Fundamental Theorem of Calculus (FTC) Reiterated

Theorem [FTC]:

(I) Let f be continuous on [a,b]. Then
Fa= [ foa

is differentiable on (a,b) and continuous on [a, b], and for x in (a,b) we have

So for continuous f,

%/:f(t)dtzf(x)-

(IT) If f is continuous on [a,b] and F' = f on [a,b], then
b
/f@ﬁ:F@—F@.

In other words: if g is differentiable on [a, b] with continuous derivative, then

Idea of proof:
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(since f is continuous at x and integrable around x)

= f(z)

(IT) By (I), [ ¢ (¢)dt is an antiderivative of ¢’ (¢) on (a,b). So by the MVT, g (z) = [ ¢/ (t)dt + C on
(a,b), and hence by continuity on [a, b].

Since [ ¢’ (t)dt = 0, we must have C' = g (a). So

b
[ g widt=g0)- 9.
Note that FTC-I makes sense of the indefinite integral notation for antiderivatives, since
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Substitution

Examples and intuition

We know f;’ cos (x) dr = sin (3) — sin (2) (= —0.768).
Consider [, cos (2).
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Let u = 2x. The area between = 2 and = = 3 for cos (2x) corresponds to the area between u = 4 and
u = 6 for cos (u) - but the former is squashed by a constant factor of 2 relative to the latter.
We can compensate for the squashing by multiplying cos (2z) by a constant factor of 2, so we expect:

/23 2 cos (2z) dx = /46 cos (u) du = sin (6) — sin (4) .

Indeed, by the chain rule, sin (2x) is an antiderivative of 2 cos (2z), so this is right.

We deduce 5 .
1 i —sin (4
/ cos (2x) dx = 5/ 2cos (2z) dx = sin (6) 5 sin (4) = 0.239
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Now consider f23 cos (z?%).

cds(xft2)
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Let u = 2. The area between z = 2 and = = 3 for cos (z?) corresponds to the area between u = 4 and
u =9 for cos (u) - but the former is squashed by a factor of ZLz? = 2z relative to the latter.
We can compensate for the squashing by multiplying cos (2?) by a factor of 2z, so we expect:

/23 2z cos (2%) dx = /49 cos (u) du = sin (9) — sin (4)..

Again, we can confirm this using the chain rule: sin (2?) is an antiderivative of 2x cos (z?).
Note that we have actually discovered nothing about f;’ cos (2?)! Instead, we have found an entirely
different integral, namely

3
/ 2x cos (xQ) dz.
2

There is no way to get from that to any information about f; cos (z2)!



Formal formulation

Theorem [substitution rule]:

(a) For indefinite integrals: Suppose f is continuous and g is differentiable. Then

[ @)y @dr= [ 7@

where u = g (z).

(b) For definite integrals: Suppose further that ¢’ is continuous. Then
b ) g(b)
[ re@nd@ae= [ s
a g(a

Proof:
(a) If F'is an antiderivative of f, then by the chain rule

so F'(u) = F (g (z)) is an antiderivative of f (g (x)) ¢ (z).
(b) Now by FTC-II
b
/ fg(x) g (x)dx = F (g (b)) — F(g(a)) = [ (u) du
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Exploiting symmetry
Suppose f (x) is an odd function, i.e. f(—z)=—f(z)

Then
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Similarly, if f (z) is an even function, i.e. f(—

x) = f(z)
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Then
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In|z| as an antiderivative of 1

Recall that %lnx = % So e.g. it does follow that ff %dw =In2 —Inl.
But Inz is only defined for = > 0, while % is also defined for = < 0.

Cunning trick: When z > 0:

dl||— ; _1
d:cnx _da:nx_x
When z < 0: p y ) .

So we can write

1
/—dx =In|z|+ C,
x
(meaning that this is family of all antiderivatives when we restrict to an interval not containing 0)

1

Warning: _ is not integrable on any interval containing 0. So e.g.

1
1
/ —dzx
1z

does not exist (and in particular is not equal to In |1] —In| — 1| = 0, even though the function is odd!).



Example:

_ _/ld_udx (u = cos (), % = —sin (f))

=—Inlu/+C
= —In|cos (z)|+ C

(but again, you can only integrate tan (x) on intervals on which it is defined!)



Area between curves

Example: Find the area of the region enclosed by the graphs of 2% and 6 — 3 (z — 2)2.
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Solution: We first find the x-values of the intersection points :
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Then the area between the graphs is the difference between the area between top one and the x-axis



and the area between the bottom one and the x-axis. So the area is
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3 G—JL/E
= 3.46

It wasn’t important that the area was above the x-axis, and so we get in general:

Formula: If f and g are continuous functions on [a,b], and if f () > ¢ (x) on [a, b], then the area of the
region enclosed by the graphs of f (z), g () and the lines x = a and z = b is

/ (f (2) — g (x)) de
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Midterm remarks: Review sessions tonight - see yellow website.
No table of integrals will be given: learn the table on p398 of Stewart.
ko na tcica bilma

Area of the unit circle: We can think of this as
Examples: the area enclosed by the graphs of /1 — 22 and

—v/1 —22. So:

02/1 (Vi—2 - (—vI=2)) s

1

1
—2/ V1 —z2dx
-1

2 /_11 \/1 — cos (arccos (z))*da

! do 1 1
2 — = =
2 /_1 \/1 —cos(0)"dx (9 = arccos () ; I V1—g2 —sin (0))
1

= 2/ sin (0) dx
-1
1

_ / (1~ cos (26)) df
= (11 - 2smcoy)

=r7—0

=T
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Area of an ellipse: After rotating and translating to the origin, any ellipse can be represented as the

solutions to az? + by? = 1, i.e.
1
y==+—V1—ax?
Vb

So the area is

:i/ﬁ\/l—axzdx (u:\/am;j—u:\/a)
_ x

2
which note makes a lot of sense: az? +by? =1 < (\/5.75)2 + (\/l_)y) =1, so our ellipse is a circle scaled
. 1 : 1

horizontally by 7 and vertically by T
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Area of a crescent:
As seen from the earth, the disc of the sun has ap-
proximately the same radius as the disc of the moon.

During a solar eclipse, the latter slides over the for- == -
mer. When the disc of the moon is centred at the /
edge of the disc of the sun, what proportion of the

sun’s disc is covered?

Intersection points:

3
\/1—x2:1—\/1—x2<—>2\/1—x2:1<—>x:j:\/7_

Area of covered area:
(\/1 R - (1 —v1 —x2>> dx

:/ﬁ@ﬂ—l)dx

So 0.391 of the sun’s disc is blocked.
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Volumes

Example - Volume of a sphere: Consider a sphere of radius r, centred at the origin (0,0,0).
Chop it perpendicular to the x-axis into n slivers of equal width.
The volume of the sphere is the sum of the volumes of the slivers.
For large n, i.e. for thin slivers, each sliver is roughly a cylinder of width A,, = %r The radius depends

on z: the " sliver has radius /r2 — () on its right face, where 2 = —r +iA,,.

So we can estimate the volume of the i** sliver as
2
A, ( r2 — (xj)2> =A,m (7“2 — (x;")Z)
So our estimate for the volume with n slivers is
n
Vo, = Z A, (r® — (:vf)Q) :
i=1

As n — 00, our estimates converge to the actual volume. So the volume of the sphere is

V =1mV,

n—oo

I K . 2 *\2

General formula: If a shape lies between © = a and x = b, and the area of a cross-section perpendicular
to the x-axis is a continuous function A (z), then the volume is

/abA (2) dz.

Indeed, the argument above indicates that the volume is
Jim 3 A A

where we divide [a,b] into n intervals of equal width, and 2} is a point in the 7" interval and A, is the
width of an interval. But this is precisely the definition of the integral f; A (x) dz, which exists since A is
continuous.
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Volumes of revolution: We can think of the sphere as the result of taking the semicircle which is the
region under the graph of y = /72 — 22, and rotating it around the x axis.

The same trick for finding the volume works with any shape of that form:

Suppose f (z) is continuous and non-negative on [a, b]. Consider the “solid of revolution” of the region
under the graph of f between x = a and x = b, being the space that shape passes through as you rotate
it through 27 around the x-axis. Then the cross-sectional area at x is 7 f (x)z, so the volume is given by

W/abf(m)de.

Example: Find the volume of the surface of revolution of e* between 0 and 1.
Solution:



