
B1.1 Logic

Martin Bays

Oxford, MT 2024

1. Introduction

1.1. Historical motivation

• In the 19th century, the need for

conceptual foundations in analysis

became clear, leading to attempts to

formalise notions of infinity,

infinitesimal, limit, ...

“The definitive clarification of the

nature of the infinite has become

necessary, not merely for the special

interests of the individual sciences

but for the honour of human

understanding itself.”

– Hilbert 1926

1

• Hilbert’s 2nd Problem, 1900 ICM address:

Prove consistency of an axiom system for

arithmetic.

“I am convinced that it must be

possible to find a direct proof for

the compatibility of the arithmetical

axioms.”

– Hilbert 1900

2

• Early attempts to formalise mathematics:

– Cantor’s naive set theory;

– Frege’s Begriffsschrift and

Grundgesetze.

For any expressible property P (x), Frege’s

system posited the existence of the set

{x : P (x)}.

• Russell’s paradox:

consider the set R := {s : s ̸∈ s}

R ∈ R ⇒ R ̸∈ R contradiction
R ̸∈ R ⇒ R ∈ R contradiction

⇝ Fundamental crisis in the foundations

of mathematics.

3

1.2. Hilbert’s Programme

Step 1. Find a uniform formal language for all
mathematics.

Step 2. Find a complete proof system for
deducing consequences of axioms.

Step 3. Find a complete system of axioms for
mathematics.

Step 4. Prove consistency of the resulting
system, i.e. that it does not lead to
contradictions.

Where:

• Complete in 2+3 would mean: every
mathematical statement admits a proof or
disproof in the system.
(“Wir müssen wissen. Wir werden wissen.”∗)

• The system should be finitary, i.e.
effective/computable/algorithmic,
so e.g. you can’t just take as axioms all true
mathematical statements.

∗We must know. We will know.

4

1.3. Results on Hilbert’s programme

Step 1. (Formal language for mathematics):
Possible in the framework of
ZF = Zermelo-Fraenkel set theory or
ZFC = ZF + Axiom of Choice.
(Covered in B1.2)

Step 2. (Complete proof system):
Possible in 1st-order logic, by
Gödel’s Completeness Theorem.
(Covered in B1.1 - this course)

Step 3. (Complete axiom system):
Not possible, by
Gödel’s 1st Incompleteness Theorem:
there is no computable axiomatisation
of arithmetic.
(Covered in C1.2)

Step 4. (Proving consistency):
Not possible, by
Gödel’s 2nd Incompleteness Theorem:
a sufficiently powerful consistent system
can not prove its own consistency.
(Covered in C1.2) 5

1.4. Successes of mathematical logic

In summary, the positive outcomes from

Steps 1 and 2 left us with a form of

mathematical logic with which we can:

• Provide a uniform, unambiguous

language for mathematics.

• Give a precise formal definition of a proof.

• Explain and guarantee exactness, rigour,

and certainty in mathematics.

• Establish the foundations of
mathematics.

B1 (Foundations)
= B1.1 (Logic) + B1.2 (Set theory)

6

1.5. Decidability

Step 3. of Hilbert’s programme fails:
there is no computable axiomatisation
for the entire body of mathematics
(or even just of arithmetic).

But: many important parts of mathematics
are completely and computably axiomatizable;
they are decidable, i.e. there is an
algorithm = program = effective procedure
to decide whether a sentence is true or false.

Example: Th(C;+, ·), the 1st-order theory
of the field C.
Axioms = field axioms

+ all non-constant polynomials have a zero
+ the characteristic is 0.

Every algebraic property of C follows from
these axioms.
Similar results hold for e.g. the real field and
for vector spaces.
⇝ C1.1 Model Theory. 7

1.6. Why mathematical logic?

• The language and deduction rules are

tailored for mathematical objects and

mathematical ways of reasoning.

• The method is mathematical.

Formulas expressing mathematical

statements, as well as proofs of such

statements, will themselves be defined as

finitary mathematical objects. We will

reason about them with ordinary

mathematical techniques, of the same

kind we use to reason about natural

numbers.

• Logic has applications in other areas of

mathematics, as well as in theoretical

computer science.

8

1.7. Outline of the course

The main result of this course is Gödel’s

Completeness Theorem for first-order logic,

which shows that every consequence of given

mathematical axioms admits a proof from

those axioms. We first study the simpler case

of propositional logic, and prove the

corresponding completeness theorem there.

We end the course by applying our results to

some familiar mathematical structures.

9

Part I: Propositional Logic

We begin by studying propositional logic,

which deals with statements built out of

simpler ones using connectives such as “and”,

“or”, and “not”. This is not in itself

adequate for formalising mathematics, but we

will later refine it to first-order logic, which is.

We first consider propositional logic in

isolation, then in Part II we extend our

treatment to full first-order logic.

10

Example 1.1. Propositional logic formalises
deductions of the following kind:

• 1. Socrates is alive or Socrates is dead.
2. Socrates is not alive.
Therefore: Socrates is dead.

• 1. If Socrates is a vampire and vampires
are immortal, then Socrates is not dead.
2. Socrates is dead.
Therefore: Either Socrates is not a
vampire, or vampires are not immortal.

To preview the formalism, we will write these
respectively as:

• {(p0 ∨ p1),¬p0} ⊨ p1.

• {((p2 ∧ p3) → ¬p1), p1} ⊨ (¬p2 ∨ ¬p3).

We use variables to denote propositions - e.g.
p0 for “Socrates is alive”.
A proposition is something which can be true
or false.

11

2. Syntax

We define a language Lprop for propositional

logic.

2.1. Strings

Definition 2.1. The alphabet of Lprop

consists of the following abstract symbols:

¬,→,∧,∨,↔, (,), p0, p1, p2,

The pi are called propositional variables,

and Lprop has one propositional variable pi for

each natural number i.

12

Definition 2.2. A string of Lprop is any finite

sequence of symbols from the alphabet of

Lprop.

Example 2.3.

(i) → p13()
(ii) ((p0 ∧ p1) → ¬p2)
(iii)))¬)p37

Definition 2.4.The length len(A) of a string

A is the number of symbols in it.

So the strings in the examples have lengths 4,

10, and 5 respectively.

(A propositional variable is considered as a

single symbol.)

13

2.2. Formulas

Definition 2.5. A formula of Lprop is a string

of one of the following forms:

I. pi, where i ∈ N.

II. ¬ϕ, where ϕ is a formula.

III. (ϕ→ ψ) or (ϕ ∧ ψ) or (ϕ ∨ ψ) or (ϕ↔ ψ),

where ϕ and ψ are both formulas.

In other words, a string ϕ is a formula if and

only if ϕ can be obtained from propositional

variables by finitely many applications of the

formation rules II. and III.

14

Example 2.6. The string ((p0 ∧ p1) → ¬p2) is

a formula.

Proof:

p0

==
==

==
==

==
==

==
==

==
=

p1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
p2

II.III.

(p0 ∧ p1)

LLLLLLLLLLLLLLLLLLLLLLLLLLLL
¬p2

uuuuuuuuuuuuuuuuuuuuuuuuu

III.

((p0 ∧ p1) → ¬p2)

□

Parentheses are important, e.g.

(p0 ∧ (p1 → ¬p2)) is a different formula and

p0 ∧ (p1 → ¬p2) is not a formula at all.

15

The formulas are the strings which make

“grammatical sense”, and we will soon define

a semantics under which they “mean

something”.

Corresponding to these formation rules,

we call ¬ a “unary connective”,

and →,∧,∨,↔ “binary connectives”.

We summarise their pronunciation and

terminology in the following table.

¬ϕ “not ϕ” negation
(ϕ→ ψ) “ϕ implies ψ” implication
(ϕ ∧ ψ) “ϕ and ψ” conjunction
(ϕ ∨ ψ) “ϕ or ψ” disjunction
(ϕ↔ ψ) “ϕ if and only if ψ” equivalence

16

Example 2.7. The strings → p17() and

))¬)p32 are not formulas.

Indeed, if ϕ is a formula, then ϕ is of one of

the forms I., II, or III., and in particular one of

the following must hold:

1. ϕ is a propositional variable.

2. The first symbol of ϕ is ¬.

3. The first symbol of ϕ is (.

17

Theorem 2.8 (The unique readability

theorem).

A formula can be constructed in only one

way:

For each formula ϕ exactly one of the

following holds

(a) ϕ is pi for some unique i ∈ N;

(b) ϕ is ¬ψ for some unique formula ψ;

(c) ϕ is (ψ ⋆ χ) for some unique pair of

formulas ψ, χ and a unique binary

connective ⋆ ∈ {→,∧,∨,↔}.

Proof: Problem sheet 1.

18

2.3. Countability

Recall that a set X is countable if X = ∅ or

there are xi for i ∈ N such that

X = {x0, x1, . . .}, i.e. there exists a surjection

N → X.

Let Form(Lprop) be the set of all formulas of

Lprop.

Fact 2.9. Form(Lprop) is countable.

This will be proven formally in B1.2 Set

Theory, as a consequence of the basic axioms

ZF of set theory. More precisely, it will be

proven that the set of finite strings in a

countable alphabet is countable, and that any

subset of a countable set is countable.

19

3. Semantics

3.1. Valuations

In natural language, the truth or falsity of a

sentence using logical connectives is

determined by the truth or falsity of its

subclauses:

“Socrates is dead or Socrates is a vampire” is

true if “Socrates is dead” is true.

Propositional logic abstracts this to a

recursive definition of the truth value

T (‘true’) or F (‘false’) of a formula ϕ in

terms of the truth values of the propositional

variables occurring in ϕ.

20

Definition 3.1. A valuation v is a function

v : {p0, p1, p2, . . .} → {T, F}.

Given a valuation v we extend v uniquely to a

function

ṽ : Form(Lprop) → {T, F}.

defined recursively as follows.

Suppose ϕ is a formula, and ṽ has been

defined on formulas of length < len(ϕ).

We split into the cases given by the Unique

Readability Theorem:

(a) ϕ is a propositional variable.

Then define ṽ(ϕ) := v(ϕ).

21

(b) ϕ = ¬ψ. Then len(ψ) < len(ϕ). Define

ṽ(ϕ) as follows:

ψ ¬ψ
T F
F T

(i.e. if ṽ(ψ) = T then ṽ(ϕ) := F , and if

ṽ(ψ) = F then ṽ(ϕ) := T).

(c) ϕ = (ψ ⋆ χ) where ⋆ is a binary connective.

Then len(ψ) < len(ϕ) and len(χ) < len(ϕ).

Define ṽ(ϕ) as follows:

ψ χ (ψ ∧ χ) (ψ ∨ χ) (ψ → χ) (ψ ↔ χ)

T T T T T T
T F F T F F
F T F T T F
F F F F T T

(so e.g. if ⋆ is → and ṽ(ψ) = T and

ṽ(χ) = F , then ṽ(ϕ) := F).

The tables in this definition are called the

truth tables of the connectives. They

correspond to how we normally use ‘not’,

‘and’, ‘or’, ‘if . . . then’, and ‘if and only if’ in

mathematics (though not always to how we

use them in natural language, particularly in

the case of →).

22

We can draw up more general truth tables to
analyse this recursive definition of truth for
more complicated formulas.
Example 3.2. “If n is prime then n = 2 or n
is odd” is a true statement for every natural
number n. To analyse this, we construct the
truth table for the formula

ϕ := (p0 → (p1 ∨ p2)).

ṽ(ϕ) only depends on v(p0), v(p1), and v(p2).

po p1 p2 (p1 ∨ p2) ϕ

T T T T T
T T F T T
T F T T T
T F F F F
F T T T T
F T F T T
F F T T T
F F F F T

So “if n is prime then n = 2 or n is odd” is
true unless n is prime but neither odd nor

23

equal to 2, i.e. unless n is an even prime other

than 2. But no such natural number n exists.

Example 3.3. We construct the truth table

for the formula

ϕ := ((p0 → p1) → (¬p1 → ¬p0)).

p0 p1 (p0 → p1) ¬p1 ¬p0 (¬p1 → ¬p0) ϕ

T T T F F T T
T F F T F F T
F T T F T T T
F F T T T T T

24

3.2. Satisfaction, validity,
consequences

Definition 3.4. Let ϕ be a formula.

• A valuation v satisfies ϕ

if ṽ(ϕ) = T .

• ϕ is satisfiable

if ϕ is satisfied by some valuation.

• ϕ is logically valid

if ϕ is satisfied by every valuation

(e.g. Example 3.3, not Example 3.2).

A logically valid formula is also called a

propositional tautology.

Remark 3.5. A formula ϕ is satisfiable if and

only if ¬ϕ is not logically valid.

25

Definition 3.6. Let Γ be any set of formulas

(possibly empty, possibly infinite).

• A valuation v satisfies Γ if it satisfies

every element of Γ.

• A formula ϕ is a logical consequence of

Γ if every valuation satisfying Γ satisfies ϕ;

i.e. if for all valuations v,

if ṽ(ψ) = T for all ψ ∈ Γ, then ṽ(ϕ) = T .

Notation: Γ ⊨ ϕ; “Γ entails ϕ”.

Note: ∅ ⊨ ϕ if and only if ϕ is logically valid.

We abbreviate this to ⊨ ϕ. We also often

abbreviate {ψ} ⊨ ϕ to ψ ⊨ ϕ.
Example 3.7.

ϕ ⊨ (ψ → ϕ).

Indeed, for any v with ṽ(ϕ) = T , by tt → we

have ṽ((ψ → ϕ)) = T

26

(no matter what ṽ(ψ) is).

(‘tt ⋆’ refers to the truth table of the connective ⋆)

Lemma 3.8. Γ ∪ {ψ} ⊨ ϕ if and only if

Γ ⊨ (ψ → ϕ).

In particular, ψ ⊨ ϕ if and only if ⊨ (ψ → ϕ).

Proof:

⇒: Assume Γ ∪ {ψ} ⊨ ϕ.
Let v be any valuation which satisfies Γ.

– Case 1: ṽ(ψ) = F . Then

ṽ((ψ → ϕ)) = T by tt →.

– Case 2: ṽ(ψ) = T . Then ṽ satisfies

Γ ∪ {ψ}, so ṽ(ϕ) = T ,

so then ṽ((ψ → ϕ)) = T by tt →.

So Γ ⊨ (ψ → ϕ).

⇐: Suppose Γ ⊨ (ψ → ϕ).

Let v be any valuation satisfying Γ ∪ {ψ}.
Then ṽ((ψ → ϕ)) = T = ṽ(ψ), so ṽ(ϕ) = T

by tt →.

Hence Γ ∪ {ψ} ⊨ ϕ.

□

Example 3.9. Recall from Example 3.3 that

⊨ ((p0 → p1) → (¬p1 → ¬p0)). Applying

Lemma 3.8 twice, we deduce first

(p0 → p1) ⊨ (¬p1 → ¬p0), and then

{(p0 → p1),¬p1} ⊨ ¬p0.

27

3.3. Equivalence

Definition 3.10. Two formulas ϕ, ψ are

logically equivalent

if ϕ ⊨ ψ and ψ ⊨ ϕ,

i.e. if ṽ(ϕ) = ṽ(ψ) for every valuation v.

Notation: ϕ ⊨ ⊨ψ

Exercise. ϕ ⊨ ⊨ψ if and only if ⊨ (ϕ↔ ψ).

Lemma 3.11. (i) For any formulas ϕ, ψ

(ϕ ∨ ψ) ⊨ ⊨¬(¬ϕ ∧ ¬ψ).

(ii) Hence every formula is logically equivalent

to one without ∨.

28

Proof. (i) Either use truth tables,

or observe that for any valuation v:

ṽ(ϕ ∨ ψ) = F
iff ṽ(ϕ) = F = ṽ(ψ) by tt ∨
iff ṽ(¬ϕ) = T = ṽ(¬ψ) by tt ¬
iff ṽ((¬ϕ ∧ ¬ψ)) = T by tt ∧
iff ṽ(¬(¬ϕ ∧ ¬ψ)) = F by tt ¬

(ii) By induction on the length of ϕ. Consider

cases:

• ϕ = pi: clear.

• ϕ = ¬ψ: by IH, ψ ⊨ ⊨ψ′ for some ψ′ not
containing ∨.
Then ϕ ⊨ ⊨¬ψ′, which does not contain

∨.

• ϕ = (ψ ⋆ χ): by IH, say ψ ⊨ ⊨ψ′ and
χ ⊨ ⊨χ′ where ψ′ and χ′ do not contain

∨.
If ⋆ is not ∨, we conclude since

ϕ ⊨ ⊨(ψ′ ⋆ χ′).

29

If ⋆ is ∨, we conclude since

ϕ ⊨ ⊨¬(¬ψ′ ∧ ¬χ′).

Notation 3.12. If ϕ1, . . . , ϕn are formulas, we

can write their disjunction as

(. . . ((ϕ1 ∨ ϕ2) ∨ ϕ3) . . . ∨ ϕn).

This is rather cumbersome notation, so we

abbreviate it to
n∨
i=1

ϕi.

Formally, we make the following recursive

definitions:

1∨
i=1

ϕi = ϕ1 and
1∧
i=1

ϕi = ϕ1,

and for n > 1,

n∨
i=1

ϕi = (
n−1∨
i=1

ϕi∨ϕn) and
n∧
i=1

ϕi = (
n−1∧
i=1

ϕi∧ϕn).

So ṽ(
∨n
i=1 ϕi) = T iff for some i, ṽ(ϕi) = T

and ṽ(
∧n
i=1 ϕi) = T iff for all i, ṽ(ϕi) = T .

30

We also sometimes write e.g. (ϕ1 ∨ ϕ2 ∨ ϕ3)
for

∨3
i=1 ϕi = ((ϕ1 ∨ ϕ2) ∨ ϕ3).

Lemma 3.13. Let ϕ, ψ, ϕi be formulas. Then

(i) ¬(ϕ ∨ ψ) ⊨ ⊨(¬ϕ ∧ ¬ψ)
More generally,

¬
n∨
i=1

ϕi ⊨ ⊨
n∧
i=1

¬ϕi,

hence also

¬
n∧
i=1

ϕi ⊨ ⊨
n∨
i=1

¬ϕi.

These are called De Morgan’s Laws.

(ii) (ϕ→ ψ) ⊨ ⊨(¬ϕ ∨ ψ)

(iii) (ϕ↔ ψ) ⊨ ⊨((ϕ→ ψ) ∧ (ψ → ϕ))

(iv) (ϕ ∨ ψ) ⊨ ⊨((ϕ→ ψ) → ψ)

(v) (ϕ ∧
∨n
i=1ψi) ⊨ ⊨

∨n
i=1(ϕ ∧ ψi)

(“∧ distributes over ∨”)

(vi) (ϕ ∨
∧n
i=1ψi) ⊨ ⊨

∧n
i=1(ϕ ∨ ψi)

(“∨ distributes over ∧”)
31

3.4. Truth functions

Definition 3.14.

• Let Vn be the set of all functions

v : {p0, . . . , pn−1} → {T, F},

i.e. the “partial” valuations assigning

values only to the first n propositional

variables.

Note #Vn = 2n.

• An n-ary truth function is a function

J : Vn → {T, F}.

There are precisely 22
n
such functions.

• Let Formn(Lprop) be the set of formulas

which contain only propositional variables

from the set {p0, . . . , pn−1}.

If ϕ ∈ Formn(Lprop) and v ∈ Vn, then ṽ(ϕ)

is well-defined, so ϕ represents an n-ary

32

truth function

Jnϕ : Vn → {T, F}; v 7→ ṽ(ϕ).

Remark 3.15. Formulas ϕ, ψ ∈ Formn(Lprop)

are logically equivalent if and only if the same

valuations satisfy them, so

ϕ ⊨ ⊨ψ ⇔ Jnϕ = Jnψ.

In other words, a formula in Formn(Lprop) is

determined up to logical equivalence by the

n-ary truth function it represents.

Definition 3.16. A formula is in disjunctive

normal form (DNF) if it is of the form

k∨
i=1

si∧
j=1

ψi,j

where each ψi,j is either a propositional

variable or the negation of a propositional

variable.

Example 3.17.

(((p1 ∧ ¬p2) ∨ p0) ∨ ((¬p0 ∧ ¬p3) ∧ p0)) is in

disjunctive normal form. So are p2 and ¬p7.
Theorem 3.18.

For every n ≥ 1, every n-ary truth function

J : Vn → {T, F}, is represented by a formula

in disjunctive normal form.

In particular, every formula is logically

equivalent to one in DNF.

33

Proof: Let

U := {v ∈ Vn | J(v) = T}.
First, suppose k := |U | > 0, say
U = {v0, ..., vk−1}. Set

ϕ :=
k−1∨
i=0

n−1∧
j=0

ψi,j

where

ψi,j :=

{
pj if vi(pj) = T
¬pj if vi(pj) = F.

Then for any w ∈ Vn and i < k,

w̃(
n−1∧
j=0

ψi,j) = T ⇔ w = vi.

Hence for any w ∈ Vn, we have

Jnϕ(w) = T ⇔ w̃(ϕ) = T

⇔ (w = v0 or . . . or w = vk−1)

⇔ w ∈ U

⇔ J(w) = T,

34

so Jnϕ = J, i.e. ϕ represents J.

Finally, we handle the special case that

U = ∅, i.e. J(v) = F for all v ∈ Vn, by setting

ϕ := (p0 ∧ ¬p0) (which is in DNF). Then ϕ

represents J, since Jnϕ(v) = ṽ(ϕ) = F = J(v)

for any v ∈ Vn.

□

Definition 3.19.

• If ∗1, ..., ∗k are truth-functional connectives

with associated truth tables (unary,

binary, or even ternary or higher), write

Lprop[∗1, ..., ∗k] for the language with these

connectives instead of ¬,→,∧,∨,↔, and

define Form(Lprop[∗1, ..., ∗k]) and

Formn(Lprop[∗1, ..., ∗k]) accordingly.

• Say Lprop[∗1, ..., ∗k] is adequate if every

n-ary truth function (for n ≥ 1) is

represented by some

ϕ ∈ Formn(Lprop[∗1, ..., ∗k]).

35

Lemma 3.20. The following languages are

adequate:

(i) Lprop[¬,∧,∨].

(ii) Lprop[¬,∧].

(iii) Lprop[¬,∨].

(iv) Lprop[¬,→].

Proof.

(i) Theorem 3.18.

(ii) By (i) and De Morgan’s law

(ϕ ∨ ψ) ⊨ ⊨¬(¬ϕ ∧ ¬ψ),

via the argument of Lemma 3.11.

(iii) Similarly, using De Morgan’s other law

(ϕ ∧ ψ) ⊨ ⊨¬(¬ϕ ∨ ¬ψ).
36

(iv) Similarly, using (iii) and the equivalence

(Lemma 3.13(iv))

(ϕ ∨ ψ) ⊨ ⊨((ϕ→ ψ) → ψ).

Remark 3.21.

• L := Lprop[∨,∧,→] is not adequate:

defining vT by vT (pi) = T for all i,

we have vT (ϕ) = T for all ϕ ∈ Form(L,
so in particular no such ϕ gives J1ϕ = J1¬p0.

• There are precisely two binary

connectives, say ↑ and ↓, such that

Lprop[↑] and Lprop[↓] are adequate.

4. Proofs

• We introduced ‘logical consequence’ –

Γ ⊨ ϕ means: whenever (each formula of)

Γ is true, so is ϕ.

• If Γ is finite, we can check whether Γ ⊨ ϕ

by considering truth tables. But for

infinite Γ, it is less clear how to determine

when Γ ⊨ ϕ holds.

• We now define a notion of a proof of a

formula ϕ from hypotheses Γ, and we will

show that Γ ⊨ ϕ if and only if such a proof

exists (“completeness”).

• Generally, a proof system can be defined

by choosing some axioms and some rules

of inference. Then a proof of ϕ from Γ

is a finite sequence

ϕ1, ϕ2, . . . , ϕn such that

37

ϕn = ϕ, and for each i = 1, . . . , n:

- ϕi ∈ Γ,

- or ϕi is some axiom,

- or ϕi follows from previous ϕj’s by a

rule of inference.

We work with L0 := Lprop[¬,→]. Since L0 is

adequate by Lemma 3.20(iv), we lose nothing

by considering only L0.

Definition 4.1.

The proof system L0 consists of the

following axioms and rules:

Axioms

An axiom of L0 is any formula of the

following form, where α, β, γ ∈ Form(L0):

A1 (α→ (β → α))

A2 ((α→ (β → γ)) → ((α→ β) → (α→ γ)))

A3 ((¬α→ β) → ((¬α→ ¬β) → α))

Rules of inference

Just one rule, modus ponens:

MP For any ϕ, ψ ∈ Form(L0):

From ϕ and (ϕ→ ψ), infer ψ.

38

Definition 4.2. Let Γ ⊆ Form(L0). A formula
ϕ ∈ Form(L0) is provable from hypotheses
Γ, written

Γ ⊢ ϕ,

if there is a sequence of L-formulas (a
derivation or proof) ϕ1, . . . , ϕn with ϕn = ϕ
such that for each i ≤ n, at least one of the
following holds:

• (A1-A3) ϕi is an axiom.
• (Hyp) ϕi ∈ Γ.
• (MP) ϕk = (ϕj → ϕi) for some j, k < i.

In the case Γ = ∅, we usually write ⊢ ϕ rather
than ∅ ⊢ ϕ, and we say that ϕ is a theorem of
the system L0.

Note that if ∆ ⊢ ϕ and ∆′ ⊇ ∆, then also
∆′ ⊢ ϕ.

The term propositional calculus is
sometimes used to refer to L0 or similar proof
systems. It is also sometimes used to refer to
propositional logic in general.

39

Example 4.3. For any ϕ ∈ Form(L0)

⊢ (ϕ→ ϕ).

Proof:

1

((ϕ→ ((p0 → ϕ) → ϕ))

→ ((ϕ→ (p0 → ϕ))

→ (ϕ→ ϕ)))

[A2 with α = ϕ, β = (p0 → ϕ), γ = ϕ]

2 (ϕ→ ((p0 → ϕ) → ϕ)) [A1 with α = ϕ, β = (p0 → ϕ)]

3 ((ϕ→ (p0 → ϕ)) → (ϕ→ ϕ)) [MP 2,1]

4 (ϕ→ (p0 → ϕ)) [A1 with α = ϕ, β = p0]

5 (ϕ→ ϕ) [MP 4,3]

Then this sequence of formulas is a proof of

(ϕ→ ϕ) from ∅ in L0.

□

40

Example 4.4.

For any ϕ, ψ ∈ Form(L0):

{ψ,¬ψ} ⊢ ϕ

Proof:

1 ((¬ϕ→ ψ) → ((¬ϕ→ ¬ψ) → ϕ)) [A3]

2 ψ [Hyp]

3 (ψ → (¬ϕ→ ψ)) [A1]

4 (¬ϕ→ ψ) [MP 2,3]

5 ((¬ϕ→ ¬ψ) → ϕ) [MP 4,1]

6 ¬ψ [Hyp]

7 (ψ → (¬ϕ→ ¬ψ)) [A1]

8 (¬ϕ→ ¬ψ) [MP 6,7]

9 ϕ [MP 8,5]

□

41

Theorem 4.5 (The Soundness Theorem for

L0). L0 is sound, i.e. for any Γ ⊆ Form(L0)

and for any ϕ ∈ Form(L0):

If Γ ⊢ ϕ then Γ ⊨ ϕ.

In particular, any theorem of L0 is logically

valid.

Proof:

We show by (complete) induction on m:

(⋆) If a formula ϕ has a proof of length m

from Γ in L0, then Γ ⊨ ϕ.

So suppose α1, . . . , αm is a proof in L0, and

(⋆) holds for all m′ < m. We have to show

that Γ ⊨ αm.

42

Case 1: αm is an axiom.

One verifies by truth tables (exercise) that

our axioms are logically valid, so Γ ⊨ αm.

Case 2: αm ∈ Γ.

Then Γ ⊨ αm.

Case 3: αm is obtained by MP.

So say j, k < m and αk = (αj → αm).

By the inductive hypothesis,

since α1, . . . , αj is a proof of length j < m,

we have Γ ⊨ αj.

Similarly Γ ⊨ αk, i.e. Γ ⊨ (αj → αm).

But {αj, (αj → αm)} ⊨ αm by Lemma 3.8,

and it follows (from the definition of ⊨) that

Γ ⊨ αm.

□

43

4.1. The Deduction Theorem for L0

A common pattern of reasoning goes as

follows: “Suppose A holds. Then [some chain

of reasoning], and so B holds. Hence A

implies B.” The Deduction Theorem

implements this.

Theorem 4.6 (The Deduction Theorem for

L0). For any Γ ⊆ Form(L0) and

for any ϕ, ψ ∈ Form(L0),

if Γ ∪ {ϕ} ⊢ ψ then Γ ⊢ (ϕ→ ψ).

44

Proof: We prove this by induction on the

length of a proof of ψ from Γ ∪ {ϕ}.

So suppose α1, . . . , αm is a proof in L0 from

Γ ∪ {ϕ},
and we show Γ ⊢ (ϕ→ αm),

assuming inductively that Γ ⊢ (ϕ→ αi) for all

i < m.

45

Case 1: αm is an axiom.

Then Γ ⊢ (ϕ→ αm):

1 αm [A1/2/3]
2 (αm → (ϕ→ αm)) [A1]
3 (ϕ→ αm) [MP 1,2]

Case 2: αm ∈ Γ ∪ {ϕ}.
If αm ∈ Γ then the proof above works

(changing the justification on line 1 to

“[Hyp]”). Otherwise αm = ϕ, and then

⊢ (ϕ→ αm) by Example 4.3, and hence

Γ ⊢ (ϕ→ αm).

46

Case 3: αm is obtained by MP from some

earlier αj, αk, i.e. there are j, k < m such that

αj = (αk → αm).

By the induction hypothesis, we have

Γ ⊢ (ϕ→ αk)
and Γ ⊢ (ϕ→ (αk → αm))

47

So say

β1, . . . , βr−1, (ϕ→ αk)

and

γ1, . . . , γs−1, (ϕ→ (αk → αm))

are proofs in L0 from Γ.

Then

1 β1
... ...

r-1 βr−1
r (ϕ→ αk)

r+1 γ1
... ...

r+s-1 γs−1
r+s (ϕ→ (αk → αm))

r+s+1 ((ϕ→ (αk → αm)) →
((ϕ→ αk) → (ϕ→ αm))) [A2]

r+s+2 ((ϕ→ αk) → (ϕ→ αm)) [MP r+s, r+s+1]

r+s+3 (ϕ→ αm) [MP r, r+s+2]

is a proof of (ϕ→ αm) in L0 from Γ.

48

□

Remark 4.7.

• The proof only used instances of A1, A2,

and the rule MP.

• The proof gives a precise algorithm for

converting any proof showing Γ ∪ {ϕ} ⊢ ψ
into one showing Γ ⊢ (ϕ→ ψ).

• The converse implication is immediate

from MP:

If Γ ⊢ (ϕ→ ψ) then Γ ∪ {ϕ} ⊢ ψ :

... ... proof from Γ
r (ϕ→ ψ)

r+1 ϕ [Hyp]

r+2 ψ [MP r, r+1]

49

More generally:

Remark 4.8. If Γ ⊢ (ϕ→ ψ) and Γ ⊢ ϕ, then

Γ ⊢ ψ by MP.

Explicitly: if α1, . . . , αn−1, (ϕ→ ψ) and

β1, . . . , βm−1, ϕ are proofs from Γ, then so is

α1, . . . αn−1, (ϕ→ ψ), β1, . . . , βm−1, ϕ, ψ.

Example 4.9. If Γ ⊢ (ϕ→ ψ) and Γ ⊢ (ψ → χ),

then Γ ⊢ (ϕ→ χ).

Proof: By the deduction theorem, it suffices

to show that Γ ∪ {ϕ} ⊢ χ.

Now Γ ∪ {ϕ} ⊢ (ϕ→ ψ) and Γ ∪ {ϕ} ⊢ ϕ, so

Γ ∪ {ϕ} ⊢ ψ by MP (Remark 4.8).

Then since Γ ∪ {ϕ} ⊢ (ψ → χ), we have

Γ ∪ {ϕ} ⊢ χ by MP again.

□

50

Lemma 4.10. If Γ ∪ {ϕ} ⊢ ψ and Γ ⊢ ϕ, then

Γ ⊢ ψ.

Proof: We have Γ ⊢ (ϕ→ ψ) by the deduction

theorem, so Γ ⊢ ψ by MP.

(Alternative direct argument: if

α1, . . . , αn−1, ϕ is a proof from Γ and

β1, . . . , βm−1, ψ is a proof from Γ ∪ {ϕ}, then

α1, . . . , αn−1, β1, . . . , βm−1, ψ is a proof from

Γ.)

□

51

5. Completeness and
Compactness

Theorem 5.1 (The Completeness Theorem

for L0).

L0 is complete, i.e. for any Γ ⊆ Form(L0)

and for any ϕ ∈ Form(L0):

If Γ ⊨ ϕ then Γ ⊢ ϕ.

Given also soundness, it follows:

Γ ⊨ ϕ iff Γ ⊢ ϕ.

To prove completeness, it is convenient to go

via a proof-theoretic analogue of satisfiability

called consistency.

Definition 5.2.

Γ ⊆ Form(L0) is inconsistent

if for some χ ∈ Form(L0),

Γ ⊢ χ and Γ ⊢ ¬χ.

Otherwise, Γ is consistent. 52

Lemma 5.3. Any satisfiable Γ ⊆ Form(L0) is

consistent.

Proof. Suppose Γ is inconsistent, say Γ ⊢ χ
and Γ ⊢ ¬χ.
Then Γ ⊨ χ and Γ ⊨ ¬χ by soundness.

But no valuation satisfies both χ and ¬χ, so

Γ is not satisfiable.

Lemma 5.4.

(i) Γ ⊢ ϕ if and only if Γ∪{¬ϕ} is inconsistent.

(ii) Γ ⊨ ϕ if and only if Γ ∪ {¬ϕ} is

unsatisfiable.

Proof:

(i) Suppose Γ ∪ {¬ϕ} is inconsistent, say

Γ ∪ {¬ϕ} ⊢ χ and Γ ∪ {¬ϕ} ⊢ ¬χ.

Then by the deduction theorem,

Γ ⊢ (¬ϕ→ χ) and Γ ⊢ (¬ϕ→ ¬χ).

But

((¬ϕ→ χ) → ((¬ϕ→ ¬χ) → ϕ))

is an instance of A3, so by MP twice, we

conclude Γ ⊢ ϕ.

Conversely, if Γ ⊢ ϕ then Γ ∪ {¬ϕ} is

inconsistent, since Γ ∪ {¬ϕ} ⊢ ϕ and

Γ ∪ {¬ϕ} ⊢ ¬ϕ.

(ii) Γ ⊨ ϕ ⇔ any valuation satisfying Γ satisfies ϕ

⇔ no valuation satisfying Γ satisfies ¬ϕ
⇔ Γ ∪ {¬ϕ} is unsatisfiable.

□

So to prove the Completeness Theorem, it

suffices to prove that any consistent Γ is

satisfiable.

Definition 5.5.

Γ ⊆ Form(L0) is complete (or maximal

consistent) if

• Γ is consistent, and

• for every ϕ ∈ Form(L0), either Γ ⊢ ϕ or

Γ ⊢ ¬ϕ.
Warning. This notion of completeness of a

set of formulas is quite distinct from the

notion of completeness of a proof system! In

the Completeness Theorem we are proving,

as well as Gödel’s Completeness Theorem for

first-order logic which we will prove later,

“completeness” refers to completeness of a

proof system (“⊨⇒ ⊢”). In Gödel’s

Incompleteness Theorems (the subject of a

Part C course) meanwhile, “completeness”

refers to completeness of a set of (first-order)

formulas, as in Definition 5.5.

53

We will prove the completeness theorem by

first showing that every consistent Γ extends

to a complete set, then showing that

complete sets are satisfiable.

Lemma 5.6.

If Γ ⊆ Form(L0) is consistent and

ϕ ∈ Form(L0), then either Γ ∪ {ϕ} is

consistent or Γ ∪ {¬ϕ} is consistent.

Proof: If Γ ̸⊢ ϕ, then Γ ∪ {¬ϕ} is consistent by

Lemma 5.4(i). Otherwise, Γ ⊢ ϕ. Then

Γ ∪ {ϕ} is consistent, since otherwise for some

χ we have Γ ∪ {ϕ} ⊢ χ and Γ ∪ {ϕ} ⊢ ¬χ, and

hence Γ ⊢ χ and Γ ⊢ ¬χ (by Lemma 4.10),

contradicting consistency of Γ.

□

Theorem 5.7.

Suppose Γ is consistent. Then there is a

complete Γ′ ⊇ Γ.

Proof:

Form(L0) is countable (Fact 2.9), so say

Form(L0) = {ϕ0, ϕ1, ϕ2, . . .}.

Construct a chain of consistent sets

Γ = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . .

as follows:

• Γ0 := Γ.

• Given consistent Γn, let

Γn+1 :=

{
Γn ∪ {ϕn} if Γn ∪ {ϕn} is consistent
Γn ∪ {¬ϕn} otherwise

Then Γn+1 is consistent by Lemma 5.6.

54

Now let Γ′ :=
⋃∞
n=0Γn.

Then Γ′ is consistent:

if Γ′ ⊢ χ and Γ′ ⊢ ¬χ, then proofs witnessing

this use only finitely many formulas from Γ′

as hypotheses, so for some n, Γn ⊢ χ and

Γn ⊢ ¬χ, contradicting the consistency of Γn.

Finally, Γ′ is complete: for all n, either ϕn ∈ Γ′

or ¬ϕn ∈ Γ′,
so in particular either Γ′ ⊢ ϕn or Γ′ ⊢ ¬ϕn.

□

55

Lemma 5.8.
Suppose Γ is complete.
Then for every ψ, χ ∈ Form(L0):

(a) Γ ⊢ ¬ψ iff Γ ̸⊢ ψ.
(b) Γ ⊢ (ψ → χ) iff either Γ ̸⊢ ψ or Γ ⊢ χ.

Proof:

(a) Immediate from the definition of Γ being
complete.

(b) ‘⇒’: By MP, if Γ ⊢ (ψ → χ) and Γ ⊢ ψ,
then Γ ⊢ χ.

‘⇐’: Suppose Γ ̸⊢ ψ. Then Γ ⊢ ¬ψ by (a).
But Γ ∪ {ψ,¬ψ} ⊢ χ by Example 4.4, so
then Γ ∪ {¬ψ} ⊢ (ψ → χ) by the deduction
theorem, and so Γ ⊢ (ψ → χ) (by
Lemma 4.10).

If Γ ⊢ χ then Γ ⊢ (ψ → χ) by A1 and MP.

□
56

Theorem 5.9.

Suppose Γ is complete.

Then Γ is satisfiable.

Proof:

Define a valuation v by

v(pi) = T iff Γ ⊢ pi.

We prove by induction on ϕ:

Claim. For all ϕ ∈ Form(L0),

ṽ(ϕ) = T iff Γ ⊢ ϕ.

57

Case 1: ϕ = pi for some i. Then we are done

by the definition of v.

Case 2: ϕ = ¬ψ. Then

ṽ(ϕ) = T iff ṽ(ψ) = F tt ¬
iff Γ ̸⊢ ψ IH

iff Γ ⊢ ¬ψ Lemma 5.8(a)

iff Γ ⊢ ϕ

Case 3: ϕ = (ψ → χ). Then

ṽ(ϕ) = T iff ṽ(ψ) = F or ṽ(χ) = T tt →
iff Γ ̸⊢ ψ or Γ ⊢ χ IH

iff Γ ⊢ (ψ → χ) Lemma 5.8(b)

iff Γ ⊢ ϕ

The Claim is proven, so in particular ṽ(ϕ) = T

for all ϕ ∈ Γ, i.e. v satisfies Γ.

□

58

Theorem 5.10. Let Γ ⊆ Form(L0). Then

Γ is consistent if and only if it is satisfiable.

Proof: If Γ is consistent,

then by Theorem 5.7 it extends to a

complete set,

which by Theorem 5.9 is satisfiable,

hence Γ is also satisfiable.

The converse is Lemma 5.3.

□

Proof: [Proof of Completeness Theorem 5.1]

Immediate from Lemma 5.4 and

Theorem 5.10.

□

59

Theorem 5.11 (The Compactness Theorem
for L0).
Γ ⊆ Form(L0) is satisfiable iff every finite
subset of Γ is satisfiable.

Proof: By Theorem 5.10, this is equivalent
to:
Γ ⊆ Form(L0) is consistent iff every finite
subset of Γ is consistent.

But indeed, by finiteness of proofs,
Γ ⊢ χ and Γ ⊢ ¬χ iff already
Γ0 ⊢ χ and Γ0 ⊢ ¬χ for some finite Γ0 ⊆ Γ.

□
Remark 5.12. Our proof of completeness
used that the language was countable (in the
proof of Theorem 5.7). One could also
consider uncountable languages, for example
with a propositional variable pr for each real
number r. Completeness can then be proven
along the same lines, but it requires some
form of the Axiom of Choice∗.
∗Namely, it is equivalent modulo ZF to the Boolean

60

Part II: First-order Logic

Consider: “If everyone loves their mother,

then everyone loves someone.”

Propositional logic can treat only the

implication, (p0 → p1). We now introduce a

refinement of propositional logic, known as

first-order or predicate logic, which can

capture the full meaning – rendering it as

(∀x0L(x0,m(x0)) → ∀x0∃x1L(x0, x1))

where L is a “binary relation symbol”

interpreted as loving, and m is a “unary

function symbol” interpreted as m(x) being

the mother of x.

First-order logic extends propositional logic

with universal and existential quantifiers,

Prime Ideal Theorem; see section 2.3 in Jech’s book
”The Axiom of Choice” for a proof.

61

predicates and relations, and functions and

constants. The result is highly constrained

compared to natural language, but is just

expressive enough for the purpose of

formalising mathematical statements.

As in the propositional case, we first formally

define the syntax, then give a precise

definition of truth, then proceed to find a

sound and complete proof calculus. We will

then consider compactness and other

consequences for actual mathematical

structures.

6. Syntax

A countable first-order language L consists
of a countable set of non-logical symbols,
along with a categorisation of its elements as
each being of exactly one of the following
kinds:
• A k-ary predicate symbol∗ for some k ≥ 1.
• A k-ary function symbol for some k ≥ 1.
• A constant symbol.

The alphabet of L consists of its non-logical
symbols along with the following disjoint set
of logical symbols:
• Connectives: →,¬
• Quantifier: ∀ (‘for all’)
• Variables: x0, x1, x2, . . . (one variable xi for

each i ∈ N)
• 3 punctuation marks: , ()
• Equality symbol:

.
=

∗We often say “unary”, “binary”, “ternary” for “k-ary”
with k = 1,2,3. When k ≥ 2, a k-ary predicate symbol
is also often called a k-ary relation symbol.

62

We recursively define terms and formulas:

Definition 6.1.

(a) A string is an L-term if it has one of the

following forms:

(i) A variable xi.

(ii) A constant symbol.

(iii) f(t1, . . . , tk) where f is a k-ary function

symbol in L and t1, . . . , tk are terms.

(b) An atomic L-formula is any string of the

form

P (t1, . . . , tk) or t1
.
= t2

where k ≥ 1, P ∈ L is a k-ary relation

symbol in L, and all ti are L-terms.

(c) A string is a L-formula if it has one of

the following forms:

(i) An atomic L-formula.

(ii) ¬ϕ or (ϕ→ ψ) where ϕ, ψ are

L-formulas.

(iii) ∀xiϕ where ϕ is an L-formula and i ∈ N.
63

Example 6.2. The most general countable

first-order language has a countably infinite

set of symbols of each type:

Lpred := {(P (k)
i)i,k>0, (f

(k)
i)i,k>0, (ci)i>0},

where each P
(k)
i is a k-ary predicate symbol,

each f
(k)
i is a k-ary function symbol,

and each ci is a constant symbol.

• The following are all Lpred-terms:

c3, x5, f
(1)
3 (c2), f

(2)
1 (x1, f

(1)
1 (c37)).

• f
(3)
2 (x1, x2) is not a term (wrong arity).

• P
(3)
2 (x4, c2, f

(2)
3 (c1, x2)) and

f
(2)
1 (c5, x2)

.
= x3 are atomic formulas.

• ∀x1f
(2)
2 (x1, c7)

.
= x2 and

(∀x2(P
(1)
1 (x3) ∧ P

(2)
1 (x4, x3)) → c1

.
= c0)

are non-atomic formulas.

64

Example 6.3. A more typical example of a

first-order language appearing in mathematics

is the language of ordered rings

Lo.ring := {<, ·,+,−,0,1},

where < is a binary relation symbol,

·, +, and − are binary function symbols,

and 0 and 1 are constant symbols.

(Note that we are using these symbols as

abstract symbols – forget for now the

meanings we usually give to them.)

When dealing with binary function and

relation symbols, we often allow ourselves to

use “infix notation” as an abbreviation, so

e.g.

∀x0x0 < x0 +1

abbreviates the Lo.ring-formula

∀x0 <(x0,+(x0,1)).

65

Exercise 6.4. We have unique readability

for terms, for atomic formulas, and for

formulas.

As in Fact 2.9, we have

Fact 6.5. For any given countable first-order

language L, the sets Term(L) of terms in L
and Form(L) of formulas in L are countable.

From now on, we consider only countable

first-order languages, so we often refer to

them just as “languages”.

66

7. Semantics

7.1. Informal discussion

The truth value of a propositional formula is
determined by the truth values of the
propositional variables. We now consider
what information we need to determine the
truth value of a first-order formula.

To determine the truth of

ϕ := ∀x0(P (x0) → P (f(x0)))

we first need to decide the domain of
quantification: a non-empty set M . We then
read ∀x0 as “for all x0 ∈M”.

Then, for each possible assignment of x0 to
an element of M , we want to determine
whether

ψ := (P (x0) → P (f(x0)))

67

holds.

For this, we need:

• an interpretation of f as a function

M →M , so that f(x0) denotes an

element of M ;

• an interpretation of P as a choice of

True/False for each element of M (i.e. as

a a subset of M), so that P (x0) and

P (f(x0)) are given truth values.

For example, taking M = Z, interpreting f as

the successor function S(n) = n+1 and P as

the natural numbers N ⊆ Z, ϕ is true because

ψ is true for any assignment of x0, but ϕ is

false if we interpret P as −N, because ψ is

false when we assign x0 to 0 ∈ Z.

So in general, to evaluate the truth of a

formula we need:

• a domain;

• interpretations of the non-logical symbols;

• an assignment of the variables to

elements of the domain.

7.2. Interpretations and Assignments

Definition 7.1.

Let L be a language. An L-structure M
consists of:

• A non-empty set M , the domain of M;

• For each k-ary function symbol f ∈ L,
a k-ary function fM : Mk →M ;

• For each k-ary predicate symbol P ∈ L,
a subset PM ⊆Mk;

• For each constant symbol c ∈ L, an

element cM ∈M .

An interpretation of a language L is

precisely a choice of an L-structure.

68

Notation 7.2. Consider for example the

language L = {f, P, c} with f a binary function

symbol, P a unary predicate symbol, and c a

constant symbol.

We denote an L-structure by

M = ⟨M ; fM, PM, cM⟩.

We also write e.g. M = ⟨N;+,2N,3⟩ for the

L-structure with domain N and with f

interpreted as the addition function

fM : N2 → N; (x, y) 7→ x+ y, P as the subset

PM = 2N ⊆ N, and c as the element

cM = 3 ∈ N.

69

Definition 7.3. Let M = ⟨M ; . . .⟩ be an

L-structure with domain M .

• An assignment in M is a function

a : {x0, x1, . . .} →M

• An assignment a extends to a function

ã : Terms(L) →M

defined recursively as follows:

– ã(xi) := a(xi) where i ∈ N.

– ã(c) := cM where c ∈ L is a constant

symbol.

– ã(f(t1, . . . , tk)) := fM(ã(t1), . . . , ã(tk))

where f ∈ L is a k-ary function symbol

and ti ∈ Term(L).

70

Given an assignment a in M, we recursively
define whether

M ⊨a ϕ

(read as “ϕ holds in M under the assignment
a”, or “M satisfies ϕ under a”; sometimes
also written as M ⊨ ϕ[a]), as follows:

• M ⊨a P (t1, . . . , tk) if and only if
(ã(t1), . . . , ã(tk)) ∈ PM

(where P ∈ L is a k-ary predicate symbol
and ti ∈ Term(L)).

• M ⊨a t1
.
= t2 if and only if ã(t1) = ã(t2)

(where t1, t2 ∈ Term(L)).

• M ⊨a ¬ψ if and only if M ̸⊨a ψ.

• M ⊨a (ψ → χ) if and only if
M ̸⊨a ψ or M ⊨a χ.

• M ⊨a ∀xiψ if and only if
M ⊨a∗ ψ for all assignments a∗ such that
a∗(xj) = a(xj) for all j ̸= i.

71

Example 7.4.

Consider M = ⟨Z; ·⟩ as an {f}-structure
(f a binary function symbol).

Let a be an assignment in Z, and let

ϕ = ∀x0∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)

Then:

M ⊨a ϕ

⇔ For all a∗ with a∗(xi) = a(xi) for i ̸= 0,
M ⊨a∗ ∀x1(f(x0, x2)

.
= f(x1, x2) → x0

.
= x1).

⇔ For all a∗∗ with a∗∗(xi) = a(xi) for i ̸= 0,1,
M ⊨a∗∗ (f(x0, x2)

.
= f(x1, x2) → x0

.
= x1).

⇔ For all a∗∗ with a∗∗(xi) = a(xi) for i ̸= 0,1,
if a∗∗(x0) · a∗∗(x2) = a∗∗(x1) · a∗∗(x2).
then a∗∗(x0) = a∗∗(x1).

⇔ For all n,m ∈ Z,
if n · a(x2) = m · a(x2) then n = m,

⇔ a(x2) ̸= 0.

72

Notation 7.5. If a and a∗ are assignments in

a structure M and i ∈ N, write a∗ ∼i a to

mean a∗(xj) = a(xj) for all j ̸= i.

So M ⊨a ∀xiϕ if and only if M ⊨a∗ ϕ for all

a∗ ∼i a.

Given m ∈M , let a[m/xi] be the unique

assignment such that a[m/xi] ∼i a and

a[m/xi](xi) = m, namely

a[m/xi](xj) =

{
a(xj) if j ̸= i
m if j = i.

Example 7.6.

Suppose P ∈ L with P a unary predicate

symbol, M is an L-structure,
ϕ = (∀x0P (x0) → P (x1)),

and a is any assignment in M. Then M ⊨a ϕ.

Proof:

Suppose M ⊨a ∀x0P (x0).

Then for all a∗ ∼0 a, we have M ⊨a∗ P (x0).

In particular, M ⊨a[a(x1)/x0] P (x0), so

a(x1) = a[a(x1)/x0](x0) ∈ PM.

So M ⊨a P (x1).

Hence M ⊨a ϕ.

□

73

Definition 7.7.

Let L be a language.

• An L-formula ϕ is logically valid, written
⊨ ϕ, if M ⊨a ϕ for all L-structures M and
for all assignments a in M.

• ϕ ∈ Form(L) is satisfiable if M ⊨a ϕ for
some L-structure M and for some
assignment a in M.

• For Γ ⊆ Form(L), we write M ⊨a Γ to
mean that M ⊨a ϕ for all ϕ ∈ Γ.

• ϕ ∈ Form(L) is a logical consequence of
Γ ⊆ Form(L), written Γ ⊨ ϕ, if for all
L-structures M and for all assignments a
in M with M ⊨a Γ, also M ⊨a ϕ.

• ϕ, ψ ∈ Form(L) are logically equivalent,
ϕ ⊨ ⊨ψ, if {ϕ} ⊨ ψ and {ψ} ⊨ ϕ.

We abbreviate ∅ ⊨ ϕ to ⊨ ϕ; e.g.
⊨ (∀x0P (x0) → P (x1)) by Example 7.6.

74

7.3. Some abbreviations

We use . . . as abbreviation for . . .
(α ∨ β) ((α→ β) → β)
(α ∧ β) ¬(¬α ∨ ¬β)
(α↔ β) ((α→ β) ∧ (β → α))
∃xiϕ ¬∀xi¬ϕ

Exercise 7.8.

For any L-structure M and any assignment a

in M one has

M ⊨a (α ∨ β) ⇔ M ⊨a α or M ⊨a β
M ⊨a (α ∧ β) ⇔ M ⊨a α and M ⊨a β
M ⊨a (α↔ β) ⇔ M ⊨a α iff M ⊨a β

M ⊨a ∃xiϕ ⇔ M ⊨a∗ ϕ for some
assignment a∗ ∼i a

75

7.4. Tautologies

Let L be a first-order language.

Definition 7.9. A tautology of L is a

substitution instance of a propositional

tautology, i.e. a formula ϕ ∈ Form(L)
obtained as follows:

• Let α be a logically valid formula of the

propositional logic L0 with propositional

variables among p0, . . . , pn;

• let ψ0, . . . , ψn ∈ Form(L);
• let ϕ be the L-formula obtained from α by

replacing each occurrence of pi by ψi.

Example 7.10.

(∀x0P (x0) → (¬x0
.
= x1 → ∀x0P (x0))) is a

tautology, obtained from the propositional

validity (p0 → (p1 → p0)).

76

Lemma 7.11. Tautologies are logically valid:
if ϕ is a tautology of L, then ⊨ ϕ.

Proof: Generally, let ϕ be the formula
resulting from substituting ψi for pi in a
propositional formula α.
Given a structure M and assignment a, define
a propositional valuation by

v(pi) = T ⇔ M ⊨a ψi.

By the recursive definitions of ⊨a and of ṽ, it
follows:

ṽ(α) = T ⇔ M ⊨a ϕ.

In particular, if α is a propositional validity,
then ṽ(α) = T and M ⊨a ϕ, so ϕ is logically
valid.

□
Remark 7.12. Not all first-order logical
validities are tautologies – e.g. x0

.
= x0.

77

7.5. Free and bound variables

Recall from Example 7.4 that whether or not

⟨Z; ·⟩ ⊨a ∀x0∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)

depends on a(x2). But it does not depend on

a(x0) or a(x1).

This is because all occurrences of x0 and x1
in ϕ are subordinate to the corresponding

quantifiers ∀x0 and ∀x1. We say that these

occurrences are bound, while the occurrence

of x2 is free.

78

Definition 7.13.

Let L be a language, ϕ an L-formula, and

x ∈ {x0, x1, . . .} a variable.

An occurrence of x in ϕ is free, if

(i) ϕ is atomic; or

(ii) ϕ = ¬ψ resp. ϕ = (χ→ ρ),

and the occurrence of x is free in ψ resp.

in χ or in ρ; or

(iii) ϕ = ∀xiψ, and x ̸= xi, and the occurrence

of x is free in ψ.

The variables which occur free in ϕ are called

the free variables of ϕ,

Free(ϕ) := {xi : xi occurs free in ϕ}.

An occurrence which is not free is bound.

In particular, if ϕ = ∀xiψ, then any occurrence

of xi in ϕ is bound. (We do not consider the

use of the symbol xi in the quantifier ∀xi as

79

an occurrence of xi; e.g. x0 does not occur in

the formula ∀x0c
.
= c.)

Example 7.14.

(∃x0P (x0︸︷︷︸
bnd

, x1︸︷︷︸
free

)∨∀x1(P (x0︸︷︷︸
free

, x1︸︷︷︸
bnd

) → ∃x0P (x0︸︷︷︸
bnd

, x1︸︷︷︸
bnd

)))

Lemma 7.15.

Let L be a language, let M be an

L-structure, let a1 and a2 be assignments in

M, and let ϕ be an L-formula.

Suppose a1(xi) = a2(xi) for every variable xi
with a free occurrence in ϕ.

Then

M ⊨a1 ϕ iff M ⊨a2 ϕ.

Proof: For ϕ atomic: exercise.

Now use induction on the length of ϕ.

If ϕ = ¬ψ or ϕ = (χ→ ρ), this is

straightforward.

80

So say ϕ = ∀xiψ, and assume the result holds

for ψ.

Suppose M ⊨a1 ∀xiψ. We want to show

M ⊨a2 ∀xiψ. So suppose a∗2 ∼i a2, and we

want to show M ⊨a∗2
ψ.

Let a∗1(xj) := a1[a
∗
2(xi)/xi]. Then M ⊨a∗1

ψ,

since a∗1 ∼i a1.

We conclude by applying the inductive

hypothesis on ψ to obtain M ⊨a∗2
ψ as

required. For this, we need to show that if xj
occurs free in ψ then a∗2(xj) = a∗1(xj).
If j = i, this is by definition of a∗1.
If j ̸= i, then xj occurs free in ϕ, so

a∗2(xj) = a2(xj) = a1(xj) = a∗1(xj).

□

81

Corollary 7.16.

Let L be a language, and let α, β ∈ Form(L).
Assume the variable xi has no free occurrence

in α (i.e. xi /∈ Free(α)). Then

⊨ (∀xi(α→ β) → (α→ ∀xiβ)).

Proof:

Let M be an L-structure and let a be an

assignment in M such that

M ⊨a ∀xi(α→ β) and M ⊨a α. We must show

M ⊨a ∀xiβ.

So let a∗ ∼i a; we conclude by showing

M ⊨a∗ β.

Since a∗ ∼i a and M ⊨a ∀xi(α→ β), we have

M ⊨a∗ (α→ β).

But M ⊨a∗ α by Lemma 7.15, since xi is not

free in α, so M ⊨a∗ β as required.

82

□

More generally, similar arguments yield the

following.

Exercise 7.17. Assuming xi /∈ Free(α), the

following logical equivalences hold:

• (α ∨ ∀xiβ) ⊨ ⊨∀xi(α ∨ β).

• (α ∨ ∃xiβ) ⊨ ⊨∃xi(α ∨ β).

7.6. Sentences

Definition 7.18.

An L-formula σ with no free variables is called

an L-sentence. The set of all L-sentences is

denoted Sent(L).

By Lemma 7.15, for any L-structure M and

σ ∈ Sent(L), whether or not M ⊨a σ does not

depend on the choice of assignment a.

So we write

M ⊨ σ

if M ⊨a σ for some (equivalently, all) a, and

we then say that σ is true in M, or M is a

model of σ.

(⇝ ‘Model Theory’)

83

Warning. The symbol ‘⊨’ is used in two quite

distinct ways depending on what is on the

left:

• Logical consequence: Γ ⊨ ϕ where

Γ ⊆ Form(L);
• Satisfaction: M ⊨ σ, or M ⊨a ϕ, where M

is an L-structure.

84

Many mathematical concepts can be naturally

expressed by first-order formulas.

Example 7.19.

Let L = {·, e} with · a binary function symbol

and e a constant symbol.

Consider the sentences (writing x, y, z for

x0, x1, x2)

σ1 : ∀x∀y∀z x · (y · z) .
= (x · y) · x

σ2 : ∀x∃y(x · y .
= c ∧ y · x .

= c)
σ3 : ∀x(x · c .

= x ∧ c · x .
= x)

Let M = ⟨M ; ·M, eM⟩ be an L-structure.
Then M ⊨

∧3
i=1 σi if and only if M is a group.

85

Example 7.20.

Let L = {E} with E a binary relation symbol.

Consider

τ1 : ∀xE(x, x)
τ2 : ∀x∀y(E(x, y) ↔ E(y, x))
τ3 : ∀x∀y∀z(E(x, y) → (E(y, z) → E(x, z)))

Then ⟨M ;R⟩ ⊨
∧
i τi if and only if R is an

equivalence relation on M .

86

Example 7.21.

Let < be a binary predicate symbol,

L := {<}. Consider the sentence

σDLO := ∀x ∀y ∀z (¬x < x

∧ (x < y ∨ x .
= y ∨ y < x)

∧ ((x < y ∧ y < z) → x < z)

∧ (x < y → ∃w (x < w ∧ w < y))

∧ ∃w w < x

∧ ∃w x < w).

This axiomatises the dense linear orders

without endpoints, i.e. they are precisely the

models of σ.

In particular, ⟨Q;<⟩ ⊨ σDLO and ⟨R;<⟩ ⊨ σDLO.

87

7.7. Isomorphism

Definition 7.22. Let M = ⟨M ; . . .⟩ and

N = ⟨N ; . . .⟩ be L-structures.

An isomorphism of M with N is a bijection

θ :M → N such that

• θ(cM) = cN for c a constant symbol;

• θ(fM(a1, . . . , ak)) = fN (θ(a1), . . . , θ(ak))

for f a k-ary function symbol and ai ∈M ;

• (a1, . . . , ak) ∈ PM ⇔ (θ(a1), . . . , θ(ak)) ∈
PN for P a k-ary relation symbol and

ai ∈M .

We write M ∼= N to mean that an

isomorphism M → N exists.

Exercise 7.23. If M ∼= N and σ is an

L-sentence, then M ⊨ σ if and only if N ⊨ σ.

88

7.8. Substitution

Let M be an L-structure, ϕ ∈ Form(L), and

suppose M ⊨ ∀xiϕ.
If c is a constant symbol in L, then

M ⊨ ϕ[c/xi] where ϕ[c/xi] is the result of

replacing each free instance of xi in ϕ with c.

We would like to say more generally that

⊨ (∀xiϕ→ ϕ[t/xi])

for a term t, but we have to be careful:

89

Example 7.24.

Let L contain a constant symbol c, and let

ϕ := ∃x0¬x0
.
= x1.

Then M ⊨ ∀x1ϕ for any L-structure M with

at least two elements,

and then also M ⊨ ϕ[c/x1] = ∃x0¬x0
.
= c.

However, if were to define ϕ[x0/x1] in the

same way, we would obtain ∃x0¬x0
.
= x0,

which does not hold in any M.

Problem: the variable x0 has become bound

in the substitution.

90

Definition 7.25.

Given ϕ ∈ Form(L), a variable xi, and a term

t ∈ Term(L), the result of substituting t for

xi in ϕ is the formula

(ϕ)[t/xi]

which is obtained by replacing each free

occurrence of xi in ϕ with the string t,

as long as this does not lead to new bound

occurrences of variables being introduced; if

it does, we say that (ϕ)[t/xi] is undefined.

91

For clarity, we restate this as a recursive

definition:

• If ϕ is atomic, (ϕ)[t/xi] is the result of

replacing each instance of xi in ϕ with t.

• (¬ψ)[t/xi] := ¬(ψ)[t/xi]
(undefined if (ψ)[t/xi] is).

• ((ψ → χ))[t/xi] := ((ψ)[t/xi] → (χ)[t/xi])

(undefined if (ψ)[t/xi] or (χ)[t/xi] is).

• (∀xiψ)[t/xi] := ∀xiψ.

• If j ̸= i, (∀xjψ)[t/xi] := ∀xj(ψ)[t/xi] unless

xj occurs in t and xi occurs free in ψ, in

which case (∀xjψ)[t/xi] is undefined.

Notation 7.26. When no ambiguity could

result, we often write ϕ[t/xi] for (ϕ)[t/xi].

92

Notation 7.27.

For a an assignment in an L-structure and

t ∈ Term(L), let

a[t/xi] := a[ã(t)/xi].

Lemma 7.28 (Substitution Lemma). Let a

be an assignment in an L-structure M. Let

ϕ ∈ Form(L), t ∈ Term(L), and suppose

ϕ[t/xi] is defined. Then

M ⊨a ϕ[t/xi] ⇔ M ⊨a[t/xi] ϕ.

93

Proof: By induction on ϕ. So suppose the

Lemma holds for shorter formulas ψ, i.e.

M ⊨a ψ[t/xi] ⇔ M ⊨a[t/xi] ψ. We proceed by

cases on the form of ϕ.

• ϕ atomic: Exercise.

• ϕ = ¬ψ or ϕ = (χ→ ρ): Follows directly

from IH.

• ϕ = ∀xjψ: First, suppose xi /∈ Free(ϕ).

Then ϕ[t/xi] = ϕ, and

a agrees with a[t/xi] on all x ∈ Free(ϕ),

so we conclude by Lemma 7.15:

M ⊨a[t/xi] ϕ ⇔ M ⊨a ϕ ⇔ M ⊨a ϕ[t/xi].

94

(ϕ = ∀xjψ, continued)

Otherwise, xi ∈ Free(ϕ), and so xi ∈ Free(ψ)
and j ̸= i.
Since ϕ[t/xi] is defined, xj does not occur in
t. Hence

{a∗[t/xi] : a∗ ∼j a} = {a[m/xj][t/xi] : m ∈M}
= {a[t/xi][m/xj] : m ∈M}
= {a′ : a′ ∼j a[t/xi]}, (∗)

where the second equality holds since xj does
not occur in t.

Now:

M ⊨a ϕ[t/xi]

⇔ M ⊨a ∀xj(ψ)[t/xi]
⇔ M ⊨a∗ ψ[t/xi] for all a∗ ∼j a
⇔ M ⊨a∗[t/xi] ψ for all a∗ ∼j a (by IH)

⇔ M ⊨a′ ψ for all a′ ∼j a[t/xi] (by (∗))
⇔ M ⊨a[t/xi] ϕ.

□
95

Corollary 7.29. For any ϕ ∈ Form(L) and

t ∈ Term(L) such that ϕ[t/xi] is defined,

⊨ (∀xiϕ→ ϕ[t/xi]).

Proof: Let a be an assignment in an

L-structure M.

Suppose M ⊨a ∀xiϕ.
Then M ⊨a[t/xi] ϕ, since a[t/xi] ∼i a.
Hence M ⊨a ϕ[t/xi] by the Substitution

Lemma 7.28.

□

96

7.9. Prenex normal form

A formula is in prenex normal form (PNF)

if it is of the form

Q1xi1Q2xi2 · · ·Qkxikϕ
′,

where each Qi is a quantifier

(either ∀ or ∃), and ϕ′ is a formula containing

no quantifiers.

Theorem 7.30 (PNF Theorem). Every

ϕ ∈ Form(L) is logically equivalent to an

L-formula in PNF.

Proof: It suffices to prove this for ϕ which

can be written using ∨ and ¬ as the only

propositional connectives (rather than → and

¬), since by adequacy of Lprop[¬,∨], any

L-formula is logically equivalent to such a

formula.

97

We prove this by induction on ϕ.

• ϕ atomic: ϕ is already in PNF.

• ϕ = ∀xiψ. By inductive hypothesis, we

may assume that ψ is in PNF. Then ϕ is

already in PNF.

• ϕ = ¬ψ. Again, we may assume that ψ is

in PNF, say ϕ = ¬Q1xi1Q2xi2 · · ·Qkxikψ
′.

Then by the equivalences

¬∀xiχ ⊨ ⊨∃xi¬χ and ¬∃xiχ ⊨ ⊨∀xi¬χ,

ϕ ⊨ ⊨Q−
1 xi1 · · ·Q

−
k xik¬ψ

′,

where Q−
j :=

∃ if Qj = ∀
∀ if Qj = ∃.

98

• ϕ = (ψ ∨ χ). Again, we may assume ψ and
χ are in PNF, say

ψ = Q1xi1 · · ·Qkxikψ
′

χ = Q′
1xj1 · · ·Q

′
lxjlχ

′.

Note that ∀xiα ⊨ ⊨∀xjα[xj/xi]
if xj does not appear in α.

Changing quantified variables in this way,
we may assume that the variables
quantified over in ψ (namely xi1, . . . , xik)
do not appear in χ (quantified or not),
and, similarly, the variables quantified over
in χ (namely xj1, . . . , xjl) do not appear in
ψ.

But then by iterative application of
Exercise 7.17 (“pulling the quantifiers
out” of the disjunction),

ϕ ⊨ ⊨Q1xi1 · · ·QkxikQ
′
1xj1 · · ·Q

′
lxjl(ψ

′ ∨ χ′).

□
99

8. Proofs

Associate to each first-order language L the

formal system S(L) with the following axioms

and rules:

• Axioms: An axiom of S(L) is an

L-formula of one of the following forms,

where α, β, γ ∈ Form(L), t ∈ Term(L), and

i, j ∈ N:

A1 (α→ (β → α))

A2 ((α→ (β → γ)) → ((α→ β) →
(α→ γ)))

A3 ((¬α→ β) → ((¬α→ ¬β) → α))

A4 (∀xiα→ α[t/xi]) where α[t/xi] is defined

A5 (∀xi(α→ β) → (α→ ∀xiβ)) where

xi ̸∈ Free(α)

A6 xi
.
= xi

A7 (xi
.
= xj → xj

.
= xi)

A8 (xi
.
= xj → (α→ α[xj/xi])) where α is

atomic
100

• Rules:

MP (Modus Ponens): From α and (α→ β)
infer β.

Gen (Generalisation): For any variable xk,
from α infer ∀xkα.

In other words:

Definition 8.1.
Let Σ ⊆ Sent(L). A formula ϕ ∈ Form(L) is
provable in S(L) from hypotheses Σ, written
Σ ⊢L ϕ (or Σ ⊢ ϕ for short), if there is a
sequence of L-formulas (a derivation or
proof) ϕ1, . . . , ϕn with ϕn = ϕ such that for
i ≤ n, at least one of the following holds:

• (A1-A8) ϕi is an axiom of S(L).
• (Hyp) ϕi ∈ Σ.
• (MP) ϕk = (ϕj → ϕi) for some j, k < i.
• (Gen) ϕi = ∀xkϕj for some j < i and some
k ∈ N.

Again, ⊢ ϕ abbreviates ∅ ⊢ ϕ.

Note: We define Σ ⊢ ϕ only when Σ is a set
of sentences.

Example 8.2 (Swapping variables).

Let ϕ ∈ Form(L) be such that Free(ϕ) = {xi}
and ϕ[xj/xi] is defined. Then

{∀xiϕ} ⊢ ∀xjϕ[xj/xi].

Proof:

1 ∀xiϕ [Hyp]

2 (∀xiϕ→ ϕ[xj/xi]) [A4]

3 ϕ[xj/xi] [MP 1,2]

4 ∀xjϕ[xj/xi] [Gen]

□

Remark 8.3. For any ϕ ∈ Form(L) and i, we

have ϕ[xi/xi] = ϕ, and so (∀xiϕ→ ϕ) is an

instance of A4.

101

Theorem 8.4 (Soundness Theorem). For any

Σ ⊆ Sent(L) and ϕ ∈ Form(L),

Σ ⊢ ϕ ⇒ Σ ⊨ ϕ.

Proof: First we show that A1-A8 are logically

valid.

A1-3: These are tautologies, so are logically

valid by Lemma 7.11.

A4: Corollary 7.29.

A5: Corollary 7.16.

A6-7: Immediate by reflexivity and symmetry of

equality.

A8: Let M be an L-structure and a an

assignment in M such that

M ⊨a xi
.
= xj and M ⊨a α,

102

where α is atomic. We want to show that

M ⊨a α[xj/xi].

Now a(xi) = a(xj),

so ã(t[xj/xi]) = ã(t) for any term t,

by induction on the length of t.

Now if α = P (t1, . . . , tk), then

M ⊨a α ⇒ (ã(t1), . . . , ã(tk)) ∈ PM

⇒ (ã(t1[xj/xi]), . . . , ã(tk[xj/xi])) ∈ PM

⇒ M ⊨a P (t1[xj/xi], . . . , tk[xj/xi])
⇒ M ⊨a α[xj/xi],

as required. A similar argument applies if

α is of the form t1
.
= t2.

If σ ∈ Σ is a hypothesis, then certainly Σ ⊨ σ.

We can conclude by induction on the length

of a proof, once we verify that the rules MP

and Gen preserve the property of being a

logical consequence of Σ.

MP: If Σ ⊨ α and Σ ⊨ (α→ β) then Σ ⊨ β:

indeed, for any M and a, if M ⊨a α and

M ⊨a (α→ β) then M ⊨a β.

Gen: Suppose Σ ⊨ ψ;

we want to show Σ ⊨ ∀xiψ. Recall that

the elements of Σ are sentences.

Let M be such that M ⊨ Σ,

and let a be an arbitrary assignment on

M.

We must show M ⊨a ∀xiψ.
So let a∗ ∼i a.
We must show M ⊨a∗ ψ.

But since Σ ⊨ ψ, we have M ⊨a′ ψ for any

assignment a′, in particular for a∗.

□

Theorem 8.5 (Deduction Theorem). Let

Σ ⊆ Sent(L), and τ ∈ Sent(L), and

ϕ ∈ Form(L).

If Σ ∪ {τ} ⊢ ϕ then Σ ⊢ (τ → ϕ).

Proof: As for the deduction theorem of

propositional logic, Theorem 4.6, we prove

this by induction on the length of a proof.

Axioms, hypotheses, and uses of MP are

handled exactly as in that proof. To handle a

use of Gen, deriving say ∀xiχ from χ, it

suffices to show:

Claim. If Σ ⊢ (τ → χ) then Σ ⊢ (τ → ∀xiχ).

But indeed, (∀xi(τ → χ) → (τ → ∀xiχ)) is an

instance of A5 since xi ̸∈ Free(τ) = ∅, so the

Claim follows by Gen and MP.

□

103

Lemma 8.6. If ϕ is a tautology of L, then

⊢ ϕ.

Proof:

Say ϕ results from substituting ψi for pi in the

propositional validity α. By completeness of

L0, there is a proof α1, ..., αn−1, α of α in L0.

Since A1, A2, A3 and MP are in S(L),
substituting ψi for pi in each αi yields a proof

ϕ1, ..., ϕn−1, ϕ in S(L).

□

By the lemma, we may freely introduce

tautologies in our proofs in S(L).

104

Example 8.7. Let τ ∈ Sent(L) and

ψ ∈ Form(L) with Free(ψ) ⊆ {xi}. Then

⊢ (∀xi(ψ → τ) → (∃xiψ → τ)).

Proof: Note that ∀xi(ψ → τ) is a sentence.

We show

{∀xi(ψ → τ)} ⊢ (∃xiψ → τ);

the result then follows by the Deduction

Theorem.

1 ∀xi(ψ → τ) [Hyp]
2 (∀xi(ψ → τ) → (ψ → τ)) [A4]
3 (ψ → τ) [MP 1, 2]
4 ((ψ → τ) → (¬τ → ¬ψ)) [Tautology]
5 (¬τ → ¬ψ) [MP 3, 4]
6 ∀xi(¬τ → ¬ψ) [Gen 5]
7 (∀xi(¬τ → ¬ψ) → (¬τ → ∀xi¬ψ)) [A5]
8 (¬τ → ∀xi¬ψ) [MP 6, 7]
9 ((¬τ → ∀xi¬ψ) → (¬∀xi¬ψ → τ)) [Tautology]

10 (¬∀xi¬ψ → τ) [MP 8, 9]
11 (∃xiψ → τ) [Def. ∃]

105

In line 7, xi ̸∈ Free(¬τ) because τ is a

sentence, so the condition in A5 is met.

□

9. Completeness and
Compactness

Let L be a countable first-order language.

Write ⊢ for ⊢L. We aim to show:

Theorem 9.1 (Gödel’s Completeness

Theorem). Let Σ ⊆ Sent(L) and ϕ ∈ Form(L).

If Σ ⊨ ϕ then Σ ⊢ ϕ.

9.1. Proof of completeness

In outline, our proof strategy is much as in

the propositional case:

• Reduce to: consistent ⇒ satisfiable.

• Show: any consistent Σ extends to

“complete witnessing” Σ′.
• Show: complete witnessing ⇒ satisfiable.

106

This will be rather more involved than the

propositional case. We begin with one easy

reduction.

Remark 9.2. It suffices to prove

Theorem 9.1 in the case that ϕ is a sentence.

Proof: Given Σ ⊆ Sent(L) and ϕ ∈ Form(L)
let Free(ϕ) = {xi1, ..., xin} and set

τ := ∀xi1...∀xinϕ ∈ Sent(L).

Then if Σ ⊨ ϕ, then also Σ ⊨ τ , so Σ ⊢ τ by

Theorem 9.1 for sentences, but then Σ ⊢ ϕ by

A4 and MP (as in Remark 8.3).

□

Definition 9.3. An L-theory is a set

Σ ⊆ Sent(L) of L-sentences.
Definition 9.4. Let Σ ⊆ Sent(L) be an

L-theory.

• Σ is consistent (in S(L)) if for no

χ ∈ Sent(L) do we have both

Σ ⊢ χ and Σ ⊢ ¬χ.

• Σ is satisfiable if it has a model, i.e. if

there exists an L-structure M with

M ⊨ Σ.

Remark 9.5. If an L-theory Σ ⊆ Sent(L) is

inconsistent, then Σ ⊢ ϕ for any ϕ ∈ Form(L),
since (χ→ (¬χ→ ϕ)) is a tautology.

Lemma 9.6. Let Σ be an L-theory and τ an

L-sentence.

(i) Σ ⊢ τ if and only if Σ ∪ {¬τ} is

inconsistent.

107

(ii) Σ ⊨ τ if and only if Σ ∪ {¬τ} is

unsatisfiable.

Proof: Exactly as in Lemma 5.4, using the

Deduction Theorem for (i).

□

Given Lemma 9.6 and Remark 9.2, to prove

Theorem 9.1 it suffices to prove:

Proposition 9.7. Every consistent L-theory is

satisfiable.

Note that the converse holds by soundness.

Definition 9.8.

• An L-theory Σ is called complete (or

maximal consistent) if Σ is consistent,

and for any τ ∈ Sent(L): Σ ⊢ τ or Σ ⊢ ¬τ .

• An L-theory Σ is called witnessing if for

all ψ ∈ Form(L) such that Σ ⊢ ∃xiψ and

∃xiψ ∈ Sent(L), there is some constant

symbol c ∈ L such that Σ ⊢ ψ[c/xi]

Similar to the propositional case, we will

prove Proposition 9.7 (consistent implies

satisfiable) by first extending a consistent

theory to a complete witnessing set, then

showing that any complete witnessing set has

a model. One slight complication will be that

we have to add constants to the language to

be the witnesses, but we will see that this is

harmless.

108

Lemma 9.9. Let Σ be a consistent L-theory
and τ an L-sentence. Then either Σ ∪ {τ} is

consistent or Σ ∪ {¬τ} is consistent.

Proof: Exactly as in Lemma 5.6.

□

109

Lemma 9.10. Let Σ be an L-theory, ϕ an

L-formula, and i ∈ N. Assume that c ∈ L is a

constant symbol which does not occur in ϕ

nor in any sentence in Σ, and that Σ ⊢ ϕ[c/xi].

Then Σ ⊢ ϕ. Moreover, there is a proof of ϕ

from Σ in which c does not appear.

Proof: Let α1, . . . , αn = ϕ[c/xi] be a proof of

ϕ[c/xi] from Σ. Let m ∈ N be such that that

no αk contains xm.

Let α′1, . . . , α
′
n be the sequence obtained by

replacing in each αk each occurrence of c by

xm. We claim that α′1, ..., α
′
n is a proof of

α′n = ϕ[xm/xi] from Σ.

Since c occurs in no formula from Σ, if

αk ∈ Σ then α′k = αk ∈ Σ. If αk is an axiom,

then so is α′k; this is immediate for all the

axiom schemes except A4, and for A4 note

110

that if αk = (∀xjϕ→ ϕ[t/xj]), then

α′k = (∀xjϕ′ → ϕ′[t′/xj]) where ϕ′ resp. t′ is
obtained by replacing c with xm; here ϕ′[t′/xj]
is defined because ϕ[t/xj] is and the quantifier

∀xm does not occur in ϕ′. The rules MP and

Gen are insensitive to the change: if αk was

obtained from αr and αs by MP then α′k was

obtained from α′r and α′s by MP, and similarly

with Gen.

So Σ ⊢ α′n = ϕ[xm/xi]. By Gen, this implies

Σ ⊢ ∀xmϕ[xm/xi].

Now note that (ϕ[xm/xi])[xi/xm] is defined

and equal to ϕ: the effect of the substitutions

is to replace the free occurrences of xi in ϕ

with xm then revert them to xi (which

doesn’t create new bound occurrences

because only the free occurrences of xi were

substituted by xm).

So by A4 with t = xi and MP, we obtain
Σ ⊢ (ϕ[xm/xi])[xi/xm] = ϕ, with a proof in
which c does not appear.

□
Lemma 9.11. Let Σ be a consistent
L-theory, and suppose Σ ⊢ ∃xiψ ∈ Sent(L),
and c is a constant symbol of L which does
not occur in ψ nor in any σ ∈ Σ.
Then Σ ∪ {ψ[c/xi]} is consistent.

Proof: We first show
Claim. If τ is an L-sentence in which c does
not occur and Σ ∪ {ψ[c/xi]} ⊢ τ ,
then already Σ ⊢ τ .

So suppose Σ ∪ {ψ[c/xi]} ⊢ τ ∈ Sent(L) and c

does not occur in τ . Recall we also assumed
that c does not occur in Σ or ψ.

Note that ψ[c/xi] ∈ Sent(L). By DT,
Σ ⊢ (ψ[c/xi] → τ).

By Lemma 9.10, Σ ⊢ (ψ → τ).

By Gen, Σ ⊢ ∀xi(ψ → τ).

Using Example 8.7, we obtain Σ ⊢ (∃xiψ → τ).

But we assumed Σ ⊢ ∃xiψ,
so by MP, Σ ⊢ τ , as required. This concludes

the proof of the Claim.

Now if Σ ∪ {ψ[c/xi]} were inconsistent then

(by Remark 9.5) we would have for any τ

that Σ ∪ {ψ[c/xi]} ⊢ τ and Σ ∪ {ψ[c/xi]} ⊢ ¬τ ;
picking τ in which c does not occur, it would

follow by the Claim that Σ ⊢ τ and Σ ⊢ ¬τ ,
contradicting consistency of Σ.

□

Lemma 9.12. Let Σ be a consistent

L-theory, and suppose L contains infinitely

many constant symbols not appearing in Σ.

Then Σ extends to a complete witnessing

L-theory Σ∗ ⊆ Sent(L).

Proof: Sent(L) is countable (by Fact 6.5);

say Sent(L) = {τ0, τ1, τ2, . . .}.

We construct a chain Σi ⊆ Sent(L)

Σ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . .

such that for each n:

(†) Σn is consistent, and L contains infinitely

many constant symbols not appearing in

Σn.

111

Σ0 := Σ satisfies (†) by assumption.

Given Σn satisfying (†), let

Σ′
n :=

{
Σn ∪ {τn} if Σn ∪ {τn} is consistent
Σn ∪ {¬τn} otherwise.

Then Σ′
n is consistent by Lemma 9.9.

If τn /∈ Σ′
n or if τn is not of the form ∃xiψ, let

Σn+1 := Σ′
n.

Otherwise, i.e. if τn = ∃xiψ ∈ Σ′
n, choose a

constant symbol c ∈ L which occurs in no
formula in Σ′

n ∪ {ψ} (such exists by (†)), and
let Σn+1 := Σ′

n ∪ {ψ[c/xi]}.
By Lemma 9.11, Σn+1 is consistent.

Since Σn+1 \Σn is finite, L contains infinitely
many constant symbols not appearing in
Σn+1. So Σn+1 satisfies (†).

Finally, let Σ∗ :=
⋃
n≥0Σn.

112

Then Σ∗ is consistent since each Σn is (as in

Theorem 5.7),

and Σ∗ is complete and witnessing by

construction, since every sentence appears as

some τn.

□

Lemma 9.13. Every complete witnessing

L-theory Σ has a model.

Proof:

We prove this by a method known as the

Henkin construction, named after its

originator Leon Henkin.

A term is closed if no variable appears in it.

Let T be the set of closed L-terms. Define an

equivalence relation E on T by

t1Et2 iff Σ ⊢ t1
.
= t2.

Let T/E be the set of equivalence classes t/E

for t ∈ T .

Define an L-structure M with domain T/E by

cM := c/E

fM(t1/E, . . . , tk/E) := f(t1, . . . , tk)/E

PM := {(t1/E, ..., tk/E) | Σ ⊢ P (t1, . . . , tk)}
113

(for c a constant symbol, f a k-ary function

symbol, and P a k-ary predicate symbol). We

leave some verifications as exercises:

• E is indeed an equivalence relation on T .

This follows from A6-8; see Sheet 4

Question 1(b).

• fM and PM are well-defined, i.e. if

ti/E = t′i/E for i = 1, . . . k then:

– f(t1, . . . , tk)/E = f(t′1, . . . , t
′
k)/E,

– Σ ⊢ P (t1, . . . , tk) ⇔ Σ ⊢ P (t′1, . . . , t
′
k).

This follows from A8 and A4; see Sheet 4

Question 1(c).

Observe also by a straightforward induction:

(⋆) tM = t/E for any t ∈ T .

We conclude by showing M ⊨ Σ. In fact, we

show more generally that for any σ ∈ Sent(L),

M ⊨ σ iff Σ ⊢ σ.

We prove this by induction on the number of

symbols among {¬,→, ∀} in the sentence σ.

We split into the possible cases for the form

of σ:

• σ = P (t1, ..., tk). Then

M ⊨ σ ⇔ (tM1 , ..., tMk) ∈ PM

⇔ (t1/E, ..., tk/E) ∈ PM (by (⋆))

⇔ Σ ⊢ σ.

• σ = t1
.
= t2. Then:

M ⊨ σ ⇔ tM1 = tM2
⇔ t1/E = t2/E (by (⋆))

⇔ t1Et2

⇔ Σ ⊢ σ.
114

• σ = ¬τ :

M ⊨ ¬τ
⇔ M ⊭ τ [def. of ‘⊨’]

⇔ Σ ̸⊢ τ [IH]

⇔ Σ ⊢ ¬τ [Σ complete]

• σ = (τ → ρ):

M ̸⊨ (τ → ρ)
⇔ (M ⊨ τ and M ̸⊨ ρ) [def. of ‘⊨’]

⇔ (Σ ⊢ τ and Σ ̸⊢ ρ) [IH]

⇔ (Σ ⊢ τ and Σ ⊢ ¬ρ) [Σ complete]

⇔ Σ ⊢ ¬(τ → ρ) [Tautology (see below)]

⇔ Σ ̸⊢ (τ → ρ) [Σ complete]

where the penultimate line uses the

following tautologies:

(τ → (¬ρ→ ¬(τ → ρ)))

(¬(τ → ρ) → τ)

(¬(τ → ρ) → ¬ρ).

115

• σ = ∀xiϕ:
By the Substitution Lemma 7.28,

M ⊨ ϕ[t/xi] if and only if M ⊨at ϕ where at
is any assignment with at(xi) = tM = t/E.

So since the domain of M is T/E,

M ⊨ ∀xiϕ iff for all t ∈ T , M ⊨ ϕ[t/xi].

Now for t ∈ T , ϕ[t/xi] is a sentence

containing fewer symbols among {¬,→, ∀}
than σ = ∀xiϕ, so by the IH, M ⊨ ϕ[t/xi]

iff Σ ⊢ ϕ[t/xi].

So to show that Σ ⊢ ∀xiϕ iff M ⊨ ∀xiϕ, it

suffices to show:

Claim. Σ ⊢ ∀xiϕ iff for all t ∈ T ,

Σ ⊢ ϕ[t/xi].

⇒: A4 + MP.

⇐: First note:

{∀xi¬¬ϕ} ⊢ ∀xiϕ; (⋆)

116

indeed, by A4 we have {∀xi¬¬ϕ} ⊢ ¬¬ϕ;
conclude using the tautology

(¬¬ϕ→ ϕ) and Gen.

Now suppose Σ ̸⊢ ∀xiϕ.
Then Σ ̸⊢ ∀xi¬¬ϕ, by (⋆).

So by completeness, Σ ⊢ ¬∀xi¬¬ϕ,
i.e. Σ ⊢ ∃xi¬ϕ.
Note that ∃xi¬ϕ is a sentence, since

σ = ∀xiϕ is.

So since Σ is witnessing, Σ ⊢ ¬ϕ[c/xi]
for some constant symbol c.

Then since Σ is consistent, Σ ̸⊢ ϕ[c/xi].
But c ∈ T , so it is not the case that for

all t ∈ T , Σ ⊢ ϕ[t/xi].

This concludes the proof of the Claim,

and hence of the Lemma.

□

Finally, we deal with the problem that L
might not have the additional constants

required to build a witnessing set.

Let C = {c0, c1, ...} be a countably infinite set

of distinct symbols disjoint from L, and

define the extended language L′ := L ∪ C in

which each ci is a constant symbol. Write

Σ ⊢L′ ϕ to mean that there exists a proof of ϕ

from Σ in S(L′) (meaning that the proof can

use L′-axioms). We continue to use ⊢ for

provability in S(L).
Lemma 9.14. Let Σ be an L-theory.

(i) Suppose Σ ⊢L′ τ ∈ Sent(L). Then Σ ⊢ τ .

(ii) Suppose Σ is inconsistent in S(L′). Then

Σ is inconsistent in S(L).

Proof:

117

(i) Since proofs are finite, there is a proof of

τ from Σ in S(L ∪ {c1, ..., cn}) for some

c1, ..., cn ∈ C. Since τ is a sentence,

τ = τ [cn/x0], so by Lemma 9.10, there is

a proof of τ from Σ (in S(L ∪ {c1, ..., cn}))
in which cn does not appear, i.e. a proof

in S(L(∪{c1, ..., cn−1)). Iterating this

argument, we obtain a proof in S(L).

(In other words, replacing the constants ci
in the original proof of τ with distinct

variables xji not appearing in that proof

yields a proof in S(L).)

(ii) By Remark 9.5, for any τ ∈ Sent(L) we

have Σ ⊢L′ τ , and hence Σ ⊢ τ by (i). So

Σ is inconsistent in S(L).

□

Proof: [Proof of Proposition 9.7]

Let Σ ⊆ Sent(L) be consistent in S(L). By

Lemma 9.14(ii), Σ is also consistent in S(L′).
By Lemma 9.12, Σ therefore extends to a

complete witnessing set Σ∗ ⊆ Sent(L′), and

by Lemma 9.13, Σ∗ is satisfiable. So say M′

is an L′ structure such that M′ ⊨ Σ∗, so in

particular M′ ⊨ Σ.

Let M be the L-structure obtained from M′

by “forgetting” the new constants C.

Then M ⊨ Σ, as required.

□

This concludes our proof of completeness.

Explicitly: Proof: [Proof of Theorem 9.1]

Given Σ ⊆ Sent(L) and τ ∈ Sent(L),

Σ ⊨ τ
⇒9.6(i) Σ ∪ {¬τ} is unsatisfiable
⇒9.7 Σ ∪ {¬τ} is inconsistent
⇒9.6(ii) Σ ⊢ τ.

It suffices to consider this case where τ is a

sentence, by Remark 9.2.

□

To summarise, from soundness and

completeness we conclude the following

equivalences.

Proposition 9.15. Let L be a countable

first-order language, and let Σ be an L-theory.

(i) Σ is consistent if and only if it is

satisfiable.

(ii) If ϕ is an L-formula, then Σ ⊢ ϕ if and

only if Σ ⊨ ϕ.

9.2. Compactness

We deduce:

Theorem 9.16 (The Compactness Theorem

for 1st-order logic). An L-theory Σ is

satisfiable if and only if every finite subset

Σ0 ⊆ Σ is satisfiable.

Proof: By Proposition 9.15(i) and finiteness

of proofs (exactly as in the propositional case

Theorem 5.11).

□

9.3. Löwenheim-Skolem

Definition 9.17. A structure is countable if

its domain is countable (i.e. finite or

countably infinite).

The (Henkin) model constructed in

Lemma 9.13 is countable, because the set T

of closed terms is countable, since L is. So

we have actually proven:

Theorem 9.18 (Weak downwards

Löwenheim-Skolem Theorem). Every

satisfiable set of sentences has a countable

model.

(The full Löwenheim-Skolem Theorem says

somewhat more, and will be covered in C1.1

Model Theory.)

118

10. Applications

Throughout, L denotes a countable

first-order language.

10.1. Elementary equivalence

Definition 10.1.

• Let A be an L-structure. Then the

(first-order) theory of A is the L-theory

Th(A) = ThL(A) := {σ ∈ Sent(L) | A ⊨ σ},

the set of all L-sentences true in A.

• L-structures A and B are elementarily

equivalent, written A ≡ B, if

Th(A) = Th(B).
Exercise 10.2. An L-theory Σ ⊆ Sent(L) is

complete if and only if Σ has a model and

A ≡ B for any two models A and B of Σ.

10.2. Axiomatisations

Definition 10.3. An axiomatisation of the

theory Th(A) of an L-structure A is a

complete subset of Th(A); i.e. a set of

sentences which hold of A and which suffice

to deduce any sentence which holds of A.

Recall Hilbert’s programme from Lecture 1.

Now we have established the Completeness

Theorem, the programme would call for us to

find “finitary” (i.e. computable)

axiomatisations of the structures in

mathematics.

In general this is impossible: Gödel’s first

incompleteness theorem shows that already

the theory of arithmetic Th(⟨N;+, ·⟩) has no

computable axiomatisation. But for some

interesting structures it is possible, as we will

now begin to see.

10.3. A criterion for completeness

Remark 10.4. A ∼= B implies A ≡ B, by

Exercise 7.23.

The converse fails (e.g. due to

Löwenheim-Skolem).

Theorem 10.5. Suppose Σ ⊆ Sent(L) has a

unique countable model up to isomorphism,

i.e. Σ is consistent and if A,B ⊨ Σ are

countable then A ∼= B.

Then Σ is complete.

Proof. Let A,B ⊨ Σ. We conclude by showing

A ≡ B.

By Weak Downward Löwenheim-Skolem

(Theorem 9.18), there are countable A′ ≡ A
and B′ ≡ B. Then A′,B′ ⊨ Σ, so A′ ∼= B′, and

so A′ ≡ B′ by Remark 10.4. Hence

A ≡ A′ ≡ B′ ≡ B.
Remark 10.6. The converse fails. We will

see an example in the next lecture.

Example 10.7. Let L= := ∅, the language

with no non-logical symbols. For n ≥ 2, set

τn := ∃x1 . . . ∃xn
∧
1≤i<j≤n¬xi

.
= xj. Then the

models of

Σ∞ := {τn : n ≥ 2}

are precisely the infinite L=-structures (i.e.

the infinite sets). By Theorem 10.5, Σ∞ is

complete.

10.4. Example: Axiomatising
Th(⟨Q;<⟩)

Recall from Example 7.21 the sentence σDLO

axiomatising dense linear orders without

endpoints.

Theorem 10.8 (Cantor). σDLO has a unique

countable model up to isomorphism (so any

countable model is isomorphic to ⟨Q;<⟩).

Proof. (“Back-and-forth argument”)

Let M,N ⊨ σDLO be countable. By the

non-existence of endpoints, each is infinite.

A partial isomorphism θ : M 99K N is a

partially defined injective map such that for

all a, b ∈ dom(θ),

M ⊨ a < b ⇔ N ⊨ θ(a) < θ(b).

Enumerate the domains of M and N as

(mi)i∈N and (ni)i∈N respectively. We

recursively construct a chain of partial

isomorphisms θi : M 99K N such that

dom(θi) is finite, and for all j < i, we have mj ∈ domθi and nj ∈ imθi.

(*)

Let θ0 := ∅.

Given θi satisfying (*), we first extend θi by
finding n ∈ N such that setting θ′i(mi) := n

yields a partial isomorphism θ′i : M 99K N with
domθ′i = domθ ∪ {mi}.

Say dom(θi) = {a1, . . . , as} with M ⊨ ak < al
for 1 ≤ k < l ≤ s, and similarly
im(θi) = {b1, . . . , bs} with N ⊨ bk < bl for
1 ≤ k < l ≤ s. There are four cases:

(i) mi = ak (some k ∈ [1, s]): set n := bk.

(ii) mi < a1: let n ∈ N be such that n < b1 (n
exists, since N has no endpoint).

(iii) mi > as: let n ∈ N be such that n > bs (n
exists, since N has no endpoint).

(iv) aj < mi < aj+1 (some j ∈ [1, s− 1]): let
n ∈ N be such that ai < n < ai+1 (n
exists, since N is dense).

In all cases, θ′i is a partial isomorphism.

Symmetrically, (θ′i)
−1 : N 99KM extends to

θ′′i : N 99KM with ni ∈ domθi
′′;

then θi+1 := (θ′′i)
−1 : M 99K N is a partial

isomorphism satisfying (*).

Then θ :=
⋃
i θi : M

∼=−→ N is an

isomorphism.

Applying Theorem 10.5, we obtain:

Corollary 10.9. {σDLO} is complete. Hence

{σDLO} axiomatises Th(⟨Q;<⟩).
Corollary 10.10. Completeness of a linear

order is not a first-order property: there is no

L<-theory Σ such that the models of Σ are

precisely the complete linear orders.

Proof. Suppose such a Σ exists. Then

⟨R;<⟩ ⊨ Σ since ⟨R;<⟩ is a complete linear

order. But ⟨R;<⟩ ≡ ⟨Q;<⟩, since both satisfy

the complete theory {σDLO}, so then also

⟨Q;<⟩ ⊨ Σ. But ⟨Q;<⟩ is not a complete linear

order, contradicting the desired property of

Σ.

10.5. An algebraic application
(non-examinable)

Let Lring := {+,−, ·, 0̄, 1̄}. Let ACF be the

Lring-theory whose models are precisely the

algebraically closed fields:

ACF := [Field axioms] ∪{∀z0, . . . , zn

¬zn
.
= 0̄ → ∃x

n∑
i=0

zix
i .= 0̄

 : n ≥ 1}.

Let

ACF0 := ACF ∪ {¬n̄ .
= 0̄ : n ∈ N},

where for n ≥ 1, n̄ := 1̄ + . . .+ 1̄ (n times).

So the models of ACF0 are precisely the

algebraically closed fields of characteristic 0.
In particular, ⟨C;+,−, ·,0,1⟩ ⊨ ACF0. We aim
to show that ACF0 is complete, i.e.
axiomatises Th(⟨C;+,−, ·,0,1⟩).

We can prove this analogously to the case of
⟨Q;<⟩, but working with uncountable sets.

From now on, we assume the axiom of
choice. We will explain this and the related
notion of the cardinality (“size”) |A| of a set
A in the Set Theory course; for now it
suffices to know that |A| = |B| if and only if
there exists a bijection A→ B, and
cardinalities are linearly ordered.
Fact 10.11. Any characteristic 0 algebraically
closed field ⟨K;+,−, ·,0,1⟩ ⊨ ACF0 with the
same cardinality as C is isomorphic to
⟨C;+,−, ·,0,1⟩.

Sketch proof. A subset A ⊆ K is
algebraically independent if there are no

non-trivial polynomial relations between its
elements, i.e. f(a1, . . . , an) ̸= 0 for any
f ∈ Z[X1, . . . , Xn] \ {0} and {a1, . . . , an} ⊆ A.

Then just as for linear independence in vector
spaces, an algebraically closed field has a
well-defined dimension (“transcendence
degree”) which is the cardinality of any
maximal algebraically independent subset,
this dimension determines an algebraically
closed field of a given characteristic up to
isomorphism, and the dimension of an
uncountable ACF is equal to its
cardinality.

Fact 10.12. Let L be a possibly uncountable
first-order language, i.e. with sets of
constant, function, and relation symbols of
arbitrary cardinality. Let |L| be the cardinality
of the language, i.e. that of the alphabet.

Let Σ ⊆ Sent(L), and suppose any finite
subset of Σ has a model. Then Σ has a

model of cardinality (i.e. with domain of

cardinality) ≤ |L|.

Sketch proof. Our proof for countable L
mostly goes through directly.

The only place we used the countability

assumption was in extending a consistent set

Σ to a complete witnessing set. We can use

Zorn’s lemma here in the uncountable case –

the union of a chain of consistent witnessing

sets containing Σ is still consistent and

witnessing, so there exists a maximal such

with respect to inclusion, which (as in the

proof in the countable case) is complete

witnessing.

Corollary 10.13. ACF0 is complete, hence

axiomatises Th(C).

Proof. Let A ⊨ ACF0. Note that A is infinite,

since it has characteristic 0.

Let C = {ca : a ∈ C} be a set of constant

symbols of cardinality |C|, and let

L′ := Lring ∪ C. Let Σ := ThLring(A) ∪ {¬ca
.
=

cb : a, b ∈ C, a ̸= b} ⊆ Sent(L′). Then since A
is infinite, any finite subset of Σ has as model

A with the finitely many ca which appear

interpreted as distinct elements. So by

Fact 10.12, Σ has a model B of cardinality

≤ |L′| = |C|. Considering the interpretations

of the ca, we actually have |B| = |C|. Let B′

be the Lring structure obtained from B by

ignoring the ca. Then by Fact 10.11, B′ ∼= C.
So A ≡ B′ ≡ C.

So we conclude that any two models of ACF0

are elementary equivalent, so ACF0 is

complete.

Theorem 10.14 (Ax-Grothendieck). Let

F : Cn → Cn be a polynomial map, i.e.

F (a1, . . . , an) =

(F1(a1, . . . , an), . . . , Fn(a1, . . . , an)), where

Fi ∈ C[X].

If F is injective, then F is surjective.

Proof. Fact: The algebraic closure of the

finite field Fp is the union of a chain of finite

subfields, Falgp =
⋃
k Fpk!.

Claim 10.15. Let p be prime. Any injective

polynomial map F : (Falgp)n → (Falgp)n is

surjective.

Proof. Let k0 be such that the coefficients of

F are in F
pk0!

.

Let k ≥ k0. Then F (Fpk!
n) ⊆ Fpk!

n, and so by

injectivity, finiteness of Fpk!
n, and the

pigeonhole principle, F (Fpk!
n) = Fpk!

n.

Hence F ((Falgp)n) = (Falgp)n.

Let n, d ∈ N. Let σn,d be an Lring-sentence

expressing that any injective polynomial map

F : Kn → Kn consisting of polynomials of

degree ≤ d is surjective:

σn,d := ∀z1,0, . . . , zn,d (∀x, y ((
∧
i

∑
j

zi,jxi
j .
=

∑
j

zi,jyi
j) →

∧
i

xi
.
= yi)

→ ∀y ∃x
∧
i

∑
j

zi,jxi
j .
= yi).

Suppose C ̸⊨ σn,d. Then by completeness of

ACF0, ACF0 ⊨ ¬σn,d. Then by compactness,

for some m ∈ N,

ACF ∪ {¬̄i .= 0̄ : 0 < i < m} ⊨ ¬σn,d.

So if p > m is prime, Falgp ⊨ ¬σn,d. But this

contradicts the Claim.

