MATH 3TP3 Assignment \#7

Due: Friday, November 9, in class

1. On Pages 225-227 of GEB, there is a long TNT-derivation. Read it carefully, and get a feel for how it works. As the answer to this question, please write honestly "I have read the derivation carefully, and have a feel for how it works".
2. Show that the following sentences are theorems of TNT.
(i) $\forall x: S x=(x+S 0)$.
(ii) $\forall x:(S 0 \cdot x)=x$.
(iii) $\forall x: \forall y: \forall z:((x+y)+z)=(x+(y+z))$. Hint: try induction on z.
(iv) $\forall x:\langle(x \cdot x)=0 \supset x=0\rangle$.
3. Show that the sentence $\forall x:\langle x=0 \vee \exists y: S y=x\rangle$ is not a TNT'theorem. Hint: Consider adding a new element " ∞ " to the natural numbers.

Bonus Question Consider the one-element structure in the language of arithmetic: this is the structure $\mathcal{D}=\left\langle\{0\} ; 0, S^{\prime},+^{\prime},{ }^{\prime}\right\rangle$ where successor, addition and multiplication are defined in the only possible ways:

$$
S^{\prime} 0=0 ; \quad 0+^{\prime} 0=0 ; \quad 0 \cdot^{\prime} 0=0
$$

Consider the system obtained by adding the single axiom

$$
\forall x: x=0
$$

to PRED. Show that this system is complete for \mathcal{D}, i.e. that every sentence which is true in \mathcal{D} is a theorem of PRED $+\{\forall x: x=0\}$.

