MATH 3TP3 Assignment \#8
Due: Friday, November 16, in class
Consider the following formal system S (which is a fragment of the formal system version of PROP given in the lecture notes):

- Alphabet: $\mathrm{P}^{\prime} \supset \supset\langle \rangle \vdash$? W F F :
- Axioms: \vdash, WFF: P
- Rules:

| (I) | $\mathrm{WFF}: \mathrm{P} x$ | \mapsto | $\mathrm{WFF}: \mathrm{P}^{\prime} x$ | (well-formedness) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| (II) | $(\mathrm{WFF}: x, \mathrm{WFF}: y)$ | \mapsto | $\mathrm{WFF}:\langle x \supset y\rangle$ | (well-formedness) |
| (III) | $(x \vdash y, \mathrm{WFF}: z)$ | \mapsto | $x ? z \vdash z$ | (push) |
| (IV) | $(x \vdash y, \mathrm{WFF}: z)$ | \mapsto | $x ? z \vdash y$ | (carry-over) |
| (V) | $(x ? y \vdash z, \mathrm{WFF}: y)$ | \mapsto | $x \vdash\langle y \supset z\rangle$ | (pop) |
| (VI) | $(x \vdash\langle y \supset z\rangle, x \vdash y)$ | \mapsto | $x \vdash z$ | (detachment) |

(a) Give a derivation in this system of

$$
\vdash\left\langle\mathrm{P} \supset\left\langle\left\langle\mathrm{P} \supset \mathrm{P}^{\prime}\right\rangle \supset \mathrm{P}^{\prime}\right\rangle\right\rangle
$$

Hint: First think how you'd derive it in PROP, then try to translate the PROP-derivation into an S-derivation. Remember that the empty string is a valid value for the string variables x, y, and z in the production rules of S .
(b) Define a Gödel numbering of strings in this alphabet, and explain in some detail why there exists a TNT-formula Theorem $_{S}(x)$ with one free variable x which is true in the natural numbers precisely when x takes value the Gödel number of a theorem of S.
Your explanation should be sufficiently detailed that it is clear that such a TNT-formula exists. One way to give a sufficiently detailed explanation would be to actually write out such a formula without any abbreviations, but that is likely to be rather painful and prone to error. I suggest you make use of abbreviations like those in lectures.

You may assume the β Lemma, and furthermore may assume as understood the existence and properties of the formulae

$$
\text { ListElement }(x, y, z) ; \operatorname{Exp}(x, y, z) ; \text { HasLength }(x, y) ; \text { Concat }(x, y, z)
$$

defined in lectures, and any notation defined in lectures.
When finding formulae corresponding to the production rules, I would consider it acceptable to consider only (III) and (VI) in detail and say that the others can be handled similarly.

