = 6 for cos (u) - but the former is squashed by a constant factor of 2 relative to the latter.

We can compensate for the squashing by multiplying cos (2x) by a constant factor of 2, so we expect:∫ 3

2

2 cos (2x) dx =

∫ 6

4

cos (u) du = sin (6)− sin (4) .

Indeed, by the chain rule, sin (2x) is an antiderivative of 2 cos (2x), so this is right.
We deduce ∫ 3

2

cos (2x) dx =
1

2

∫ 3

2

2 cos (2x) dx =
sin (6)− sin (4)

2
= 0.239
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Now consider
∫ 3

2
cos (x2).
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Let u = x2. The area between x = 2 and x = 3 for cos (x2) corresponds to the area between u = 4 and
u = 9 for cos (u) - but the former is squashed by a factor of d

dx
x2 = 2x relative to the latter.

We can compensate for the squashing by multiplying cos (x2) by a factor of 2x, so we expect:∫ 3

2

2x cos
(
x2
)
dx =

∫ 9

4

cos (u) du = sin (9)− sin (4) .

Again, we can confirm this using the chain rule: sin (x2) is an antiderivative of 2x cos (x2).

Note that we have actually discovered nothing about
∫ 3

2
cos (x2)! Instead, we have found an entirely

different integral, namely ∫ 3

2

2x cos
(
x2
)
dx.

There is no way to get from that to any information about
∫ 3

2
cos (x2)!
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Formal formulation

Theorem [substitution rule]:

(a) For indefinite integrals: Suppose f is continuous and g is differentiable. Then∫
f (g (x)) g′ (x) dx =

∫
f (u) du

where u = g (x).

(b) For definite integrals: Suppose further that g′ is continuous. Then∫ b

a

f (g (x)) g′ (x) dx =

∫ g(b)

g(a)

f (u) du

Proof:

(a) If F is an antiderivative of f , then by the chain rule

d

dx
F (g (x)) = f (g (x)) g′ (x)

so F (u) = F (g (x)) is an antiderivative of f (g (x)) g′ (x).

(b) Now by FTC-II ∫ b

a

f (g (x)) g′ (x) dx = F (g (b))− F (g (a)) =

∫ g(b)

g(a)

f (u) du

Further examples∫ 2

−1
x3ex

4

dx =
1

3

∫ 2

−1
ex

4

3x3dx

=
1

3

∫ 24

(−1)4
eudu

(
u = x4,

du

dx
= 4x3

)
=

[
1

3
eu
]24
(−1)4

=

[
1

3
eu
]16
1

=
e16 − e

3
= 2.96 ∗ 106

∫
x3ex

4

dx =
1

3

∫
ex

4

3x3dx

=
1

3

∫
eudu

(
u = x4,

du

dx
= 4x3

)
=

1

3
eu + C

=
ex

4

3
+ C
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∫
1√

2 + 3x
dx =

1

3

∫
1√

2 + 3x
3dx

=
1

3

∫
1√
u
du

(
u = 2 + 3x,

du

dx
= 3

)
=

1

3
2
√
u+ C

=
2

3

√
2 + 3x+ C

∫ e

1

2x+ lnx

x
dx =

∫ e

1

2x

x
dx +

∫ e

1

lnx

x
dx

=

∫ e

1

2dx +

∫ 1

0

udu

(
u = lnx,

du

dx
=

1

x

)
= [x]x=ex=1 +

[
u2

2

]u=1

u=0

= e− 1 +
1

2
− 0

= e− 1

2

Exploiting symmetry

Suppose f (x) is an odd function, i.e. f (−x) = −f (x)
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Then ∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx+

∫ a

0

f (x) dx

=

∫ 0

−a
−f (−x) dx+

∫ a

0

f (x) dx

=

∫ 0

a

f (u) du+

∫ a

0

f (x) dx

(
u = −x, du

dx
= −1

)
= −

∫ a

0

f (u) du+

∫ a

0

f (x) dx = 0

Similarly, if f (x) is an even function, i.e. f (−x) = f (x)



6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x**4+x**2+1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

cos(x)

-5

-4

-3

-2

-1

 0

 1

 2

-6 -4 -2  0  2  4  6

x*sin(x)

Then ∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx+

∫ a

0

f (x) dx

=

∫ 0

−a
f (−x) dx+

∫ a

0

f (x) dx

= −
∫ 0

a

f (u) du+

∫ a

0

f (x) dx

(
u = −x, du

dx
= −1

)
=

∫ a

0

f (u) du+

∫ a

0

f (x) dx

= 2

∫ a

0

f (x) dx

ln|x| as an antiderivative of 1
x

Recall that d
dx
lnx = 1

x
. So e.g. it does follow that

∫ 2

1
1
x
dx = ln2− ln1.

But lnx is only defined for x > 0, while 1
x

is also defined for x < 0.

Cunning trick: When x > 0:
d

dx
ln|x| = d

dx
lnx =

1

x

When x < 0:
d

dx
ln|x| = d

dx
ln (−x) = − 1

−x
=

1

x

So we can write ∫
1

x
dx = ln |x|+ C,

(meaning that this is family of all antiderivatives when we restrict to an interval not containing 0)

Warning: 1
x

is not integrable on any interval containing 0. So e.g.∫ 1

−1

1

x
dx

does not exist (and in particular is not equal to ln |1| − ln | − 1| = 0, even though the function is odd!).
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Example: ∫
tan (x) dx =

∫
sin (x)

cos (x)
dx

= −
∫

1

u

du

dx
dx

(
u = cos (x) ,

du

dx
= − sin (x)

)
= −

∫
1

u
du

= − ln |u|+ C

= − ln |cos (x) |+ C

(but again, you can only integrate tan (x) on intervals on which it is defined!)
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Area between curves

Example: Find the area of the region enclosed by the graphs of x2 and 6− 3 (x− 2)2.
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Solution: We first find the x-values of the intersection points :

x2 = 6− 3 (x− 2)2

⇔ 4x2 − 12x+ 6 = 0

⇔ x =
6±
√

12

4
⇔ x = 0.634 or x = 2.37

Then the area between the graphs is the difference between the area between top one and the x-axis
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and the area between the bottom one and the x-axis. So the area is
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∫ 6+
√
12

4

6−
√

12
4

(
6− 3 (x− 2)2

)
dx−

∫ 6+
√
12

4

6−
√
12

4

x2dx =

∫ 6+
√
12

4

6−
√
12

4

(
6− 3 (x− 2)2 − x2

)
dx

=

∫ 6+
√
12

4

6−
√
12

4

(
−4x2 + 12x− 6

)
dx

=

[
−4x3

3
+ 6x2 − 6x

] 6+
√
12

4

6−
√
12

4

= 3.46

It wasn’t important that the area was above the x-axis, and so we get in general:

Formula: If f and g are continuous functions on [a, b], and if f (x) ≥ g (x) on [a, b], then the area of the
region enclosed by the graphs of f (x), g (x) and the lines x = a and x = b is∫ b

a

(f (x)− g (x)) dx
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Midterm remarks: Review sessions tonight - see yellow website.
No table of integrals will be given: learn the table on p398 of Stewart.
ko na tcica bilma

Examples:
Area of the unit circle: We can think of this as
the area enclosed by the graphs of

√
1− x2 and

−
√

1− x2. So:
-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1
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C =

∫ 1

−1

(√
1− x2 −

(
−
√

1− x2
))

dx

= 2

∫ 1

−1

√
1− x2dx

= 2

∫ 1

−1

√
1− cos (arccos (x))2dx

= 2

∫ 1

−1

√
1− cos (θ)2dx

(
θ = arccos (x) ;

dθ

dx
= − 1√

1− x2
=

1

− sin (θ)

)
= 2

∫ 1

−1
sin (θ) dx

= 2

∫ 1

−1
− sin2 (θ)

1

− sin (θ)
dx

= 2

∫ 0

π

− sin2 (θ) dθ

= 2

∫ π

0

sin2 (θ) dθ

=

∫ π

0

(1− cos (2θ)) dθ

=

(
[θ]π0 −

1

2
[sin (2θ)]π0

)
= π − 0

= π
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Area of an ellipse: After rotating and translating to the origin, any ellipse can be represented as the
solutions to ax2 + by2 = 1, i.e.

y = ± 1√
b

√
1− ax2.

So the area is

Eb,a =

∫ 1√
a

− 1√
a

(
1√
b

√
1− ax2 −

(
− 1√

b

√
1− ax2

))
dx

= 2

∫ 1√
a

− 1√
a

1√
b

√
1− ax2dx

=
2√
b

∫ 1√
a

− 1√
a

√
1− ax2dx

=
2√
b

∫ 1√
a

− 1√
a

√
1− ax2dx

(
u =
√
ax;

du

dx
=
√
a

)
=

2√
b
√
a

∫ 1

−1

√
1− u2dx

=
π√
ab
,

which note makes a lot of sense: ax2 + by2 = 1↔ (
√
ax)

2
+
(√

by
)2

= 1, so our ellipse is a circle scaled

horizontally by 1√
a

and vertically by 1√
b
.
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Area of a crescent:
As seen from the earth, the disc of the sun has ap-
proximately the same radius as the disc of the moon.
During a solar eclipse, the latter slides over the for-
mer. When the disc of the moon is centred at the
edge of the disc of the sun, what proportion of the
sun’s disc is covered?
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Intersection points:

√
1− x2 = 1−

√
1− x2 ↔ 2

√
1− x2 = 1↔ x = ±

√
3

2

Area of covered area:

C =

∫ √
3
2

−
√
3
2

(√
1− x2 −

(
1−
√

1− x2
))

dx

=

∫ √
3
2

−
√
3
2

(
2
√

1− x2 − 1
)
dx

= 2

∫ √
3

2

−
√

3
2

√
1− x2dx−

√
3

=

∫ 5π
6

π
6

(1− cos (2θ)) dθ −
√

3

= [θ]
5π
6
π
6
− 1

2
[sin (2θ)]

5π
6
π
6
−
√

3

=
2π

3
− 1

2

(
−
√

3

2
−
√

3

2

)
−
√

3

=
2π

3
+

√
3

2
−
√

3

=
2π

3
−
√

3

2
= 0.391π

So 0.391 of the sun’s disc is blocked.
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Volumes

Example - Volume of a sphere: Consider a sphere of radius r, centred at the origin (0,0,0).
Chop it perpendicular to the x-axis into n slivers of equal width.
The volume of the sphere is the sum of the volumes of the slivers.
For large n, i.e. for thin slivers, each sliver is roughly a cylinder of width ∆n = 2r

n
. The radius depends

on x: the ith sliver has radius
√
r2 − (x∗i )

2 on its right face, where x∗i = −r + i∆n.

So we can estimate the volume of the ith sliver as

∆nπ

(√
r2 − (x∗i )

2

)2

= ∆nπ
(
r2 − (x∗i )

2)
So our estimate for the volume with n slivers is

Vn =
n∑
i=1

∆nπ
(
r2 − (x∗i )

2) .
As n→∞, our estimates converge to the actual volume. So the volume of the sphere is

V = lim
n→∞

Vn

= lim
n→∞

n∑
i=1

∆nπ
(
r2 − (x∗i )

2)
=

∫ r

−r
π
(
r2 − x2

)
dx

= π

[
r2x− x3

3

]r
−r

= π

((
r3 − r3

3

)
−
(
−r3 − −r

3

3

))
=

4πr3

3
.

General formula: If a shape lies between x = a and x = b, and the area of a cross-section perpendicular
to the x-axis is a continuous function A (x), then the volume is∫ b

a

A (x) dx.

Indeed, the argument above indicates that the volume is

lim
n→∞

n∑
1

A (x∗i ) ∆n

where we divide [a, b] into n intervals of equal width, and x∗i is a point in the ith interval and ∆n is the

width of an interval. But this is precisely the definition of the integral
∫ b
a
A (x) dx, which exists since A is

continuous.
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Volumes of revolution: We can think of the sphere as the result of taking the semicircle which is the
region under the graph of y =

√
r2 − x2, and rotating it around the x axis.

The same trick for finding the volume works with any shape of that form:
Suppose f (x) is continuous and non-negative on [a, b]. Consider the “solid of revolution” of the region

under the graph of f between x = a and x = b, being the space that shape passes through as you rotate
it through 2π around the x-axis. Then the cross-sectional area at x is πf (x)2, so the volume is given by

π

∫ b

a

f (x)2 dx.

Example: Find the volume of the surface of revolution of ex between 0 and 1.
Solution:

V = π

∫ 1

0

(ex)2 dx

= π

∫ 1

0

e2xdx

=
π

2

[
e2x
]1
0
dx

=
π

2

(
e2 − 1

)
dx


