
MATH 3TP3 Assignment #10 Solutions

In this question, we show that the set of TNT-sentences proven by TNT
is, although computably enumerable, not computable. There is, in other
words, no decision procedure for TNT-theoremhood.

This is a consequence of the fact that TNT proves all true sentences
of the form TheoremS(pnq). Actually, although I didn’t mention this in
lectures so as to keep the presentation of G2T clean, TNT’ already proves
such sentences. So we’re really showing that no system which strengthens
TNT’ and is sound for N has computable theory. But I’ll stick to talking
about TNT in these solutions.

In outline, the idea is this: the halting problem yields a set H which is
computably enumerable but not computable (namely: the set of codes for
programs which halt when fed their own code as input). Now TNT “imple-
ments” arbitrary Post formal systems, via TheoremS(x), and Post formal sys-
tems are Turing complete; we deduce that n ∈ H is true iff TheoremS(pf(n)q)
is a TNT-theorem, where S is an appropriate Post system and f is a com-
putable translation map (which below will be Dashify). Hence if the set of
theorems were computable, so would be H.

The question led you through this argument, asking you to fill in the
details. So here I’ll reproduce the text of the question, and insert answers in
italics to the bold bits where you were asked to do something.

Suppose we have fixed a Gödel numbering for an alphabet which contains
the alphabet of TNT and also the dash symbol “-”.

Define the function Dashify : N→ N by

Dashify(n) = p-nq,

where “-n” is the string consisting of n dashes.
Show that Dashify is a (total) computable function, by describing

informally an algorithm to calculate it.
To calculate Dashify(n), write p-q in decimal n times, concatenated to-

gether into a single decimal string, then read the result as a decimal number.
In more detail (paralleling the definition of Concat): Dashify(0) = 0, and to
calculate Dashify(n + 1) first calculate Dashify(n) then add it to p-q · 10l,
where l is the length of the decimal representation of p-q.

1



Since string manipulations and finding free variables correspond to com-
putable operations on Gödel numbers, it follows that for any TNT-wff with
one free variable φ(x), the function DashSubφ : N→ N defined by

DashSubφ(n) = pφ(p-nq)q

is computable. You should ponder this, but you don’t need to write anything.
I ponder by writing. Simplest way to explain how to do this: first expand

φ into its complete parse tree, then replace each free instances of x (i.e. those
which aren’t below any ∃x : or ∀x :) with -n, then push the parse tree back
into a single string (it folds up smoothly, like closing a pop-up book), and take
its Gödel number. Parsing, string substitution and unparsing are all simple
algorithmic operations.

Recall that we showed, as part of our discussion of the Halting problem,
that there exists a set H which is c.e. but not computable.

Consider Dashify(H), the image ofH under the dashification map Dashify.
Show that Dashify(H) is c.e. but not computable.

Dashify(H) is c.e.: given n, calculate Dashify(0), Dashify(1),. . . in order,
testing for equality with n; if we find that some Dashify(m) = n, then run
our semi-decision procedure for H with input m. If it finds that m ∈ H, then
n ∈ Dashify(H) and we return True. Otherwise, n /∈ Dashify(H), and we
never return anything.

Dashify(H) is not computable: suppose it were; then H would also be com-
putable, contradicting the choice of H. Indeed: given n, calculate Dashify(n)
and run our hypothesised decision procedure to determine whether Dashify(n) ∈
Dashify(H). Since Dashify is injective, n ∈ H iff Dashify(n) ∈ Dashify(H).

Deduce that there is a Post formal system S for which -n is an
S-theorem iff n ∈ H.

Post’s theorem on Turing completeness of Post formal systems we stated
in lectures tells us that if a set Σ of Gödel numbers of strings in an alphabet
A is c.e. then there is a system S, in an alphabet A′ ⊇ A which may extend
A by adding some auxiliary symbols, such that Σ is precisely the set of A-
strings which are S-theorems. Applying this to the c.e. set Dashify(H) of
Gödel numbers of strings in the alphabet A = {-} whose only symbol is -,
we obtain a system S which is as required.

(Note that it’s quite clear that we’ll need auxiliary symbols in a case such
as this - systems in one-symbol alphabets can’t do very much at all)

Without loss of generality, assume that we can extend our Gödel num-
bering to include the alphabet of S.

2



Now
n ∈ H ⇐⇒ N ` TheoremS(p-nq); (1)

as we saw (/will see) in our discussion of Gödel’s Second Incompletness The-
orem, it follows:

n ∈ H ⇐⇒ TNT ` TheoremS(p-nq). (2)

(By the way: note that we’re using N-soundness of TNT to get the right-
to-left direction. If TNT is actually inconsistent, for example, then it proves
everything and so in particular proves TheoremS(p-nq) for every n!)

By considering DashSubφ for an appropriate φ, show that

{pTheoremS(p-nq)q | n /∈ H}

is *not* c.e.
First, note that H’s complement N\H is not c.e., since H is c.e. but not

computable, and a set is computable iff both it and its complement are c.e..
Now let φ(x) be TheoremS(x). Then DashSubφ(n) = pTheoremS(p-nq)q. So
we want to see that {DashSubφ(n) | n /∈ H} = DashSubφ(N \H) is not c.e..
But this follows, just as in the case of Dashify(H) above, from computability
and injectivity of DashSubφ and the fact that N \H is not c.e..

Deduce from this and (2) that the set of Gödel numbers of
TNT-sentences which are not TNT-theorems is not c.e.

Suppose it were. Then we can semidecide DashSubφ(N \ H) as follows:
given m, first run through n to see if m = DashSubφ(n) for some n. If it is,
then run our hypothesised semidecision procedure to check if m is the Gödel
number of a non-theorem, returning True if it does.

Conclude that there does not exist an ”anti-TNT”, a formal
system which proves precisely those TNT-sentences which TNT
does not prove.

Being a TNT-sentence is a decidable property of a string (we just have
to check well-formedness and that there are no free variables). So the set of
TNT-sentences which are theorems of a formal system is a c.e. set.

3


