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Abstract. We construct finitely generated groups with strong fixed point properties.
Let Xac be the class of Hausdorff spaces of finite covering dimension which are mod-p
acyclic for at least one prime p. We produce the first examples of infinite finitely
generated groups Q with the property that for any action of Q on any X ∈ Xac,
there is a global fixed point. Moreover, Q may be chosen to be simple and to have
Kazhdan’s property (T). We construct a finitely presented infinite group P that admits
no non-trivial action by diffeomorphisms on any smooth manifold in Xac. In building
Q, we exhibit new families of hyperbolic groups: for each n ≥ 1 and each prime p, we
construct a non-elementary hyperbolic group Gn,p which has a generating set of size
n + 2, any proper subset of which generates a finite p-group.

1. Introduction

We present three templates for proving fixed point theorems; two are based on relative
small cancellation theory and one is based on the Higman Embedding Theorem. Each
template demands as input a sequence of groups with increasingly strong fixed point
properties. By constructing such sequences we prove the following fixed point theorems.

For p a prime, one says that a space is mod-p acyclic if it has the same mod-p Čech
cohomology as a point. Let Xac be the class of all Hausdorff spaces X of finite covering
dimension such that there is a prime p for which X is mod-p acyclic. Let Mac denote
the subclass of smooth manifolds in Xac.

Note that the class Xac contains all finite dimensional contractible metrizable spaces
and all finite dimensional contractible CW-complexes.

Theorem 1.1. There is an infinite finitely generated group Q that cannot act without
a global fixed point on any X ∈ Xac. If X ∈ Xac is mod-p acyclic, then so is the fixed
point set for any action of Q on X. For any countable group C, the group Q can be
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chosen to have either the additional properties (i), (ii) and (iii) or (i), (ii) and (iii)′

described below:

(i) Q is simple;
(ii) Q has Kazhdan’s property (T);
(iii) Q contains an isomorphic copy of C;
(iii)′ Q is periodic.

Since a countable group can contain only countably many finitely generated sub-
groups, it follows from property (iii) that there are continuously many (i.e., 2ℵ0) non-
isomorphic groups Q with the fixed point property described in Theorem 1.1.

Note that Kazhdan’s property (T) of a countable group is equivalent to the fact that
every isometric action of the group on a Hilbert space has a global fixed point.

No non-trivial finite group has such a fixed point property as strong as the one in
Theorem 1.1. Any finite group not of prime power order acts without a global fixed
point on some finite dimensional contractible simplicial complex. Smith theory tells us
that the fixed point set for any action of a finite p-group on a finite dimensional mod-p
acyclic space is itself mod-p acyclic, but it is easy to construct an action of a non-trivial
finite p-group on a 2-dimensional mod-q acyclic space without a global fixed point if
q is any prime other than p. Since the fixed point property of Theorem 1.1 passes to
quotients, it follows that none of the groups Q can admit a non-trivial finite quotient.
This further restricts the ways in which Q can act on acyclic spaces. For example, if
X ∈ Xac is a locally finite simplicial complex and Q is acting simplicially, then the
action of Q on the successive star neighbourhoods stn+1 := st(stn(x)) of a fixed point
x ∈ X must be trivial, because stn is Q-invariant and there is no non-trivial map from
Q to the finite group Aut(stn). Since X =

⋃
n stn, we deduce:

Corollary 1.2. The groups Q from Theorem 1.1 admit no non-trivial simplicial action
on any locally-finite simplicial complex X ∈ Xac.

There is a similar result to the above for certain sorts of actions on manifolds. How-
ever, a stronger result concerning triviality of actions on manifolds can be obtained
more directly:

Proposition 1.3. A simple group G that contains, for each n > 0 and each prime p, a
copy of (Zp)

n admits no non-trivial action by diffeomorphisms on any X ∈ Mac. The
group Q in Theorem 1.1 may be chosen to have this property.

Finite p-groups have a global fixed point whenever they act on compact Hausdorff
spaces that are mod-p acyclic, but the groups Q do not have this property. Indeed, if Q
is infinite and has property (T) then it will be non-amenable, hence the natural action
of Q on the space of finitely-additive probability measures on Q will not have a global
fixed point, and this space is compact, contractible, and Hausdorff.

We know of no finitely presented group enjoying the fixed point property described
in Theorem 1.1. However, using techniques quite different from those used to construct
the groups Q, we shall prove the following:
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Theorem 1.4. There exists a finitely presented infinite group P that has no non-trivial
action by diffeomorphisms on any smooth manifold X ∈Mac.

Theorem 1.1 answers a question of P. H. Kropholler, who asked whether there exists
a countably infinite group G for which every finite-dimensional contractible G-CW-
complex has a global fixed point. This question is motivated by Kropholler’s study of
the closure operator H for classes of groups, and by the class HF obtained by applying
this operator to the class F of all finite groups [11]. Briefly, if C is a class of groups,
then the class HC is the smallest class of groups that contains C and has the property
that if the group G admits a finite-dimensional contractible G-CW-complex X with all
stabilizers already in HC, then G is itself in HC. Kropholler showed that any torsion-
free group in HF of type FP∞ has finite cohomological dimension. Since Thompson’s
group F is torsion-free and of type FP∞ but has infinite cohomological dimension [6], it
follows that F is not in HF. Until now, the only way known to show that a group is not
in HF has been to show that it contains Thompson’s group as a subgroup. If Q is any
of the groups constructed in Theorem 1.1, then Q has the property that for any class C
of groups, Q is in the class HC if and only if Q is already in the class C. In particular,
Q is not in the class HF. Note that many of the groups constructed in Theorem 1.1
cannot contain Thompson’s group F as a subgroup, for example the periodic groups.

Our strategy for proving Theorems 1.1 and 1.4 is very general. First, we express our
class of spaces as a countable union X = ∪n∈NXn. For instance, if all spaces in X are
finite-dimensional, then Xn may be taken to consist of all n-dimensional spaces in X .
Secondly, we construct finitely generated groups Gn that have the required properties
for actions on any X ∈ Xn. Finally, we apply the templates described below to produce
the required groups.

Template FP: ruling out fixed-point-free actions. If there is a sequence of finitely gen-
erated non-elementary relatively hyperbolic groups Gn such that Gn cannot act without
a fixed point on any X ∈ Xn, then there is an infinite finitely generated group that
cannot act without a fixed-point on any X ∈ X .

Template NAfg: ruling out non-trivial actions. If there is a sequence of non-trivial
finitely generated groups Gn such that Gn cannot act non-trivially on any X ∈ Xn,
then there is an infinite finitely generated group that cannot act non-trivially on any
X ∈ X .

Template NAfp: finitely presented groups that cannot act. Let (Gn; ξn,j) (n ∈ N, j =
1, . . . , J) be a recursive system of non-trivial groups and monomorphisms ξn,j : Gn →
Gn+1. Suppose that each Gn+1 is generated by

⋃
j ξn,j(Gn) and that for every m ∈ N

there exists n ∈ N such that Gn cannot act non-trivially on any X ∈ Xm. Then there
exists an infinite finitely presented group that cannot act non-trivially on any X ∈ X .

Only the first and third templates are used in the construction of the groups P and Q.
We include the second template with a view to further applications.
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The engine that drives the first two templates is the existence of common quotients
established in Theorem 1.5 below. The proof of this theorem, given in Section 2, is
based on the following result of Arzhantseva, Minasyan and Osin [1], obtained using
small cancellation theory over relatively hyperbolic groups: any two finitely generated
non-elementary relatively hyperbolic groups G1, G2 have a common non-elementary
relatively hyperbolic quotient H.

Theorem 1.5. Let {Gn}n∈N be a countable collection of finitely generated non-elemen-
tary relatively hyperbolic groups. Then there exists an infinite finitely generated group
Q that is a quotient of Gn for every n ∈ N.

Moreover, if C is an arbitrary countable group, then such a group Q can be made to
satisfy the following conditions

(i) Q is a simple group;
(ii) Q has Kazhdan’s property (T);
(iii) Q contains an isomorphic copy of C.

If the Gn are non-elementary word hyperbolic groups, then claim (iii) above can be
replaced by

(iii)′ Q is periodic.

This result immediately implies the validity of templates FP and NAfg. Indeed,
if Gn are the hypothesized groups of template FP, the preceding theorem furnishes
us with a group Q that, for each n ∈ N, is a quotient of Gn and hence cannot act
without a fixed point on any X ∈ Xn. Now let Gn be the hypothesized groups of
template NAfg. They are not assumed to be relatively hyperbolic. We consider groups
An := Gn ∗ Gn ∗ Gn, which also cannot act non-trivially on any X ∈ Xn. The group
An is non-elementary and relatively hyperbolic as a free product of three non-trivial
groups. Therefore, Theorem 1.5 can be applied to the sequence of groups An, providing
a group Q1 which, as a quotient of An, cannot act non-trivially on any X ∈ Xn for any
n ∈ N.

Following the above strategy to prove Theorem 1.1, we first represent Xac as a count-
able union Xac = ∪n,pXn,p, where, for each prime number p, the class Xn,p consists of
all mod-p acyclic spaces of dimension n. Then, in Section 3, we construct the groups
required by template FP, proving the following result.

Theorem 1.6. For each n ∈ N and every prime p, there exists a non-elementary
word hyperbolic group Gn,p such that any action of Gn,p by homeomorphisms on any
space X ∈ Xn,p has the property that the global fixed point set is mod-p acyclic (and in
particular non-empty).

The mod-p acyclicity of the fixed point for the action of Gn,p on the space X is a
consequence of the following (n, p)-generation property: there is a generating set S of
Gn,p of cardinality n+2 such that any proper subset of S generates a finite p-subgroup.

For certain small values of the parameters examples of non-elementary word hyper-
bolic groups with the (n, p)-generation property were already known (e.g., when n = 1
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and p = 2 they arise as reflection groups of the hyperbolic plane with a triangle as a
fundamental domain). Our construction works for arbitrary n and p. For large n it
provides the first examples of non-elementary word hyperbolic groups possessing the
(n, p)-generation property.

We construct the groups Gn,p as fundamental groups of certain simplices of groups
all of whose local groups are finite p-groups. We use ideas related to simplicial non-
positive curvature, developed by Januszkiewicz and Świa̧tkowski in [9], to show that
these groups are non-elementary word hyperbolic. The required fixed point property is
obtained using Smith theory and a homological version of Helly’s theorem.

Thus, to complete the proof of Theorem 1.1 and Corollary 1.2, it remains to prove
Theorems 1.5 and 1.6. This will be done in Sections 2 and 3, respectively.

The validity of template NAfp will be established in Section 4; it relies on the Higman
Embedding Theorem. Also contained in Section 4 is Lemma 4.5, which establishes a
triviality property for actions on manifolds. This is used both to provide input to the
template NAfp and to prove Proposition 1.3.

2. Relatively hyperbolic groups and their common quotients

Our purpose in this section is to provide the background we need concering relatively
hyperbolic groups and their quotients. This will allow us to prove Propositions 2.6
and 2.8 below, which immediately imply the assertion of Theorem 1.5. We adopt the
combinatorial approach to relative hyperbolicity that was developed by Osin in [18].

Assume that G is a group, {Hλ}λ∈Λ is a fixed collection of proper subgroups of G
(called peripheral subgroups), and A is a subset of G. The subset A is called a relative
generating set of G with respect to {Hλ}λ∈Λ if G is generated by A ∪⋃

λ∈Λ Hλ. In this
case G is a quotient of the free product

F = (∗λ∈ΛHλ) ∗ F (A),

where F (A) is the free group with basis A. Let R be a subset of F such that the kernel
of the natural epimorphism F ³ G is the normal closure of R in the group F . In this
case we will say that G has the relative presentation

(1) 〈A, {Hλ}λ∈Λ ‖ R = 1, R ∈ R〉.
If the sets A and R are finite, the relative presentation (1) is said to be finite.

Set H =
⊔

λ∈Λ(Hλ \ {1}). A finite relative presentation (1) is said to satisfy a linear
relative isoperimetric inequality if there exists C > 0 such that for every word w in the
alphabet A ∪ H (for convenience, we will further assume that A−1 = A) representing
the identity in the group G, one has

w
F
=

k∏
i=1

f−1
i R±1

i fi,

with equality in the group F , where Ri ∈ R, fi ∈ F , for i = 1, . . . , k, and k ≤ C‖w‖,
where ‖w‖ is the length of the word w.
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Definition 2.1. [18] The group G is said to be relatively hyperbolic if there is a collec-
tion {Hλ}λ∈Λ of proper peripheral subgroups of G such that G admits a finite relative
presentation (1) satisfying a linear relative isoperimetric inequality.

This definition is independent of the choice of the finite generating set A and the
finite set R in (1) (see [18]).

The definition immediately implies the following basic facts (see [18]):

Remark 2.2. (a) Let {Hλ}λ∈Λ be an arbitrary family of groups. Then the free product
G = ∗λ∈ΛHλ will be hyperbolic relative to {Hλ}λ∈Λ.

(b) Any word hyperbolic group (in the sense of Gromov) is hyperbolic relative to the
family {{1}}, where {1} denotes the trivial subgroup.

The following result is our main tool for constructing common quotients of countable
families of relatively hyperbolic groups. Recall that a group G is said to be non-
elementary if it does not contain a cyclic subgroup of finite index.

Theorem 2.3. [1, Thm. 1.4] Any two finitely generated non-elementary relatively hy-
perbolic groups G1, G2 have a common non-elementary relatively hyperbolic quotient H.

Consider a sequence of groups (Gn)n∈N such that Gi = G1/Ki, i = 2, 3, . . . , for some
Ki ¢ G1 and Ki ≤ Ki+1 for all i ∈ N, i ≥ 2. The direct limit of the sequence (Gn)n∈N
is, by definition, the group G∞ = G1/K∞ where K∞ =

⋃∞
n=2 Kn.

Remark 2.4. If G1 is finitely generated and Gn is infinite for every n ∈ N, then G∞ is
also infinite.

Indeed, suppose that G∞ is finite, i.e., |G1 : K∞| < ∞. Then K∞ is finitely generated
as a subgroup of G1, hence there exists m ∈ N such that K∞ = Km, and G∞ = Gm is
infinite; this is a contradiction.

Remark 2.5. Any infinite finitely generated group G contains a normal subgroup N
that is maximal with respect to the property |G : N | = ∞.

Indeed, let N be the set of all normal subgroups of infinite index in G ordered by
inclusion. Consider a chain (Mi)i∈I in N . Set M = ∪i∈IMi; then, evidently, M ¢ G.
Now, if M had finite index in G, then it would also be finitely generated. Hence, by
the definition of a chain, there would exist j ∈ I such that M = Mj, which would
contradict the assumption |G : Mj| = ∞. Therefore M ∈ N is an upper bound for
the chain (Mi)i∈I . Consequently, one can apply Zorn’s Lemma to achieve the required
maximal element of N .

Proposition 2.6. Let {Gi}i∈N be a countable collection of finitely generated non-ele-
mentary relatively hyperbolic groups and let C be an arbitrary countable group. Then
there exists a finitely generated group Q such that

(i) Q is a quotient of Gi for every i ∈ N;
(ii) Q is a simple group;
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(iii) Q has Kazhdan’s property (T);
(iv) Q contains an isomorphic copy of C.

Proof. First, embed C into an infinite finitely generated simple group S (see [13, Ch. IV,
Thm. 3.5]). Let S ′ be a copy of S. Then the group K = S ∗ S ′ will be non-elementary
and hyperbolic relative to the family consisting of two subgroups {S, S ′}. Take G0 to
be an infinite word hyperbolic group that has property (T). Then G0 is non-elementary
and relatively hyperbolic by Remark 2.2, hence we can use Theorem 2.3 to find a non-
elementary relatively hyperbolic group G(0) that is a common quotient of K and G0 (in
particular, G(0) will also be finitely generated). Now, apply Theorem 2.3 to the groups
G(0) and G1 to obtain their common non-elementary relatively hyperbolic quotient
G(1). Similarly, define G(i) to be such a quotient for the groups G(i − 1) and Gi,
i = 2, 3, . . . . Let G(∞) be the direct limit of the sequence

(
G(i)

)∞
i=0

.
The group G(∞) is finitely generated (as a quotient of G(0)) and infinite (by Remark

2.4), therefore, by Remark 2.5, there exists a normal subgroup N ¢ G(∞) that is
maximal with respect to the property |G(∞) : N | = ∞. Set Q = G(∞)/N . Then Q is
an infinite group which has no non-trivial normal subgroups of infinite index. Being a
quotient of G(0), makes Q a quotient of K = S∗S ′, therefore it can not have any proper
subgroups of finite index. Thus, Q is simple. Since the homomorphism ϕ : S ∗ S ′ → Q
has a non-trivial image, it must be injective on either S or S ′. Therefore Q will contain
an isomorphically embedded copy of S, and, consequently, of C.

The property (i) for Q follows from the construction. The property (iii) holds because
Q is a quotient of G0 and since Kazhdan’s property (T) is stable under passing to
quotients. ¤

In the case when one has a collection of word hyperbolic groups (in the usual, non-
relative, sense), one can obtain common quotients with different properties by using
Ol’shanskii’s theory of small cancellation over hyperbolic groups. For example, it is
shown in [15] that if g is an element of infinite order in a non-elementary word hyperbolic
group G, then there exists a number n > 0 such that the quotient of G by the normal
closure of gn is again a non-elementary word hyperbolic group. By harnessing this result
to the procedure for constructing direct limits used in the proof of Proposition 2.6, we
obtain the following statement, first proved by Osin:

Theorem 2.7. [19, Thm. 4.4] There exists an infinite periodic group O, generated by
two elements, such that for every non-elementary word hyperbolic group H there is an
epimorphism ρ : H ³ O.

Proposition 2.8. There exists an infinite finitely generated group Q such that

(a) Q is a quotient of every non-elementary word hyperbolic group;
(b) Q is a simple group;
(c) Q has Kazhdan’s property (T);
(d) Q is periodic.
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Proof. Let O be the group given by Theorem 2.7. Since O is finitely generated, it has
a normal subgroup N ¢ O maximal with respect to the property |O : N | = ∞ (see
Remark 2.5). Set Q = O/N . Then Q has no non-trivial normal subgroups of infinite
index and is a quotient of every non-elementary word hyperbolic group; thus Q satisfies
(a). In addition, Q is periodic since it is a quotient of O.

Observe that for an arbitrary integer k ≥ 2 there exists a non-elementary word
hyperbolic group H = H(k) which does not contain any normal subgroups of index k
(for instance, one can take H to be the free product of two sufficiently large finite simple
groups, e.g., H = Alt(k + 3) ∗ Alt(k + 3)). Therefore the group Q, as a quotient of H,
does not contain any normal subgroups of index k, for every k ≥ 2, hence it is simple.
It satisfies Kazhdan’s property (T) because there are non-elementary word hyperbolic
groups with (T) and property (T) is inherited by quotients. ¤
Remark 2.9. The method that we used to obtain simple quotients in the proofs of
Propositions 2.6 and 2.8 was highly non-constructive as it relied on the existence of a
maximal normal subgroup of infinite index provided by Zorn’s lemma. However, one
can attain simplicity of the direct limit in a much more explicit manner, by imposing
additional relations at each step. For word hyperbolic groups this was done in [14,
Cor. 2]. The latter method for constructing direct limits of word hyperbolic groups
was originally described by Ol’shanskii in [15]; it provides significant control over the
resulting limit group. This control allows one to ensure that the group Q enjoys many
properties in addition to the ones listed in the claim of Proposition 2.8. For example,
in Proposition 2.8 one can add that Q has solvable word and conjugacy problems.

3. Simplices of finite p-groups with non-elementary word hyperbolic
direct limits

Theorem 1.6 is an immediate consequence of the following two results, whose proof
is the object of this section.

Theorem 3.1. For every prime number p and integer n ≥ 1 there is a non-elementary
word hyperbolic group G generated by a set S of cardinality n+2 such that the subgroup
of G generated by each proper subset of S is a finite p-group.

Theorem 3.2. Let p be a prime number. Suppose that a group G has a generating set
S of cardinality n + 2, such that the subgroup generated by each proper subset of S is
a finite p-group. Then for any action of G on a Hausdorff mod-p acyclic space X of
covering dimension less than or equal to n, the global fixed point set is mod-p acyclic.

We prove Theorem 3.1 by constructing each of the desired groups as the fundamental
group (equivalently, the direct limit) of a certain (n + 1)-dimensional simplex of finite
p-groups. The construction of the local groups in each simplex of groups, for fixed p,
proceeds by induction on n. Provided that m ≤ n, the groups that are assigned to each
codimension m face of the (n + 1)-simplex will depend only on m, up to isomorphism.
The codimension zero face, i.e., the whole (n + 1)-simplex itself, will be assigned the
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trivial group 1, and each codimension one simplex will be assigned a cyclic group of
order p. As part of the inductive step, we will show that the fundamental group of the
constructed (n+1)-simplex of groups maps onto a p-group in such a way that each local
group maps injectively. This quotient p-group will be the group used as each vertex
group in the (n + 2)-simplex of groups.

The idea that drives our construction consists of requiring and exploiting existence of
certain retraction homomorphisms between the local groups of the complexes of groups
involved. We develop this approach in Subsections 3.2–3.4 below, after recalling in
Subsection 3.1 some basic notions and facts related to complexes of groups.

Each simplex of groups that we construct will be developable. Associated to any
developable n-simplex of groups G, there is a simplicial complex X on which the fun-
damental group G of G acts with an n-simplex as strict fundamental domain. If the
local groups of G are all finite, the corresponding action is proper. Thus we may show
that the group G is word hyperbolic by showing that the associated simplicial complex
X is Gromov hyperbolic. We show that X is indeed hyperbolic by verifying that it
satisfies a combinatorial criterion for the hyperbolicity of a simplicial complex related
to the idea of simplicial non-positive curvature developed in [9]. More precisely, we
show that X is 8-systolic, and hence hyperbolic. This is the content of Subsection 3.5.

From the perspective of the subject of simplicial non-positive curvature, Subsections
3.1-3.5 may be viewed as providing an alternative to the construction from [9] of numer-
ous examples of k-systolic groups and spaces, for arbitrary k and in arbitrary dimension.
The resulting groups are different from those obtained in [9].

From the algebraic perspective, this construction provides new operations of product
type for groups, the so called n-retra-products, which interpolate between the direct
product and the free product. These operations can be further generalized in the spirit
of graph products. We think the groups obtained this way deserve further study. The
groups obtained this way from finite groups fall in the class of systolic, or even 8-
systolic groups, and thus share various exotic properties of the latter, as established in
[9, 10, 16, 17]. In a future work we plan to show that n-retra-products of finite groups,
for sufficiently large n, are residually finite.

The last subsection of this section, Subsection 3.6, contains the proof of Theorem
3.2. This proof uses a result from Smith theory concerning mod-p cohomology of the
fixed point set of a finite p-group action. It also uses a homological version of Helly’s
theorem for mod-p acyclic subsets.

Remark 3.3. It is because we need to apply Smith theory that the groups previously
constructed in [9] are unsuitable for our purposes. The groups constructed in [9] include
fundamental groups of simplicies of finite groups which are non-elementary word hyper-
bolic, but the finite groups occurring in [9] are not of prime power order. One can show
that the fundamental group of any (n + 1)-simplex of finite groups cannot act without
a global fixed point by isometries on any complete CAT(0) space of covering dimension
at most n. Indeed, the Helly-type argument goes through almost unchanged, while
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the fact that the fixed point set for a finite group of isometries of a complete CAT(0)
space is contractible replaces the appeal to Smith theory. This argument originates in
unpublished work of Farb and was extended by Bridson, a special case appears in [2].

3.1. Strict complexes of groups. We recall some basic notions and facts related to
strict complexes of groups. The main reference is Bridson and Haefliger [4], where these
objects are called simple complexes of groups.

A simplicial complex K gives rise to two categories: the category QK of non-empty
simplices of K with inclusions as morphisms, and the extended category Q+

K of sim-
plices of K including the empty set ∅ as the unique (−1)–simplex. In addition to the
morphisms from QK , the category Q+

K has one morphism from ∅ to σ for each nonempty
simplex σ of K. A strict complex of groups G consists of a simplicial complex |G| (called
the underlying complex of G), together with a contravariant functor G from Q|G| to
the category of groups and embeddings. A strict complex of groups is developable if the
functor G extends to a contravariant functor G+ from the category Q+

|G| to the category

of groups and embeddings. Given an extension G+ of G, we will denote by G the group
G+(∅). For simplices τ ⊂ σ (allowing τ = ∅), we will view the group G(σ) as subgroup
in the group G(τ). We will be interested only in extensions that are surjective, i.e. such
that the group G = G+(∅) is generated by the union of its subgroups G(σ) with σ 6= ∅.

We call any surjective extension G+ of G an extended complex of groups. We view
the collection of all possible surjective extensions of G to Q+

|G| also as a category, which

we denote by ExtG. We take as morphisms of ExtG the natural transformations from
G+ to G+′ which extend the identical natural transformation of G. (Note that, given
extensions G+ and G+′, there may be no morphism between them, and if there is one
then, by surjectivity, it is unique; moreover, the homomorphism from G = G+(∅) to
G′ = G+′(∅) induced by a morphism is not required to be an embedding, although it
is required to be a group homomorphism.) If G is developable, the category ExtG has
an initial object G+

dir, in which the group G+
dir(∅) is just the direct limit of the functor

G (for brevity, we often denote this direct limit group G̃). Thus for any extension G+

of G, there is a unique group homomorphism from G̃ to G extending the identity map
on each G(σ) for σ ∈ Q|G|. In the cases that will be considered below, the simplicial

complex |G| is simply connected, which implies that G̃ coincides with what is known
as the fundamental group of the complex of groups G. (In fact, |G| is contractible in
the cases considered below.)

For an extended complex of groups G+ we consider a space dG+ with an action of
G = G+(∅), the development of G+, given by

dG+ = |G| ×G/∼,

where the equivalence relation ∼ is given by (p, g) ∼ (q, h) iff p = q and there exists
σ ∈ Q|G| so that p ∈ σ and g−1h ∈ G(σ). It suffices to take σ to be the minimal simplex
containing p. The G-action is given by g[p, h] = [p, gh]. The quotient by the action of
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G is (canonically isomorphic with) |G|, and the subcomplex

[|G|, 1] = {[(p, 1)] : p ∈ |G|},
(where [(p, 1)] is the equivalence class of (p, 1) under ∼) is a strict fundamental do-
main for the action (in the sense that every G-orbit intersects [|G|, 1] in exactly one
point). The space dG+ is a multi-simplicial complex, and the (pointwise and setwise)
stabilizer of the simplex [σ, g] is the subgroup gG(σ)g−1. In the cases considered below,
developments will be true simplicial complexes.

A morphism ϕ from a strict complex of groups G to a group H is a compatible
collection of homomorphisms ϕσ : G(σ) → H, σ ∈ Q|G| (in general not necessarily
injective). Compatibility means that we have equalities ϕσ = ϕτ ◦ iστ for any τ ⊂ σ,
where iστ is the inclusion of G(σ) in G(τ). For example, a collection of inclusions
G(σ) → G+(∅) is a morphism G → G+(∅). A morphism ϕ : G → H is locally injective
if all the homomorphisms ϕσ are injective.

Suppose we are given an action of a group H on a simplicial complex X, by simplicial
automorphisms, and suppose this action is without inversions, i.e., if g ∈ H fixes a
simplex of X, it also fixes all vertices of this simplex. Suppose also that the action
has a strict fundamental domain D which is a subcomplex of X. Clearly, D is then
isomorphic to the quotient complex H\X. Such an action determines the extended
associated complex of groups G+, with the underlying complex |G| = D, with local
groups G(σ) := Stab(σ,H) for σ ⊂ D, and with G+(∅) := H. The morphisms in G
are the natural inclusions. It turns out that in this situatio the development dG+ is
H-equivariantly isomorphic with X.

3.2. Higher retractibility. Now we pass to a less standard part of the exposition. We
begin by describing a class of simplicial complexes, called blocks, that will serve as the
underlying complexes of the complexes of groups involved in our construction. Then we
discuss various requirements on the corresponding complexes of groups. Some part of
this material is parallel to that in Sections 4 and 5 of [8], where retractibility and extra
retractibility stand for what we call in this paper 1-retractibility and 2-retractibility,
respectively.

Definition 3.4 (Block). A simplicial complex K of dimension n is a chamber complex
if each of its simplices is a face of an n-simplex of K. Top dimensional simplices are
then called chambers of K. A chamber complex K is gallery connected if each pair
of its chambers is connected by a sequence of chambers in which any two consecutive
chambers share a face of codimension 1. A chamber complex is normal if it is gallery
connected and all of its links (which are also chamber complexes) are gallery connected.
The boundary of a chamber complex K, denoted ∂K, is the subcomplex of K consisting
of all those faces of codimension 1 that are contained in precisely one chamber. A block
is a normal chamber complex with nonempty boundary. The sides of a block B are the
faces of codimension 1 contained in ∂B. We denote the set of all sides of B by SB.

Note that links Bσ of a block at faces σ ⊂ ∂B are also blocks, and that ∂(Bσ) = (∂B)σ.
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Definition 3.5 (Normal block of groups). A normal block of groups over a block B is
a strict complex of groups G with |G| = B satisfying the following two conditions:

(1) G is boundary supported, i.e. G(σ) = 1 for each σ not contained in ∂B;
(2) G is locally S-surjective, i.e., every group G(σ) is generated by the union⋃{G(s) : s ∈ SB, σ ⊂ s}, where we use the convention that the empty set

generates the trivial group 1.

An extended normal block of groups is an extension G+ of a normal block of groups G
such that the associated morphism ϕ : G → G(∅) is S-surjective, i.e. G(∅) is generated
by the union

⋃{G(s) : s ∈ SB}. (To simplify notation, we write G(σ) instead of G+(σ)
to denote the corresponding groups of G+.)

Given an extended normal block of groups G+ over B, its development dG+ is tesse-
lated by copies of B. More precisely, dG+ is the union of the subcomplexes of the form
[B, g], with g ∈ G(∅), which do not intersect each other except at their boundaries, and
which we view as tiles of the tesselation. Moreover, the action of G(∅) on dG+ is simply
transitive on these tiles. By S-surjectivity of ϕ, dG+ is a normal chamber complex. If
|G(s)| > 1 for all s ∈ SB then the chamber complex dG+ has empty boundary. If B is
a pseudo-manifold and |G(s)| ≤ 2 for all s ∈ SB, then dG+ is a pseudo-manifold.

Definition 3.6 (1-retractibility). An extended normal block of groups G+ is 1-retrac-
tible if for every σ ⊂ |G| there is a homomorphism rσ : G(∅) → G(σ) such that
rσ|G(s) = idG(s) for s ∈ S|G|, s ⊃ σ, and rσ|G(s) = 1 otherwise.

In the next two lemmas we present properties that immediately follow from 1-retracti-
bility. We omit the straightforward proofs.

Lemma 3.7.

(1) The homomorphisms rσ, if they exist, are unique.
(2) Let ϕσ : G(σ) → G(∅) be the homomorphisms of the morphism ϕ : G → G(∅).

Then for each σ we have rσϕσ = idG(σ). Thus rσ is a retraction onto the
subgroup G(σ) < G(∅).

(3) The inclusion homomorphisms ϕτσ : G(τ) → G(σ), for σ ⊂ τ , occuring as the
structure homomorphisms of G, satisfy ϕτσ = rσϕτ .

Motivated by property (3) above, we define homomorphisms rρτ : G(ρ) → G(τ), for
any simplices ρ, τ of |G|, including ∅, by putting rρτ := rτϕρ.

Lemma 3.8. Each of the homomorphisms rρτ is uniquely determined by the following
two requirements:

(1) rρτ |G(s) = idG(s) for s ∈ S|G|, s ⊃ ρ, s ⊃ τ ;
(2) rρτ |G(s) = 1 otherwise (i.e. for s ∈ S|G|, s ⊃ ρ, s not containing τ).

In particular, we have rσ∅ = ϕσ, r∅σ = rσ, and rτσ = ϕτσ whenever τ ⊃ σ. Moreover,
if τ ⊃ σ then rτσ is a retraction (left inverse) for the inclusion ϕτσ.
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To define higher retractibility properties for an extended normal block of groups G+

we need first to introduce certain new blocks of groups called unfoldings of G+ at the
boundary simplices σ ⊂ ∂|G|.
Definition 3.9 (Unfolding of G+ at σ). Let G+ be a 1-retractible extended normal
block of groups. Let σ ⊂ ∂|G| be a simplex, and denote by dσG(∅) the kernel of the
retraction homomorphism rσ : G(∅) → G(σ). The unfolding of G+ at σ, denoted dσG,
is the complex of groups associated to the action of the group dσG(∅) on the develop-
ment dG+. The extended unfolding dσG

+ is the same complex of groups equipped with
the canonical morphism to the group dσG(∅).

Define a subcomplex dσ|G| ⊂ dG+ by dσ|G| :=
⋃{[B, g] : g ∈ G(σ)}. We will show

that the above defined unfolding dσG
+ is an extended normal block of groups over

dσ|G|. This will be done in a series of lemmas, in which we describe the structure of
dσ|G| and dσG

+ in detail.

Lemma 3.10. dσ|G| is a strict fundamental domain for the action of the group dσG(∅)
on the development dG+. In particular, |dσG| = dσ|G|.
Proof. We need to show that the restriction to dσ|G| of the quotient map qσ : dG+ →
dσG(∅)\dG+ is a bijection. This follows by observing that the map jσ : dσG(∅)\dG+ →
dσ|G| defined by jσ(dσG(∅) · [p, g]) = [p, rσ(g)] is the inverse of qσ|dσ |G|. ¤

To proceed with describing dσ|G|, we need to define links for blocks of groups. This
notion will also be useful in our later considerations.

Definition 3.11 (Link of a block of groups). Let G be a normal block of groups and
let σ be a simplex of |G|. The link of G+ at σ is an extended normal block of groups
G+

σ over the link |G|σ given by G+
σ (τ) := G(τ ∗σ) for all τ ⊂ |G|σ, including the empty

set ∅ (with the convention that ∅ ∗ σ = σ).

We skip the straightforward argument for showing that the above defined extended
complex of groups is an extended normal block of groups.

The next lemma describes the links of the complex dσ|G|. We omit its straightforward
proof. In this lemma, and in the remaining part of this section, we will denote by σ− τ
the face of σ spanned by the vertices of σ not contained in τ .

Lemma 3.12. Let [τ, g] be a simplex of dσ|G|, where τ ⊂ |G| and g ∈ G(σ). For
any simplex ρ ⊂ |G|τ let dρ|Gτ | be the strict fundamental domain for the action of the
group dρGτ (∅) on the development dG+

τ . Then the link of dσ|G| at [τ, g] has one of the
following two forms depending on τ :

(1) (dσ|G|)[τ,g]
∼= dσ−τ |Gτ | if σ and τ span a simplex of |G|, where we use convention

that d∅|Gτ | = dG+
τ ;

(2) (dσ|G|)[τ,g]
∼= |G|τ otherwise.
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Lemma 3.12 easily implies the following corollary. The proof of part (1) uses induction
on the dimension of B and S-surjectivity of the extending morphism; we omit the
details.

Corollary 3.13.

(1) dσ|G| is a normal chamber complex.
(2) The boundary ∂(dσ|G|) is the subcomplex of dσ|G| consisting of the simplices of

form [ρ, g] for all ρ ⊂ ∂|G| not containing σ and for all g ∈ G(σ). In particular,
the set of sides of dσ|G| is the set

Sdσ|G| = {[s, g] : s ∈ S|G|, s does not contain σ, g ∈ G(σ)}.
For a subgroup H < G and an element g ∈ G, we denote by Hg the conjugation

gHg−1. The next lemma describes the local groups of the unfolding dσG.

Lemma 3.14. Let dσG be the unfolding of G and let [τ, g] be a simplex of dσ|G| (with
τ ⊂ |G| and g ∈ Gσ). Then

dσG([τ, g]) = [ker(rτσ : G(τ) → G(σ))]g < dσG(∅),
and consequently

dσG([τ, g]) = g · 〈
⋃

G(s) : s ∈ S|G|, s ⊃ τ, s does not contain σ〉 · g−1.

In view of Corollary 3.13(2), Lemma 3.14 implies the following.

Corollary 3.15. For simplices [τ, g] of dσ|G| not contained in the boundary ∂(dσ|G|)
we have dσG([τ, g]) = 1.

Another consequence of Lemma 3.14, which will be useful later, is the following.

Corollary 3.16. Let G+ be an extended normal block of groups, and let σ be a simplex
of |G|. Then for any simplex [τ, g] ⊂ dσ|G|, with τ ⊂ |G| and g ∈ G(σ), we have
[dσG][τ,g]

∼= dσ−τG
+
τ , where ∼= denotes an isomorphism of extended complexes of groups,

and where d∅G+
τ denotes here the trivial strict complex of groups over dG+

τ (i.e. all of
the local groups are trivial).

As a consequence of the results above, from Lemma 3.10 to Corollary 3.15, we obtain
the following.

Corollary 3.17. Given an extended normal block of groups G+, each of its unfoldings
dσG

+ is an extended normal block of groups.

We are now in a position to define recursively higher retractibilities.

Definition 3.18 (n-retractibility). Let n be a natural number. An extended normal
block of groups G+ is (n + 1)-retractible if it is 1-retractible, and for every simplex
σ ⊂ ∂|G| the unfolding dσG

+ is n-retractible.
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Example 3.19 (n-retractible 1-simplex of groups). Consider the extended complex of
groups G+ with |G| equal to a 1-simplex, with the vertex groups G(v) cyclic of order
two, and with G(∅) dihedral of order 2k, where generators of the vertex groups corre-
spond to standard generators of the dihedral group. This complex of groups is clearly an
extended normal block of groups. Moreover, it is n-retractible but not (n+1)-retractible
in the case when k = 2n(2m + 1) for some m.

Remark 3.20.

(1) Note that an n-retractible extended normal block of groups is always k-retrac-
tible for each k ≤ n.

(2) All links in a 1-retractible normal block of groups are 1-retractible.
(3) From Corollary 3.16 and the above remark (2) one can easily deduce using

induction on n that if G+ is n-retractible and σ is a simplex of |G|, then G+
σ is

also n-retractible.

3.3. n-retractible extensions. Our next objective is to establish results that give
partial converses to property in Remark 3.20(3). These will allow us to pass up one
dimension in our recursive construction of n-retractible simplices of groups, in the next
subsection.

Proposition 3.21. Let G be a normal block of groups. If for some natural number n
all the links in G (as extended complexes of groups) are n-retractible then:

(1) G is developable, and

(2) the extension G+
dir of G (in which G(∅) coincides with the direct limit G̃ of G)

is n-retractible.

Proof. To prove part (1), we need to show that G admits a locally injective morphism
ψ : G → H to some group H. To find ψ, for each σ ⊂ |G| we construct a morphism
r̄σ : G → G(σ) which is identical on the group G(σ) of G. We then take as H
the direct product H = ⊕{G(σ) : σ ⊂ |G|} and as ψ the direct product morphism
ψ = ⊕{r̄σ : σ ⊂ |G|}, which is then clearly locally injective.

Fix a simplex σ ∈ |G|. To get a morphism r̄σ as above, we will construct an appro-
priate compatible collection of homomorphisms r̄ησ : G(η) → G(σ), for all η ⊂ |G|,
such that r̄σσ = idG(σ). To do this, for any simplex ρ ⊂ |G| consider the set of sides
Sρ = {s ∈ S|G| : ρ ⊂ s}. Fix a simplex η ⊂ |G|. If Sη ∩Sσ = ∅, put r̄ησ to be the trivial
homomorphism. Otherwise, consider the simplex τ = ∩{s : s ∈ Sη ∩ Sσ }. Clearly,
we have then η ⊂ τ and σ ⊂ τ . In particular, we have the inclusion homomorphism
iτσ : G(τ) → G(σ), which is identical on the subgroups G(s) : s ∈ Sη ∩ Sσ.

Recall that we denote by τ − η the face of τ spanned by all vertices not contained
in η. Since η ⊂ τ , the groups G(η) and G(τ) coincide with the link groups G+

η (∅) and
G+

η (τ − η), respectively. Since the link G+
η is 1-retractible, we have the retraction

rτ−η : G+
η (∅) → G+

η (τ − η)
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such that rτ−η|G+
η (s) = idG+

η (s) for s ∈ S|G|η , s ⊃ τ − η and rτ−η|G+
η (s) = 1 otherwise (cf.

Definition 3.6).
Put r̄ησ := iτσ ◦ rτ−η. We claim that r̄ησ satisfies the assertions (1) and (2) of

Lemma 3.8, when substituted for rησ. This follows from the identification of the groups
G(s), s ∈ S|G| with the groups G+

η (s−η), for η ⊂ s, and from the fact that s−η ∈ S|G|η
(because ∂(|G|η) = (∂|G|)η).

Now, we need to check the compatibility condition r̄η2σ = r̄η1σ ◦ iη2η1 for all simplices
η1 ⊂ η2 in |G|. This follows from the coincidence of the maps on both sides of the
equality on the generating set ∪{G(s) : s ∈ S|G|, s ⊃ η2, } of G(η2). This coincidence
is a fairly direct consequence of assertions (1) and (2) of Lemma 3.8, satisfied by the
maps r̄η1σ and r̄η2σ.

Finally, assertion (1) of Lemma 3.8 clearly implies that r̄σσ = idG(σ), which concludes
the poof of developability of G.

We now turn to proving part (2). To deal with the case n = 1 we need to construct

the map rσ : G̃ → G(σ) as required in Definition 3.6, for any σ ⊂ |G|.
Consider the maps r̄ησ : η ⊂ |G| constructed in the proof of part (1), and the mor-

phism r̄σ : G → G(σ) given by these maps. Let rσ : G̃ → G(σ) be the homomorphism
induced by this morphism. The reqirements of Definition 3.6 for rσ follow then easily
from the assertions of Lemma 3.8 satisfied by the maps r̄ησ (we skip the straightforward
details). Thus 1-retractibility of links of G implies 1-retractibility of G+

dir.
Now suppose that n > 1. If links in G are n-retractible, it follows that links in dσG

are (n− 1)-retractible for all σ. By induction, it follows that the unfoldings dσG
+
dir are

(n− 1)-retractible, and so G+
dir is n-retractible. ¤

Example 3.22 (n-retractible 2-simplex of groups). Consider the triangle Coxeter group
Wn,m given by

Wn,m = 〈s1, s2, s3|s2
i , (sisj)

k for i 6= j〉,
where k = 2n(2m + 1). The Coxeter complex for this group is a triangulation of
the (hyperbolic) plane on which the group acts by simplicial automorphisms, simply
transitively on 2-simplices. Let G+ be the extended 2-simplex of groups associated
to this action. Links in G at vertices are then isomorphic to the 1-simplex of groups
from Example 3.18. Thus, in view of Proposition 3.21 and Remark 3.20(3), G+ is
n-retractible, but not (n + 1)-retractible.

A more subtle way of getting n-retractible extensions is given in the following theorem,
which will be used directly, as a recursive step, in our construction in Subsection 3.4.

Theorem 3.23. Let G be a normal block of groups in which all links are n-retractible.
Then there exists an extension G+

min of G that has the following properties.

(1) G+
min is the minimal n-retractible extension of G in the following sense: if G+

is any n-retractible extension of G then there is a unique morphism of extended
complexes of groups G+ → G+

min which extends the identity on G (i.e. a mor-
phism in the category ExtG).
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(2) If all G(σ) are finite, so is Gmin(∅).
(3) If all G(σ) are p-groups of bounded exponent, so is Gmin(∅).
(4) If all G(σ) are soluble groups with soluble length ≤ d for some fixed d, then so

is Gmin(∅).
Remark 3.24. Property 1 means that the extended complex of groups G+

min is the ter-
minal object in the category of n-retractible extensions of G. In particular, it is unique.

Proof. Let G+
dir be the direct limit extension of G, as described in Proposition 3.21.

We recursively define iterated unfoldings of G+
dir. For each simplex σ1 of |G|, define

dσ1G
+
dir as previously. Suppose that a complex of groups dσ1,...,σk

G+
dir has already been

defined. For each simplex σk+1 of the underlying simplicial complex |dσ1,...,σk
G+

dir|, let
dσ1,...,σk,σk+1

G+
dir = dσk+1

(dσ1,...,σk
G+

dir). Since G is n-retractible, this allows us to define
extended complexes of groups dσ1,...,σk

G+
dir for any k ≤ n. Due to Corollary 3.17, all of

these are extended normal blocks of groups.

Note that each of the groups dσ1,...,σk
Gdir(∅), which we denote G̃σ1,...,σk

, is a subgroup

of the direct limit G̃ of G. Let Nk be the largest normal subgroup of G̃ which is

contained in every subgroup G̃σ1,...,σk
, where σ1, . . . , σk ranges over all allowed sequences

of simplices (i.e., all sequences for which dσ1,...,σk
G+

dir was defined above). If we set

Gmin(∅) = G̃/Nn, the resulting extension is clearly n-retractible. We need to show it is
minimal.

Let G+
0 be any n-retractible extension of G. Clearly, we have the canonical surjec-

tive homomorphism h : G̃ → G0(∅), which allows us to express G0(∅) as the quotient

G̃/ ker h. To get the homomorphism G0(∅) → Gmin(∅) = G̃/Nn as required for mini-
mality, we need to show that ker h < Nn. By definition of Nn, it is thus sufficient to

show that ker h < G̃σ1,...,σn for all allowed sequences σ1, . . . , σn.

To prove the latter, we will show by induction on k that ker h < G̃σ1,...,σk
, for all

1 ≤ k ≤ n. For k = 1, we have retractions G̃ → G(σ1) and G0(∅) → G(σ1) which

commute with h, and such that G̃σ1 = ker[G̃ → G(σ1)] and dσ1G0(∅) = ker[G0(∅) →
G(σ1)]. Consequently, we get a canonical homomorphism hσ1 : G̃σ1 → dσ1G0(∅) with

ker Hσ1 = ker h. In particular, ker h < G̃σ1 .
To proceed, observe that (due to Lemma 3.14 applied recursively) the non-extended

unfoldings dσ1,...,σk
Gdir and dσ1,...,σk

G0 coincide for all 1 ≤ k ≤ n. Thus, for any
σ2 ⊂ |dσ1Gdir| = |dσ1G0| we can repeat the above argument and get the homomor-

phism hσ1,σ2 : G̃σ1,σ2 → dσ1σ2G0(∅) with ker hσ1,σ2 = ker hσ1 = ker h. Repeating this

argument, we finally get the homomorphisms hσ1,...,σn : G̃σ1,...,σn → dσ1,...,σnG0(∅) with

ker hσ1,...,σn = ker h. It follows that ker h < G̃σ1,...,σn . This proves statement 1.
To prove statement 2, recall that, by Definition 3.4, the block |G| is finite. If G(σ)

is finite for each σ 6= ∅, then it follows (by applying recursively Lemmas 3.10 and 3.14)
that each underlying simplicial complex |dσ1,...,σk

Gdir| is finite, and that for every non-

empty simplex η ⊂ |dσ1,...,σk
Gdir| the group dσ1,...,σk

Gdir(η) is finite. Hence each G̃σ1,...,σk
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has finite index in G̃, and there are finitely many such groups for each k ≤ n. If follows
that the intersection of all such subgroups is a subgroup of finite index, and so each Nk

for k ≤ n is a finite index normal subgroup of G̃. This proves that Gmin = G̃/Nn is a
finite group as claimed in statement 2.

Before proving statements 3 and 4, we first claim that each Nk is equal to the inter-

section of the groups G̃σ1,...,σk
. To see this, it is useful to change the indexing set. For

τ1, . . . , τk a sequence of simplices of dG+
dir of length at most n, define σ1 to be the image

of τ1 in |G| = G̃\dG+
dir. Assuming that σ1, . . . , σi−1 have already been defined for some

i with 1 < i ≤ k, define σi to be the image of τi in |dσ1,...,σi−1
G+

dir| = G̃σ1,...,σi−1
\dG+

dir.

Also define dτ1...,τk
G+

dir to be equal to dσ1,...,σk
G+

dir, and define G̃τ1...,τk
to be equal to

G̃σ1,...,σk
.

If x is a point of dG+
dir whose stabilizer is some subgroup H < G̃, and if g is an

element of G̃, the stabilizer of the point g.x is equal to the conjugation gHg−1. This

observation and induction show that for each g ∈ G̃, for each k ≤ n and for each
sequence τ1, . . . , τk of simplices of dG+

dir, we have

G̃gτ1,...,gτk
= g · G̃τ1,...,τk

· g−1.

Hence the intersection of the subgroups of the form G̃τ1,...,τk
, for fixed k ≤ n, is a normal

subgroup of G̃. It follows that this intersection is equal to Nk.

The above observation combined with the inclusions G̃σ1,...,σk
< G̃σ1,...,σk,σk+1

implies
that Nk+1 < Nk. To prove statement 3, we will show by induction that for 0 ≤ k < n

the quotient groups Nk/Nk+1 and G̃/Nk+1 are p-groups of bounded exponent. Here we

use convention that N0 = G̃.
For k = 0, we need to show that G̃/N1 is a p-group of bounded exponent. We know

that N1 is the intersection of the groups of form G̃σ1 , which are the kernels of retractions

G̃ → G(σ1). Thus G̃/N1 embeds in the product of the groups G(σ1). Since the latter
groups are p-groups of bounded exponent, the assertion follows.

Now we suppose G̃/Nk is a p-group of bounded exponent and claim that the group

Nk/Nk+1 is too. To see that this is true, recall that the groups G̃σ1,...,σk+1
are the kernels

of the retractions G̃σ1,...,σk
→ dσ1...σk

Gdir(σk+1). Note also that

Nk+1 =
⋂

G̃σ1,...,σk+1
=

⋂
[Nk ∩ G̃σ1,...,σk+1

],

and thus Nk+1 is equal to the intersection of the kernels of the composed homomorphisms

Nk
incl−→ G̃σ1,...,σk

r−→ dσ1,...,σk
Gdir(σk+1).

Now, each of the groups dσ1,...,σk
Gdir(σk+1) canonically embeds in the quotient G̃/Nk

(because the latter is a k-retractible extension of G̃). Thus all these groups are p-groups
of finite exponent. As before, we see that Nk/Nk+1 embeds in the product of p-groups
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of bounded exponents, hence the assertion. The fact that the quotient G̃/Nk+1 is then
also a p-group of bounded exponent follows directly. This proves statement 3.

The proof of statement 4 is similar to that of statement 3. ¤
3.4. The construction and retra-products. Given any n, we construct an n-retrac-
tible extended simplex of groups G+, over the simplex ∆ of arbitrary dimension, as
follows:

1. We put the trivial group on the simplex ∆.
2. We put an arbitrary group G(s) on each codimension 1 face s of ∆.
3. Suppose we have already defined groups G(η) (and inclusion maps between them)

for faces of codimension strictly less than k. Then for a face τ of codimension k ≤ dim ∆,
the group G(τ) is the minimal n-retractible extension, as in Theorem 20, of the simplex
of groups over the link simplex ∆τ made of the already defined groups G(η), via the
canonical correspondence between the faces of ∆τ and the faces η ⊂ ∆ containing τ .

4. Finally, we take as G(∅) the minimal n-retractible extension of the so far obtained
simplex of groups G over ∆.

Definition 3.25 (Retra-product). We will call the group G(∅) of any simplex of groups
G+ obtained as in the construction above the n-retra-product of the (finite) family of
groups G(s) : s ∈ S∆. Note that this operation makes sense for any finite family of
groups.

Clearly, the groups G(τ) obtained in the construction above are all the n-retra-
products of the corresponding families of groups G(s) : s ∈ S∆, s ⊃ τ .

Rephrasing Theorem 3.23 in the context of retra-products we get the following prop-
erties of this operation, for an arbitrary natural number n:

(1) the n-retra-product of finite groups is finite;
(2) the n-retra-product of p-groups of bounded exponent is a p-group of bounded

exponent.

It follows that the n-retra-product of finite p-groups is a finite p-group. In particular,
we get the following.

Corollary 3.26. Let G be a non-extended simplex of groups obtained as in the con-
struction above, out of groups G(s) being finite p-groups. Then all groups G(τ) in this
simplex are finite p-groups.

Remark 3.27. The construction of this subsection was first used in [8], in the 2-retractible
case. For the purposes of this paper, it suffices to consider the case when each codi-
mension one face of the simplex is assigned the cyclic group Zp of order p. Even though
the construction of the n-retra-products is in principle explicit, one rapidly loses track
of the groups arising.

The n-retra-product of two groups Z2, occuring at faces of codimension 2, is the
dihedral group D2n of order 2n+1. We do not even know the orders of the n-retra-
products of three copies of Z2, except the case n = 2 when this order is 214.
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Note that if G is a non-extended simplex of groups corresponding to G+, obtained
by the construction above, then its direct limit extension G+

dir is different from G+, and
in particular the direct limit G+

dir(∅) is different from the n-retra-product G(∅). This
motivates the following.

Definition 3.28 (Free retra-product). The direct limit of a non-extended simplex of
groups G obtained by the construction above will be called the free n-retra-product of
the (finite) family of the codimension 1 groups G(s) : s ∈ S∆.

In the next subsection we will deal with free n-retra-products of finite groups, showing
that for n ≥ 2 they are infinite, and for n ≥ 3 they are non-elementary word-hyperbolic.

3.5. Simplicial non-positive curvature, word-hyperbolicity, and the proof of
Theorem 3.1. To show that there are non-elementary word-hyperbolic groups arising
from the construction of the previous subsection, we will use results of [9] concerning
simplicial non-positive curvature.

Recall from [9] that the systole sys(K) of a simplicial complex K is the smallest
number of 1-simplices in any full subcomplex of K homeomorphic to the circle. A
simplicial complex K is k-large if its systole and the systoles of links of all simplices in
K are all at least k. Simplicial complexes whose all links are k-large, for some fixed k,
are the analogs of metric spaces with curvature bounded above. If they are additionally
simply connected, we call them k-systolic complexes. All results of this subsection are
corollaries to the following.

Proposition 3.29. Suppose G+ is an n-retractible extended simplex of groups. Then
the development dG+ is 2(n + 1)-large.

We skip the proof of the proposition until the end of the subsection, first deriving (and
making comments on) its consequences. In particular, we show how this proposition,
together with the results of the previous subsection, implies Theorem 3.1.

Corollary 3.30. Suppose G is a non-extended simplex of groups whose links G+
σ are

n-retractible, and let G+
dir be the direct limit extension of G.

(1) If n ≥ 2 then the development dG+
dir is contractible.

(2) If n ≥ 2 and the codimension 1 groups G(s) are non-trivial then dG+
dir and the

direct limit Gdir(∅) are both infinite.
(3) If n ≥ 3 then the 1-skeleton of the development dG+

dir, equipped with the polyg-
onal metric, is Gromov-hyperbolic.

(4) If n ≥ 3 and all groups G(σ) are finite and nontrivial then the group Gdir(∅)
is non-elementary word-hyperbolic, except when the underlying simplex is the
1-simplex and the vertex groups are of order 2 (in which case it is the infinite
dihedral group).

Proof. First, note that links in dG+
dir are isomorphic to the developments of the n-

retractible link simplices of groups Gσ (see Lemma 9(1)), and thus are 2(n + 1)-large.
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Since dG+
dir is the universal cover of G, it is simply connected and hence 2(n + 1)-

systolic. For n ≥ 2, this means that dG+
dir is 6-systolic, and thus it is contractible by [9,

Theorem 4.1(1)]. This proves (1).
To get assertion (2), note that it follows from [9, Proposition 18(2)], that the group

Gdir(∅) has a nontrivial subgroup that acts on the development dG+
dir freely. Thus this

development is a classifying space for this subgroup and, since it has finite dimension,
the subgroup has to be infinite. See also [16, Corollary 4.3], for a more elementary
argument.

For parts (3) and (4), note first that n ≥ 3 implies 8-systolicity of the development
dG+

dir. Part (3) follows then from [9, Theorem 2.1].
Finally, under the assumptions of (4), the group Gdir(∅) acts on dG+

dir properly dis-
continuously and cocompactly. Thus it follows from (3) that Gdir(∅) is word-hyperbolic.
If the underlying simplex of |G| is 1-dimensional, the group acts geometrically on the
tree dG+

dir, and hence is virtually free nonabelian (except the mentioned case). If the
dimension of the underlying simplex |G| is greater than 1, the fact that the group is
non-elementary follows from [17, Theorem 5.6 and Remark 2 at the end], where it is
shown that this group has one end.

The non-elementarity above can be also shown directly, by noting that the groups as
in (4) contain as a subgroup the free product of three nontrivial finite groups (namely
codimension 1 groups in any vertex unfolding of certain three pairwise disjoint sides).
We do not include the details of this argument. ¤

By specializing to free n-retra-products, we immediately get the following.

Corollary 3.31. If n ≥ 2 then the free n-retra-product of (at least two) nontrivial
groups is infinite. If n ≥ 3 then the free n-retra-product of (at least two) nontrivial
finite groups is non-elementary word-hyperbolic, except the product of two groups of
order 2.

Remark 3.32. Note that the construction in the present paper gives new families of k-
systolic groups, for arbitrary k, different from those constructed in [9, Sections 17–20].
These are the free n-retra-products of arbitrary finite groups, where 2(n + 1) ≥ k.

Proof of Theorem 3.1. Let G be the 3-retractible (n + 1)-simplex of groups obtained
by the construction of Subsection 3.4, with all codimension 1 groups G(s) isomorphic
to the cyclic group Zp of order p. Let G be the direct limit of G, i.e. the free 3-
retra-product of n + 2 copies of Zp. By Corollary 3.30, G is then non-elementary word
hyperbolic.

Choose a generator for each codimension 1 subgroup G(s) of G (i.e. for each factor
of the above free 3-retra-product). Let S be the set formed of these generators. Then
S consists of n + 2 elements, and it generates G since the union ∪{G(s) : s ∈ |G|}
generates G. For any proper subset T ⊂ S, the subgroup 〈T 〉 < G generated by T
coincides with one of the local groups of G. More precisely, for τ = ∩{s : s ∈ T} we
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have 〈T 〉 = G(τ). By Corollary 3.25, 〈T 〉 is then a finite p-group, which completes the
proof. ¤

It only remains now to prove Proposition 3.29. We will use the following lemma in
the proof.

Lemma 3.33. Let γ be a loop in the 1-skeleton of a simplicial complex K which has the
minimum length L amongst all loops in the 1-skeleton of K in the same free homotopy

class. Then any lift γ̃ of γ to the universal cover K̃ of K has the property that it min-

imizes distance measured in the 1-skeleton of K̃ between any two points whose distance
in γ̃ is at most L.

Proof. Let t be a deck transformation of K̃ that acts as a translation by the distance L
on the subcomplex γ̃. Suppose that γ̃ does not have the property claimed. Then there
exist vertices p and q of γ̃ such that q lies on the segment from p to tp and such that

the distance between p and q in the 1-skeleton of K̃ is strictly smaller than the distance
between them in γ̃. Let α be the segment of γ̃ between p and q, and let α′ be a path

of shorter length in the 1-skeleton of K̃ from p to q. Denote also by β be the segment

of γ̃ between q and tp. Since K̃ is simply connected, α and α′ are homotopic relative
to their endpoints. This homotopy, after projecting to K, yields a homotopy between
γ and the loop obtained by projecting α′ ∪ β. Since the latter loop is strictly shorter,
we get a contradiction. ¤

Proof of Proposition 3.29. The proof is by induction on d, the dimension of the simplex
|G|, followed by induction on n. For d = 0 there is nothing to prove. Let G+ be an
n-retractible d-dimensional simplex of groups. Then links G+

σ are also n-retractible (see
Remark 17(3)), and thus by induction on d their developments dG+

σ are 2(n + 1)-large.
Thus the same holds for links of dG+.

By [9, Corollary 1.5], a simplicial complex X with k-large links is k-large iff the length
of the shortest loop in the 1-skeleton of X which is homotopically nontrivial in X is at
least 2(n + 1). We thus need to show this for X = dG+.

Let γ be a homotopically nontrivial polygonal loop in dG+ of the shortest length.
Now we start the induction on n. It has been shown in [8, Proposition 4.3(3)], that the
development of any 1-retractible extended simplex of groups is a flag complex. Hence
the length of γ is at least 4. This completes the case n = 1 for all d. Clearly an
n-retractible complex is (n − 1)-retractible, and so by induction on n, the length of γ
is at least 2n.

Let X̃ be the universal cover of X = dG+, let γ̃ be a lift of γ to X̃, and let v0, . . . , vn+1

be some consecutive vertices on γ̃. By Lemma 3.33, we see that γ̃ minimizes distances

between the vertices vi : 0 ≤ i ≤ n+1 in the 1-skeleton of X̃. In particular the distance
between v0 and vn+1 is equal to n + 1. Let δ denote the segment of γ̃ between v0 and
vn+1, and let δ′ be the segment of γ̃ that starts at vn+1 and projects to the segment of
γ complementary to the projection of δ.
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By symmetry of dG+, we may assume that v1 is a vertex of the simplex [|G|, 1] ⊂
dG+. Consider the fundamental domain D ⊆ X̃ for the group G̃v1,...,vn = dv1,...,vn(∅)
obtained recursively as dvn . . . dv1|G| in the way described just before Lemma 7. By
Lemma 7, D is a strict fundamental domain. It contains the vertices v1, . . . , vn in its
interior (i.e. outside the boundary ∂D), and thus contains also v0 and vn+1. We identify

D with the quotient G̃v1,...,vn\X. We then look at the projection of δ ∪ δ′ to D. Since

the distance in X̃ between v0 and vn+1 is n + 1, their distance in D is also n + 1 (the
distance in the quotient cannot increase, while that in the subcomplex cannot increase).
It follows that the length of the projection of δ′ to D is at least n+1, and so the length
of γ is at least 2(n + 1). ¤

3.6. The fixed point propetry. We now pass to proving Theorem 3.2. The proof will
use the following lemma. The proof of a related result, for contractible CW-complexes,
can be found in [12]. We remind the reader that “mod-p acyclic” means “having the
same mod-p Čech cohomology as a point”.

Lemma 3.34. Fix an integer n > 0, let Y1, . . . , Yn be closed subspaces of a space X,
let Y =

⋃n
i=1 Yi and let A =

⋂n
i=1 Yi, the union and intersection of the Yi respectively.

Suppose that for all subsets I ⊂ {1, . . . , n} with 1 ≤ |I| < n, the intersection
⋂

i∈I Yi is

mod-p acyclic. Then the reduced mod-p Čech cohomologies of Y and A are isomorphic,
with a shift in degree of n − 1. More precisely, for each m there is an isomorphism

H̃m(Y ) ∼= H̃m−n+1(A).

Proof. In the case when n = 1, we have that Y = A and the assertion is trivially
true. Now suppose that n ≥ 2. For 1 ≤ i ≤ n − 1, let Zi = Yi ∩ Yn, let Z =

⋃
i Zi,

and let Y ′ =
⋃n−1

i=1 Yi. By definition, Y − Y ′ = Yn − Z, and so by the strong form of

excision that holds for Čech cohomology (see the end of section 3.3 of [7]), it follows
that H∗(Y, Y ′) ∼= H∗(Yn, Z).

By induction on n, we see that for each m, H̃m(Z) ∼= H̃m−n+2(A). Also by induction,
we see that Y ′ is mod-p acyclic, since

⋂n−1
i=1 Yi is mod-p acyclic by hypothesis. Since

n ≥ 2, the hypotheses also imply that Yn is mod-p acyclic. Hence the long exact
sequence in reduced cohomology for the pair (Yn, Z) collapses to isomorphisms, for

all i, H̃ i−1(Z) ∼= H i(Yn, Z). Similarly, the long exact sequence in reduced cohomology

for the pair (Y, Y ′) collapses to isomorphisms, for all i, H i(Y, Y ′) ∼= H̃ i(Y ). Putting
these isomorphisms together gives an isomorphism, for all i, of reduced cohomology

groups H̃ i−1(Z) ∼= H̃ i(Y ). The claimed result follows. ¤

Proof of Theorem 3.2. Suppose that X is a p-acyclic G-space of finite covering dimen-
sion. Let g1, . . . , gn+2 be the elements of S, and let Yi be the points of X that are fixed
by gi. By Smith theory, the fixed point set of the action of any finite p-group on X
is mod-p acyclic. For an explicit reference, see Theorem III.7.11 of Bredon’s book [3],
noting that “finite covering dimension” implies Bredon’s hypothesis “finitistic” (see
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p. 133 of [3]), and that “X is mod-p acyclic” is equivalent to Bredon’s hypothesis “the
pair (X, ∅) is a mod-p Čech cohomology 0-disk”. Hence the subspaces Yi satisfy the
hypotheses of Lemma 3.34. The global fixed point set A for the action of G on X is
equal to the intersection A =

⋂n+2
i=1 Yi. If A is not mod-p acyclic, then for some m ≥ −1,

the reduced cohomology group H̃m(A) is non-zero. By Lemma 3.34, it follows that the

union Y =
⋃n+2

i=1 Yi has a non-vanishing reduced cohomology group H̃j(Y ) for some
j ≥ n. Hence the relative cohomology group Hj+1(X, Y ) is non-zero for some j ≥ n,
and so X must have covering dimension at least n + 1. ¤

4. Finitely presented groups that fail to act

In this section we establish the validity of Template NAfp. We also show the triviality
of actions by diffeomorphisms of certain groups, see Lemma 4.5. This immediately
implies Proposition 1.3 and provides the input to Template NAfp that is needed to
prove Theorem 1.4. Our proof of Lemma 4.5 was inspired by a recent work of Bridson
and Vogtmann [5].

Definition 4.1. A sequence of groups and monomorphisms, (Gn; ξn,j) (n ∈ N, j =
1, . . . , J), is called a recursive system if

(i) each Gn has a presentation 〈An | Rn〉 with An finite and
⋃

n Rn ⊂ A∗ recursively
enumerable, where A = tnAn, and

(ii) each monomorphism ξn,j : Gn → Gn+1 is defined by a set of words Sn,j =
{wn,j,a ∈ A∗

n+1 | a ∈ An} such that wn,j,a = ξn,j(a) in Gn+1, with
⋃

n,j Sn,j ⊂ A∗

recursively enumerable.

We shall be interested only in sequences where, for each sufficiently large integer n,
Gn+1 is generated by the union of the images of the ξn,j. And in our applications we
shall need only the case J = 2.

Examples 4.2. The following are recursive systems.
(1) Define Gn = SL(n,Z), set J = 2, and define ξn,1 and ξn,2 to be the embeddings

SL(n,Z) → SL(n + 1,Z) defined by

ξn,1(M) =

(
M 0
0 1

)
, and ξn,2(M) =

(
1 0
0 M

)
for all M ∈ SL(n,Z).

(2) Writing Alt(n) to denote the alternating group consisting of even permutations
of n = {1, . . . , n} and taking J = 2, define Gn = Alt(n) and define ξn,1, ξn,2 : Alt(n) →
Alt(n + 1) to be the embeddings induced by the maps In,1, In,2 : n → n+1 defined by
In,1 : k → k and In,2 : k → k + 1.

Lemma 4.3. Let (Gn; ξn,j) (n ∈ N, j = 1, . . . , J) be a recursive system of non-trivial
groups and monomorphisms ξn,j : Gn → Gn+1, and suppose that there exists n0 so that
for each n ≥ n0, Gn+1 is generated by

⋃
j ξn,j(Gn). Then there exists a finitely presented
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group Gω which for each n ≥ n0, contains two isomorphic copies of Gn so that Gω is
the normal closure of the union of these two subgroups.

Proof. By renumbering, we may assume that n0 = 1. Consider the free product

(2) G =
∞∗

n=1
Gn,

and for each j ∈ J let θj : G → G be the injective endomorphism of G whose restriction
to Gn is ξn,j.

Now, let H be the multiple HNN-extension of G corresponding to these endomor-
phisms:

H = 〈G, t1, . . . , tj ‖ tjgt−1
j = θj(g), g ∈ G, j ∈ J〉 .

In the notation of Definition 4.1, this has presentation

〈A, t1, . . . , tj‖Rn (n ∈ N), tjat−1
j w−1

n,j,a (n ∈ N, j ∈ J, a ∈ An)〉.
By hypothesis, this is a recursive presentation. Moreover, since the images of the ξn,j

generate Gn+1, the group H is generated by the finite set A1 ∪ {t1, . . . , tJ}.
Now, by the Higman embedding theorem (see [13, IV.7]), H can be isomorphically

embedded into a finitely presented group B. Suppose that B is generated by elements
x1, . . . , xl. Without loss of generality we can and do assume that each of x1, . . . , xl

has infinite order. Indeed, to ensure this one can if necessary replace B by the free
product B ∗ Z of B with the infinite cyclic group generated by z, which is generated
by the elements z, zx1, . . . , zxl of infinite order. Choose an element of infinite order
y ∈ G ≤ B and a subgroup F ≤ G such that F is free of rank l and

(3) F ∩ 〈y〉 = {1}, F ∩ 〈xi〉 = {1} for i = 1, . . . , l.

Such a choice is possible because G is a free product of infinitely many non-trivial
groups and a cyclic subgroup of B can intersect at most one free factor non-trivially.

Consider, now, the iterated HNN-extension of B:

L = 〈B, s1, . . . , sl ‖ sixis
−1
i = y, i = 1, . . . , l〉.

Let {f1, . . . , fl} be free basis of F . By (3) and Britton’s lemma ([13, IV.2]), the
subgroup of L generated by s1, . . . , sl and F is freely generated by the elements s1, . . . , sl,
f1, . . . , fl. Let L′ be a copy of L and let s′1, . . . , s

′
l, f

′
1, . . . , f

′
l denote the copies of the

corresponding elements. Finally we obtain the group that we seek by defining

Gω = 〈L,L′ ‖ si = f ′i , fi = s′i, i = 1, . . . , l〉.
The group Gω is infinite and finitely presented by construction.

A key feature in our construction is that for all k ≤ n the free factor Gk of G is
conjugate in H (and hence in Gω) to a subgroup of Gn, and for k > n the conjugates
of Gn by positive words of length k − n in the letters tj generate Gk. Thus G is the
normal closure of each Gn. Likewise G′ is the normal closure of G′

n. All that remains is
to observe that Gω is generated by the set {x1, . . . , xl, s1, . . . , sl, x

′
1, . . . , x

′
l, s

′
1, . . . , s

′
l},
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each of whose elements is conjugate to an element of G or G′. Thus Gω is the normal
closure of Gn ∪G′

m for every n,m ≥ 1. ¤
The following theorem establishes the validity of Template NAfp.

Theorem 4.4. If the groups Gn satisfy the conditions of Template NAfp, then the
finitely presented group Gω constructed in Lemma 4.3 cannot act non-trivially on any
X ∈ X .

Proof. Suppose that Gω acts on a space X ∈ X . Then X ∈ Xm for some m ∈ N and
we have a homomorphism α : Gω → Homeo(X) that we want to prove is trivial. By
hypothesis, there is some Gn that cannot act non-trivially on X. Hence, in the notation
of the preceding lemma, α(Gn) = α(G′

n) = {1}. Therefore the kernel of α is the whole
of Gω. ¤
Lemma 4.5. If G is a simple group that contains a copy of Zn+1

p , then G cannot act
effectively by diffeomorphisms on any smooth p-acyclic manifold X of dimension at
most n.

Proof. Let E be the subgroup of G isomorphic to (Zp)
n+1. Fix a Riemannian metric on

X that is compatible with the smooth structure and, given an action of G, average the
metric over the action of E to ensure that the action of E is by isometries.

Smith theory tells us that the action of E on X has mod-p acyclic fixed point set (The-
orem III.7.11 of [3]), and so there is a point x fixed by E. Taking derivatives at x, we
obtain an action of E on the tangent space Tx(X). But E has no faithful linear repre-
sentations of dimension less than or equal to n, and so some non-identity element h ∈ E
acts trivially on Tx(X). Since the action of E is by isometries, the exponential map is
E-equivariant and so h acts trivially on an open ball about x. But the fixed point set
for any isometry of X is a closed submanifold, and so it follows that h fixes the whole
of X.

Thus h lies in the kernel of the map G → Diffeo(X). Since G is simple, it follows
that G acts trivially. ¤
Proof of Theorem 1.4 The preceding lemma tells us that, given any prime p and
positive integer n, any alternating group Alt(m) with m sufficiently large cannot act
non-trivially by diffeomorphisms on a smooth p-acyclic manifold of dimension less than
n. It follows that the group Gω obtained by applying Theorem 4.4 to the recursive
system in Example 4.2(2) cannot act non-trivially by diffeomorphisms on a p-acyclic
manifold of any dimension, for all primes p.

Remark 4.6. (1) For each fixed prime p, C. Röver constructed a finitely presented simple
group containing, for each n, a copy of (Zp)

n [20]. By Lemma 4.5, such a group cannot
act non-trivially by diffeomorphisms on any mod-p acyclic manifold.

(2) It should be clear from the architecture of our proof how suitable variations on
Lemma 4.5 will give rise to analogues of Proposition 1.3 and Theorem 1.4. The work
of Bridson and Vogtmann [5] provides several such variations.
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