MATH 3TP3 Assignment \#5

Due: Wednesday, October 24, in class

1. For each of the following strings, determine if it is a term of TNT, a wff of TNT, or neither. Indicate the free variables of those strings that are wff's. You do not need to produce parse trees for the wff's and terms.
(a) $(S S 0+S 0+a)$
(b) $S\left((a-b) \cdot S a^{\prime}\right)$
(c) $\sim\left(S\left(a+a^{\prime}\right) \cdot S S 0\right)$
(d) $(S 0 \cdot S 0)=(S 0+S 0)$
(e) $\sim \forall a:\left\langle\left\langle a=b \wedge a^{\prime}=S S b\right\rangle \vee \exists b^{\prime}: \exists c^{\prime}: c^{\prime}=\left(c^{\prime} \cdot b^{\prime}\right)\right\rangle$
(f) $\langle(S 0+S S 0)<S S S S 0 \vee \exists a:(a+a=S S S 0)\rangle$
2. Produce wff's that express each of the following:
(a) The number x is a perfect cube.
(b) There are no solutions to $x^{3}+y^{3}=z^{3}$ in the natural numbers.
(c) The sum of any two odd numbers is even.
(d) There are infinitely many pythagorean triples (natural numbers x, y, z such that $\left.x^{2}+y^{2}=z^{2}\right)$.
3. Translate each of the following wff's into English. For those wff's that are sentences, decide if they are true.
(a) $\exists a: \exists b:(a \cdot a)=(S a+(b+b))$
(b) $\forall a: \exists b: \exists c: \exists d: a=((b \cdot b)+((c \cdot c)+(d \cdot d)))$
(c) $\exists a:(a \cdot a)=S((S 0+S S 0) \cdot S(S S 0 \cdot S S 0))$
(d) $\exists a^{\prime}: \exists b^{\prime}:\left\langle\left(c \cdot a^{\prime}\right)=a \wedge\left(c \cdot b^{\prime}\right)=b\right\rangle$
(e) $\langle\alpha \wedge \forall d:\langle\beta \supset \exists e:(d+S e)=c\rangle\rangle$, where α is the wff from part (d) and β is obtained from α by replacing all occurrences of the variable c by the variable d.
