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Abstract. A universe of finitely presented groups is sketched and explained, leading to
a discussion of the fundamental role that manifestations of non-positive curvature play
in group theory. The geometry of the word problem and associated filling invariants are
discussed. The subgroup structure of direct products of hyperbolic groups is analysed
and a process for encoding diverse phenomena into finitely presented subdirect products
is explained. Such an encoding is used to solve problems of Grothendieck concerning
profinite completions and representations of groups. In each context, explicit groups are
crafted to solve problems of a geometric nature.
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Introduction

When viewed through the eyes of a topologist, a finite group-presentation Γ =
〈A | R〉 is a concise description of a compact, connected, 2-dimensional CW-
complex K with one vertex: the generators a ∈ A index the (oriented) 1-cells
and the defining relations r ∈ R describe the loops along which the boundaries of
the 2-cells are attached. Γ emerges as the group of deck transformations of the
universal cover K̃ and the Cayley graph CA(Γ) is the 1-skeleton of K̃.

Thus we meet the two main strands of geometric group theory, intertwined
as they often are. In the first and most classical strand, one studies actions of
groups on metric and topological spaces in order to elucidate the structure of the
space and the group. The quality of the insights that one obtains varies with the
quality of the action: one may prefer discrete cocompact actions by isometries on
spaces with fine geometric structure, but according to context one must vary the
conditions on the action, sometimes weakening admission criteria to obtain a more
diverse class of groups, sometimes demanding more structure to narrow the focus
and study groups and spaces of exceptional character.

This first strand mingles with the second, wherein one regards finitely generated
groups as geometric objects in their own right [62], equipped with word metrics:
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given a finite generating set S for a group Γ one defines dS(γ1, γ2) to be the length of
the shortest word in the free group on S that is equal to γ−1

1 γ2 in Γ. In other words,
dS is the restriction to the vertex set of the standard length metric on the Cayley
graph of Γ. The word metric and Cayley graph depend on the choice of generating
set, but their quasi-isometry type does not. Thus one is particularly interested
in properties of groups and spaces that are invariant under quasi-isometry. When
dealing with such invariants, one is free to replace Γ by any space that is quasi-
isometric to it, such as the universal cover of a closed Riemannian manifold with
fundamental group Γ, where the tools of analysis can be brought to bear.

The techniques of geometric group theory merge into the more combinatorial
techniques that held sway in the study of finitely presented groups for most of the
twentieth century. At the heart of combinatorial group theory lie the fundamental
decision problems first articulated by Max Dehn [50] — the word, conjugacy and
isomorphism problems. These continue to play an important role in geometric
group theory and provide a unifying theme for the ideas presented here, serving
as fundamental measures of the complexity of groups.

In this article and the accompanying lecture I shall discuss two topics that
account for much of my work: manifestations of non-positive curvature in group
theory, and the geometry of the word problem and associated filling invariants. I
shall also explore the subgroup structure of direct products of hyperbolic groups.
It transpires that a huge range of phenomena can be encoded into the finitely
presented subgroups of such direct products. Such an encoding was used by Fritz
Grunewald and I to solve problems of Grothendieck concerning profinite comple-
tions and representations of groups; this is explained in section 6. Throughout the
discussion, the reader will find that a prominent role is played by explicit groups
crafted to solve problems of a geometric nature.

Acknowledgements. It is a pleasure to thank my coauthors, past and present,
for their ideas and companionship. It is also a pleasure to acknowledge the great
intellectual debt that I owe to Mikhael Gromov.

1. The Universe of Finitely Presented Groups

The picture of the universe of groups that I am about to sketch1 is shaded by
personal taste and the needs of today but nevertheless I claim that it has intrinsic
merit. The point of attempting such a sketch is that it forces one to consider how
different classes of groups that arise in disperate settings are related; it challenges
one to locate given groups in relation to others and to explain how different classes
intersect; and it helps to tease out why certain classes are worthy of particular
attention. One asks what theorems hold where, and how various measures of
complexity (decision problems, subgroup structure, finiteness properties,. . . ) vary
and decay as one moves around the universe. One finds oneself reflecting how
problems from elsewhere in mathematics can be encoded in groups of one type but

1I thank Tim Riley for his skillful rendering of my hand-drawing.
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not another, and one starts to wonder how such problems might be transported
to a more hospitable region of the universe where one has stricter definitions and
better theorems to mount an attack.
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Figure 1. The universe of finitely presented groups.

When approaching group theory from the viewpoint of large-scale geometry,
it is natural to blur the distinction between commensurable groups. Thus our
universe begins with a single (large and interesting) point labelled 1 representing
the finite groups. The simplest infinite group is surely Z, so we have a second point
representing the virtually cyclic groups. Here the universe divides. If one wants to
retain the safety of commutativity and amenability, one can proceed from Z to the
virtually abelian groups. As one slowly relinquishes commutativity and control over
growth and constructability, one passes through the progressively larger classes of
(virtually-) nilpotent, polycyclic, solvable and elementary amenable groups, which
are marked in the region bounded by a thick line enclosing the amenable groups.

Thinking more freely, instead of taking direct products one might proceed from
Z by taking free products, moving into the class F of virtually free2 groups, with

2F contains only one commensurability class besides Z, but is drawn larger for effect
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their tree-like Cayley graphs. As one proceeds away from F, the infinite curvature
of tree-ness gives way to the strictly negative curvature of hyperbolic groups Hyp,
then the increasingly weak forms of non-positive curvature that define the classes
discussed in the sections that follow: C0, the groups that act properly and cocom-
pactly by isometries on CAT(0) spaces; SH, the semihyperbolic groups of [2]; the
automatic groups Auto of [55]; and the combable and asynchronously combable
groups Comb and Async. The line marked IP(2) encloses the groups that satisfy
a quadratic isoperimetric inequality (4.3). The thickness of the line delimiting C0

expresses the view that these groups deserve particular attention.

The von Neumann-Tits line (vNT) separates the groups that contain non-
abelian free groups from those that do not. For each group below the line, one
asks whether its finitely generated subgroups satisfy a Tits alternative: if non-
amenable, they should contain a non-abelian free group. One also asks what type
of amenable subgroups can arise, cf. (2.3).

In contrast to the other amenable groups, virtually abelian groups are indis-
putably “non-positively curved”. Several classes of non-positively curved groups
serve as natural envelopes uniting free and free-abelian groups. These include the
right-angled Artin groups, cocompact groups of isometries of CAT(0) cube com-
plexes, and limit groups (marked L). The case for placing the class EF⊂ L of
elementarily free groups immediately next to F is discussed in (1.2). The funda-
mental group Σg of any closed surface of genus g ≥ 2 is in EF, lending substance
to the tradition in combinatorial group theory that, among non-free groups, it is
the Σg that resemble free groups most closely (cf. 1.8).

1.1. Accuracy and completeness. Adapting to today’s foci, and so as
not to crowd the diagram, I have omitted many natural classes of groups, even
non-positively curved groups. In particular, I have not subdivided C0 according to
subclasses of CAT(0) spaces such as CAT(−1) spaces, spaces with isolated flats,
or the classes mentioned above in connection with Zn; these all enjoy important
additional properties and have a rich hoard of examples.

The hints at subdivision in Comb are intended to suggest the various sub-
classes defined by varying the degree of control one demands over the geometry
and linguistic complexity of the combing, cf. (3.2). A question mark in a region
of interesection indicates that it is unknown if that region is empty. The question
mark at the amenable end of Comb asks, more generally, which amenable groups
are combable. Likewise, the vague manner in which the boundary of IP(2) ends
reflects a lack of knowledge about which amenable groups have quadratic Dehn
functions (4.3). The extent of Async is also unknown, though we know it contains
many solvable groups and the fundamental groups of compact 3-manifolds (3.5).

1.2. Limits and ultralimits. From a geometric perspective (as well as
others) the virtually nilpotent groups have an indisputable claim to the ground next
to abelian groups: they are exactly the groups of polynomial growth, as Gromov
proved in the landmark paper [63]. A key idea in that paper is to construct a space
on which a group Γ of polynomial growth acts by taking the limit in the Gromov-
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Hausdorff topology of a subsequence of the pointed metric spaces Xn = (Γ, 1
nd),

where d is a fixed word metric on Γ (the identity serves as a basepoint).

To circumvent the failure of the sequence Xn = (Γ, 1
nd) to converge in the

non-nilpotent case, one fixes a non-principal ultrafilter and takes an ultralimit to
obtain an asymptotic cone ConeωΓ. Such cones have been intensively studied
in recent years, particularly in connection with quasi-isometric rigidity, e.g. [73].
Their geometry and algebraic topology encode a good deal of information about Γ
(see [64, 83, 54]). If Γ is a non-abelian free group, then ConeωΓ is an everywhere-
branching R-tree (regardless of the choice of ω). The class of finitely generated
groups that share this property consists precisely of the non-elementary hyperbolic
groups. This is just one of the ways in which hyperbolic groups appear as the most
commanding generalisation of a free group.

1.3. Next to the free groups: limit groups. Continuing with the idea
of taking limits, one might ask which finitely generated groups arise as Gromov-
Hausdorff limits of free groups [47]. More precisely3, given Γ, one asks if there
exists a finite generating set S for Γ and a sequence of finite generating sets Sn

for a fixed free group F with bijections Sn → S making the ball of radius ρ ∈ N

about the identity in the Cayley graph CSn
(F ) isomorphic (as a marked graph) to

that in CS(Γ) whenever n ≥ N(ρ).

The groups that arise in this way are the limit limit groups L, which are non-
positively curved in every reasonable sense [1]. The fundamental importance of
this class has been greatly illuminated in recent years by the work of Zlil Sela and
others (see subsection 5.3). A fascinating aspect of their study is that the same
class of groups emerges from a range of different definitions that make precise the
idea of an approximately free group. In terms of first order logic, L consists of those
finitely generated groups that have the same existential theory as a free group [82],
while EF⊂ L consists of those that have the same elementary theory.

1.4. Beware of the lions: encoding. Constructions such as the Higman
Embedding Theorem [68] show that one can encode the workings of an arbitrary
Turing machine into a finite group-presentation. The groups that one obtains from
such constructions will typically not belong to any of our marked classes but rather
will lie in the region where the fierce lion is shown defying the groups that submit
to the control of our definitions. One should therefore regard the lion as a warning
that it is reckless to base a conjecture about arbitrary finitely presented groups on
evidence gained along the coasts of the universe.

1.5. Embracing the lions: subdirect products. It is not satisfac-
tory to content oneself with the study of groups in our marked classes alone.
In particular one wants to attack problems from elsewhere in mathematics by
exploiting the ability to encode arbitrary recursive phenomena into finite group-
presentations. In order to do so without leaving the safety of the regions where

3The corresponding topology on marked groups is often called the Grigorchuk topology [60].
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one has definitions and theorems, one has to find a way of encoding arbitrary pre-
sentations into the structure of groups in the labelled classes (the closer to the
origin 1 the better). Such encodings exist in remarkable generality, provided one is
prepared to accept passing to finitely presented subgroups in the given class. This
is the theme of section 5 below, where I explain and exploit the fact that finitely
presented subgroups of direct products of hyperbolic groups (but not limit groups)
can be made extremely complicated. Section 6 shows how such an encoding can
be used to solve problems of interest elsewhere in mathematics.

1.6. Special groups. One might begin an open-minded search for groups
of special interest by asking what sort of actions are admitted by an arbitrary
finitely presented group. As one tries to improve the quality of the space or action,
obstructions emerge and special groups are singled out. For example, when one
knows that every finitely presented group is the fundamental group of a closed
symplectic 4-manifold and a closed complex manifold, it is natural to ask which
groups are fundamental groups of compact Kähler manifolds, or of 3-manifolds,
and to pay special attention to such groups, classifying them if possible. It is also
stimulating to try to locate them in our map of the universe.

1.7. Classifying spaces. Other special classes emerge as one tries to im-
prove on the construction of K = K(A,R) in the opening paragraph, making it
more highly-connected and looking for a classifying space. Higher finiteness prop-
erties emerge and conditions that ensure the existence of a compact K(Γ, 1) come
into focus, such as the existence of a 1-relator or small-cancellation presentation.
Complete non-positively curved spaces serve as classifying spaces but these are not
always of the minimum possible dimension [25], [18]. This discrepancy fits into a
large body of work in which different notions of dimension measure the cost of
choosing between algebraic, topological and geometric models for a group.

Of the classes in figure 1, hyperbolic, polycyclic and C0 groups all act properly
and cocompactly on contractible, finite-dimensional complexes but certain groups
in Solv, IP(2) and Async do not. Members of the classes other than Solv, IP(2)
and EA have classifying spaces with only finitely many cells in each dimension.

1.8. The first groups and their automorphisms. The view that
Zn, Fn and Σg are the most basic of infinite groups begins a rich vein of ideas
concerning the automorphisms of these groups. At the level of individual auto-
morphisms, classical facts about integer matrices are paralleled by the Nielsen-
Thurston theory of surface automorphisms and, for free groups, the train-track
technology of Bestvina, Feighn and Handel [10], [11].

The analogies between the outer automorphism groups GL(n,Z), Out(Fn) and
Modg

∼= Out(Σg) (the mapping class group) go far beyond the observation that
GL(2,Z) ∼= Out(F2) ∼= Mod1. Indeed much of the work on mapping class groups
and automorphisms of free groups is premised on such analogies [9, 91, 44]. Karen
Vogtmann has been particularly influencial in promoting this idea.
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2. CAT(0) spaces and their isometries

The theory of CAT(0) spaces has had a huge impact in recent years, not only in
geometric group theory but also in the study of low-dimensional manifolds and
rigidity phenomena in geometry. (This influence, which owes much to the work of
Gromov, is easy to discern in the proceedings of recent ICMs including this one.)
My purpose here is not to survey this field but rather to highlight some features of
the basic theory with an eye on their quasi-fication in the next section. My book
with André Haefliger [35] provides a thorough introduction to the subject.

2.1. CAT(0) spaces. Following A.D. Alexandrov, one defines non-positive
curvature in the context of length spaces X by means of the CAT(0) inequality,
which requires that small triangles inX be no fatter than their comparison triangles
in the Euclidean plane. Thus one compares triangles ∆ = ∆(x1, x2, x3) consisting
of three points x1, x2, x3 ∈ X and three geodesic segments [xi, xj ] to triangles
∆(x1, x2, x3) ⊂ E2 with d(xi, xj) = d(xi, xj). A point p on the line segment
[xi, xj ] is called a comparison point for p ∈ [xi, xj ] if d(xi, p) = d(xi, p).

A geodesic space is said to be a CAT(0) space if for all triangles ∆ in that space,
d(p, q) ≤ d(p, q) for all comparison points p, q ∈ ∆. And a metric spaceX is defined
to be non-positively curved if every point of X has a neighbourhood that, when
equipped with the induced metric, is a CAT(0) space. Similarly, one defines the
notion of a CAT(−1) space by taking comparison triangles in the hyperbolic plane,
and one defines a space to be negatively curved (in the sense of A.D. Alexandrov)
if it is locally CAT(−1).

Because the CAT(0) condition encapsulates the essence of non-positive cur-
vature so well, non-positively curved metric spaces satisfy many of the elegant
features inherent in the theory of Riemannian manifolds of non-positive sectional
curvature. At the heart of the theory lie local-to-global phenomena that spring
from the fact that the metric on a CAT(0) space X is convex: if c1, c2 : [0, 1] → X
are geodesics, then for all t ∈ [0, 1]

d(c1(t), c2(t)) ≤ (1 − t) d(c1(0), c2(0)) + td(c1(1), c2(1)). (2.1)

This inequality implies that there is a unique geodesic segment joining each
pair of points in X and that X is contractible. The most important example of
a local-to-global phenomenon is the Cartan-Hadamard Theorem: If a complete,
simply-connected metric space is non-positively curved, then it is CAT(0) space.
(See Chapter II.4 of [35] for a more general result and references.)

It follows from this theorem that compact non-positively curved spaces have
contractible universal covers and hence provide classifying spaces. The usefulness
of this observation is greatly enhanced by two facts. First, Gromov’s link condition
([35] p.206) enables one to reduce the question of whether a polyhedral complex
supports a metric of non-positive curvature to a question about the geometry of
links in that complex; this allows arguments that proceed by induction on the
dimension of the complex, and if the cells are sufficiently regular (e.g. cubes) it
can lead to purely combinatorial criteria for the existence of metrics of non-positive
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curvature. Secondly, gluing theorems ([35] II.11) allow one to preserve non-positive
curvature while combining spaces according to group-theoretic constructions that
one wishes to perform at the level of π1, such as amalgamated free products Γ1∗ZΓ2.

2.2. Splitting theorems. A rich vein of ideas begins with Alexandrov’s
observation that, when considering a triangle ∆ in a complete CAT(0) space X ,
if one gets any non-trivial equality in the CAT(0) inequality, then ∆ spans an
isometrically embedded triangular Euclidean disc in X . This observation leads one
quickly to the fact that any pair of geodesic lines R → X a bounded distance apart
must bound a flat strip in X , and thence to a Product Decomposition Theorem:
Let c : R → X be a geodesic line and let P be the set of geodesic lines c′ contained
in a bounded neighborhood of c(R). Let c′0 ∈ c′(R) be the unique point closest to
c(0) and let X0

c = {c′0 | c′ ∈ P}. Then
⋃
{c′(R) | c′ ∈ P} is isometric to X0

c × R.
This places severe restrictions on the way groups can act on CAT(0) spaces.

Proposition 2.1. If Γ acts properly and cocompactly by isometries on a CAT(0)
space and γ ∈ Γ has infinite order, then the centralizer CΓ(γ) has a subgroup of
finite index that splits as a direct product C0 = N × 〈γ〉.

To prove this, one considers the union Min(γ) of the geodesic lines in X that
are left invariant by γ. The Product Decomposition Theorem gives a splitting
Min(γ) = Y0 ×R. The centralizer CΓ(γ) preserves Min(γ) and its splitting, acting
by translations on the second factor. CΓ(γ) is finitely generated (3.3), so the image
of CΓ(γ) → Isom(R) is isomorphic to Zr for some r. Projecting onto a direct factor
of Zr gives an epimorphism φ from a subgroup of finite index C0 ⊂ CΓ(γ) to 〈γ〉.
Hence C0 = kerφ× 〈γ〉. A similar argument proves:
If a finitely generated group Γ acts by isometries on a CAT(0) space (the action need
not be proper) and a central subgroup A ∼= Zn acts freely by hyperbolic isometries,
then Γ has a subgroup of finite index that contains A as a direct factor.

These results give us our first glimpse of the fact that centralizers play an
important role in non-positively groups. Many groups that lie in SH and Auto
are seen not to lie in C0 because their centralizers do not virtually split; examples
include mapping class groups [77] and central extensions of hyperbolic groups [79].
Such central extensions are defined by bounded cocycles and hence are quasi-
isometric to the corresponding direct products. It follows that C0 is not closed
under quasi-isometry.

More elaborate arguments akin to the one sketched above allow one to general-
ize splitting theorems proved in the Riemannian setting by D. Gromoll and J. Wolf
[61] and B. Lawson and S. Yau [74] (see [35] pp. 239-253).

Theorem 2.2. If a group Γ = Γ1×Γ2 with trivial centre acts properly and cocom-
pactly by isometries on a CAT(0) space in which geodesics can be extended locally,
then Γ1 and Γ2 also admit such actions.

Theorem 2.3. If Γ acts properly and cocompactly by isometries on a CAT(0)
space X, then every solvable subgroup S ⊂ Γ is finitely generated and virtually
abelian. Moreover, S leaves invariant an isometrically embedded copy of Euclidean
space En ↪→ X on which is acts cocompactly.
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A refinement of the last part of this theorem can be used to identify constraints
on the length functions γ 7→ minx d(x, γ.x) associated to semisimple actions on
CAT(0) spaces. Such constraints serve as obstructions to the existence of actions
both absolutely and in certain dimensions [18], [25], [57].

2.3. Subgroups in C0. As one pursues an understanding of the groups that
act properly and cocompactly by isometries on CAT(0) spaces one finds increas-
ingly subtle obstructions to the existence of metrics of non-positive curvature on
aspherical spaces. In order to get at the heart of this subtlety one wants to by-
pass the obstructions to semisimple actions. One way of doing this is to focus on
the finitely presented subgroups of fundamental groups of compact non-positively
curved spaces. It transpires that such subgroups form a much more diverse class
than the fundamental groups themselves — see [35] III.Γ.5, [29] and Section 5.

In very low dimensions, finitely presented subgroups are well-behaved [29]. If Γ
is the fundamental group of a compact non-positively curved manifold of dimension
≤ 3 (allowing boundary) then so too is each of its finitely generated subgroups.

A similar result holds for complexes of dimension ≤ 2, except that one has to
impose the hypothesis that the subgroups are finitely presented. In higher dimen-
sions all manner of additional obstructions emerge: higher finiteness conditions,
the complexity of decision problems, the structure of centralizers, etc. The subtlety
of the situation is illustrated by the following construction [29].

Theorem 2.4. There exist pairs of closed aspherical manifolds Nn ↪→Mn+1 with
the following properties: M supports a metric of non-positive sectional curvature;
π1N ↪→ π1M is a quasi-isometric embedding; the centralizers of all finite subsets
in π1N are fundamental groups of closed aspherical manifolds and have solvable
word and conjugacy problems; but π1N is not semihyperbolic, and hence N does
not support a metric of non-positive curvature.

One sees that π1N is not semihyperbolic by examining the complexity of the
word problem in centralizers: although π1N satisfies a polynomial isoperimetric
inequality, the centralizers of certain elements do not.

2.4. Complexes of Group. An important instance of the local-to-global
effect of non-positive curvature is the Developability Theorem for non-positively
curved complexes of groups. This was inspired by Gromov and proved by Haefliger,
who placed it in the more general setting of groupoids of local isometries [35] p.584.

Complexes of groups were introduced by Haefliger to describe groups actions on
1-connected polyhedral complexes in terms of suitable local data on the quotient.
If a complex of groups arises from such an action then it is said to be developable.
In contrast to the 1-dimensional situation (graphs of groups), complexes of groups
are not developable in general. But, crucially, they are if they satisfy a (local)
non-positive curvature condition [35]. A full account of the theory is given in the
final chapters of our book [35]. In recent years, this theory has played an important
role in the construction of group actions.
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3. Non-Positively Curved Groups

In this section I’ll describe the manifestations of non-positive curvature in group
theory that arise from the following strategy. One starts by identifying a robust fea-
ture of CAT(0) spaces that encapulates much of their large-scale geometry. Then,
given a group Γ with generators A acting properly and cocompactly by isometries
on a CAT(0) space X with basepoint p, one tries to articulate what remains of
this feature when it is pulled-back to the Cayley graph CA(Γ) via the Γ-equivariant
quasi-isometry sending the edge [1, a] (a ∈ A) to the geodesic [p, a.p]. One wants
to define a group to be non-positively curved if it satisfies the resulting condition.
The condition should be strong enough to facilitate a range of theorems analogous
to what one knows about the prototypical groups of isometries, but one wants to
avoid unnecessary hypotheses.

3.1. Hyperbolic groups. Let me recall how such a strategy is implemented
in the hyperbolic case. The prototypical hyperbolic group is a group Γ that acts
properly and cocompactly by isometries on a CAT(−1) space X . By comparing
geodesic triangles ∆ = ∆(x, y, z) in X to triangles ∆ ⊂ H2, one sees that there is a
universal constant δ such that the distance from any point q ∈ [x, y] to [x, z]∪ [z, y]
is at most δ. Moreover, quasigeodesics in CAT(−1) spaces stay uniformly close
to geodesics, so (λ, ε)-quasigeodesic triangles in X are uniformly thin in the same
sense (with a different δ). The quasi-isometry CA(Γ) → X sends geodesic triangles
in CA(Γ) to (λ, ε)-quasigeodesic triangles in X , where λ and ε depend on A and
p. Therefore geodesic triangles in CA(Γ) are also uniformly thin. One takes this to
be the defining property of a hyperbolic group.

Gromov’s great insight is that because the thin triangles condition (which has
many reformulations [35] p.407) encapsulates so much of the essence of the large-
scale geometry of CAT(−1) spaces, the groups whose Cayley graphs satisfy this
condition share almost all of the properties enjoyed by the groups of isometries
that were their prototypes. For example, every hyperbolic group Γ acts properly
and cocompactly on a contractible cell complex, has only finitely many conjugacy
classes of finite subgroups, and contains no copy of Z2. Hyperbolic groups also en-
joy a great deal of algorithmic structure. They are precisely the groups with linear
Dehn functions. Their conjugacy problems can be solved in less than quadratic
time, and conjugacy for finite subsets can also be determined efficiently [36]. Strik-
ingly, the translation lengths τ(γ) = lim d(1, γn)/n of elements of infinite order are
rational numbers with bounded denominators [65, 51]. And given a finite generat-
ing set A, the set of geodesic words for Γ is a regular language, i.e. there is a finite
state automaton that recognises which words label geodesics in CA(Γ).

3.2. The pantheon of non-positively curved groups. The be-
haviour of geodesics described in (2.1) explains much of the global geometry of
CAT(0) spaces, so we apply our strategy to this condition. For the prototype of Γ
acting on X , the geodesics [p, γ.p] pull-back to quasi-geodesics σγ connecting 1 to
γ in CA(Γ). There is no loss of generality in assuming that σγ is an edge-path. By
identifying σγ with the word in the generators A±1 that labels it, we get a map
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Figure 2. The fellow-traveller property

σ : γ 7→ σγ to the free monoid (A ∪ A−1)∗, where the image σ(Γ) can be studied
as a formal language. Following Bill Thurston [55], one calls σ a combing.

The convexity of the metric on X (2.1) implies that there exists a constant
k > 0 such that for all γ, γ ′ ∈ Γ,

d(σγ(t), σγ′(t)) ≤ k d(γ, γ′) (3.1)

for all t ≤ max{|σγ |, |σγ |}. This is called the fellow-traveller property. A group
that admits a combing (normal form) with this property is said to be combable.

All hyperbolic groups Γ are combable: one can take σγ to be any geodesic from
1 to γ but it is better to be systematic, choosing the first word in the dictionary-
ordering obtained by ordering the generating set. If one adopts this systematic
choice, then σ(Γ) will be a regular language. With this in mind, ought one to
include regularity as part of the definition of a non-positively curved group?

Requiring σ(Γ) to be regular leads to the theory of automatic groups, which
sprang from conversations between Bill Thurston and Jim Cannon on the algo-
rithmic properties of Kleinian groups [46] and grew into a rich theory with large
classes of natural examples. It is described in detail in the book by Epstein et al.
[55]. Automatic groups lend themselves well to practical computation.

If σ(Γ) is a regular language, it follows from the fellow-traveller property that
the paths σγ are quasi-geodesics with uniform constants. But in the absence of
regularity it is unclear if one eliminates groups by imposing conditions on the
length of σγ . This question is related to the complexity of the word problem for
combable groups: a diagrammatic argument [21] shows that if one has a function
L : N → N bounding the length of combing lines, |σγ | ≤ L(d(1, γ)), then the
Dehn function of Γ satisfies δΓ(n) 4 nL(n); in particular, if the combing lines are
quasi-geodesics then the group satisfies a quadratic isoperimetric inequality.

Another dilemma arises from the observation that although the convexity of
t 7→ d(c1(t), c2(t)) in the CAT(0) setting follows easily from the special case c1(0) =
c2(0), the analogous statement for groups is false. Thus it is unclear whether every
group Γ that admits a combing with the fellow-traveller property must admit a
combing σ with the stronger property

d(a.σa−1γa′(t), σγ(t)) ≤ k (3.2)

for all a, a′ ∈ A and γ ∈ Γ. Groups that admit such combings are said to be
bicombable [90]. If, in addition, the combing lines are quasi-geodesics (with uniform
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constants) then, following Alonso-Bridson [2], one says the group is semihyperbolic;
this is the smallest of the classes we are discussing that includes C0.

This completes my brief sketch of how the classes Comb, Auto and SH marked
in figure 1 present themselves for study. But are these classes distinct? Geometric
group theory in the 1990s was marred by the absence of examples to distinguish
between them but this situation was now been resolved [26].

Theorem 3.1. There exist combable groups that are neither bicombable nor auto-
matic.

Once one knows that combable groups need not be automatic, it is natural to
ask what classes or groups are incorporated if one places weaker constraints on
the linguistic complexity of the formal language σ(Γ) ⊆ (A ∪ A−1)∗. Among full
abstract families of languages the regular, context-free and indexed languages form
a hierarchy Reg ⊂ CF ⊂ Ind. If σ(Γ) lies in a family F , one calls σ an F-combing.

Theorem 3.2. [26] There exist Ind-combable groups that are not automatic; some
of these have quadratic Dehn functions, others have cubic ones.

A fascinating aspect of the struggle to understand different manifestations of
non-positive curvature concerns the free-by-cyclic groups Fn o Z. One feels these
groups ought to conform to the expectations of non-positive curvature, yet they
remain enigmatic. Since free-group automorphisms are more complicated than
surface automorphisms, free-by-cyclic groups are more complicated than the fun-
damental groups Σg × Z of 3-manifolds that fibre over the circle. We know that
Fn oφ Z need not be automatic [17] but we don’t know for which φ it is; nor when
it lies in C0. Daniel Groves and I used the train-track technology of [10, 11] to
prove that all Fn o Z lie in IP(2), but this is highly non-trivial.

3.3. Subgroups. We saw in (2.2) that centralizers of groups in SH do not vir-
tually split as they do in C0. However, SH is closed under passage to centralizers of
finite subsets. Theorem 2.2 extends to SH. As for Theorem 2.3, one can prove that
any polycyclic subgroup P of Γ ∈ SH must be virtually abelian and that P ↪→ Γ
must be a quasi-isometric embedding, but it is unknown if abelian subgroups must
be finitely generated. The positive part of this statement ultimately derives from
the fact that translation numbers τ(γ) = lim d(1, γn)/n are positive for elements
of infinite order, while the negative part derives from the fact that, unlike in Hyp
and C0, one does not know if the set of these numbers is discrete. These results
are proved in [2] and [90] using ideas from [59].

In combable groups, the control over centralizers is lost [26].

3.4. The conjugacy and isomorphism problems. If two rectifiable
loops c0, c1 in a compact, non-positively curved space X are freely homotopic, they
are homotopic through loops ct of length l(ct) ≤ max{l(c0), l(c1)}. Accordingly,
there is a constant k > 0 so that any conjugacy between words u0, u1 in the
generators of π1X can be realized by a sequence of moves ut 7→ atuta

−1
t where at is

a generator and d(1, ut) ≤ Kmax{|u0|, |u1|}; see [35] p.445. This control carries
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over to SH and bicombable groups, where it yields a solution to the conjugacy
problem. But control is lost as one weakens the link to CAT(0) spaces [27].

Theorem 3.3. The conjugacy problem is unsolvable in certain combable groups.

Zlil Sela [88] solved the isomorphism problem for torsion-free hyperbolic groups.
His solution was recently extended to a large class of relatively hyperbolic groups
by F. Dahmani and D. Groves [48]. When combined with the topological rigidity
theorem of T. Farrell and L. Jones [56], Sela’s result implies that the homeomor-
phism problem is solvable among closed n-manifolds, n ≥ 5, that admit a metric of
negative curvature. The results of Farrell and Jones remain valid for non-positively
curved manifolds and there is therefore considerable interest in the isomorphism
problem in SH, C0 and the subclass consisting of the fundamental groups of such
manifolds. These problems remain open, but beyond SH decidability is lost:

Theorem 3.4. [27] The isomorphism problem is unsolvable among combable groups.

To prove this one seeks a recursive sequence 〈A | Rn〉 of presentations of com-
bable groups such that there is no algorithm that decides which are isomorphic.
Starting with a hyperbolic group H in which there is no algorithm to decide when
maps φn : Fr → H are epic, one extends φn to a homomorphism φ̂n : F2r → H and
defines 〈A | Rn〉 to be a certain presentation of Γ∗Σ(n) Γ, where Γ = (Z2 ∗H)×F2r

and Σ(n) = {(φ̂n(x), x) | x ∈ F2r} is quasi-isometrically embedded.

3.5. Asynchronous combings and 3-manifolds. As one moves fur-
ther from the CAT(0) setting and weakens the convexity condition on the metric,
combings arise that only satisfy a weakened form of the fellow-traveller property
(3.1): the paths σγ remain close only after monotone reparameterization.

Little of the strength of non-positive curvature remains in this definition but it
does embrace a much larger class of groups, e.g. [22, 55]. Moreover, the amount of
convexity retained is enough to provide a reasonable solution to the word problem
and to ensure that these groups have classifying spaces with only finitely many
cells in each dimension. Epstein et al. examined what happens when one requires
σ(Γ) to be regular. Bob Gilman [32] and I explored larger families of languages.

Epstein and Thurston [55] proved that the fundamental group of a compact
3-manifold M is automatic if and only if it satisfies a quadratic isoperimetric
inequality (which excludes connected summands that are torus bundles over the
circle with infinite holonomy). Gilman and I, building on [22], sharpened the
negative part of their theorem and proved that by using indexed languages one can
construct combings that encode the coarse geometry of any cocompact 3-manifold.
(This result relies on the fact that 3-manifolds are geometrizable.)

Theorem 3.5. The fundamental group of every compact 3-manifold M is asy-
chronously Ind-combable, but in some cases π1M is not asychronously CF-combable.
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4. Word problems and filling invariants

4.1. Dehn functions. The word problem for finitely presented groups has
been at the heart of combinatorial group theory since its inception. When one
attacks the word problem for a finitely presented group Γ = 〈A | R〉 directly, one’s
chances of success depend heavily on the Dehn function δΓ : N → N. Given a word
w in the kernel of the map from the free group F (A) to Γ, one defines

Area(w) := min{N | w
free
=

N∏

i=1

x−1
i rixi some xi ∈ F (A), ri ∈ R±1} (4.1)

and

δΓ(n) := max{Area(w) | w =Γ 1, |w| ≤ n}.

The subscript on δΓ is somewhat misleading since different finite presentations
of the same group will in general yield different Dehn functions. This ambigu-
ity is tolerated because it is tightly controlled: if the groups defined by two fi-
nite presentations are isomorphic, or just quasi-isometric, the corresponding Dehn
functions are ' equivalent in the following sense: given two monotone functions
f, g : [0,∞) → [0,∞), one writes f 4 g if there exists a constant C > 0 such that
f(l) ≤ C g(Cl+C) +Cl+C for all l ≥ 0, and f ' g if f 4 g and g 4 f ; and one
extends this relations to include functions N → [0,∞).

If δΓ(n) 4 nd, one says that Γ satisfies a polynomial isoperimetric inequality of
degree d. See [30] for references and basic facts about Dehn functions.

The first step from word problems to filling problems is provided by van Kam-
pen’s Lemma [70], which states that Area(w) is equal to the least number of 2-cells
in any van Kampen diagram for w. Such a diagram describes a combinatorial fill-
ing (i.e. null-homotopy) for the loop labelled w in the 1-skeleton of the 2-complex
K = K(A,R) described in the first paragraph of the introduction.

Suppose Γ = 〈A | R〉 acts properly and cocompactly by isometries on a Rieman-
nian manifold X . Fix p ∈ X . If X is simply connected, the quasi-isometry γ 7→ γ.p
extends to a Γ-equivariant map φ : K̃ → X . An edge-loop σ in CA(Γ) = K̃(1) de-
fines a piecewise-geodesic loop φ◦σ inX , and a van Kampen diagram that describes
a filling of σ defines a singular disc in X with boundary φ ◦ σ. Conversely, any
rectifiable loop c in X can be approximated by a word-like loop φ◦σ whose length
is linearly bounded by that of c and (more delicately) disc-fillings g : D2 → X with
g|∂D = c give rise to van Kampen diagrams for σ.

This line of thought, initiated by Gromov, suggests that the large-scale be-
haviour of Riemannian filling-discs — quantified by features such as area, radius,
diameter etc. — should be translated to the setting of van Kampen diagrams.
Then, in the spirit of van Kampen’s Lemma, these features can be used to mea-
sure the complexity of the word problem in Γ. The following implementation of
this strategy was described by Gromov and presented in detail in [30] (also [45]).

Let M be a compact Riemannian manifold with universal cover M̃ . Define the
filling area FArea(c) of a rectifiable loop c : S1 → M̃ to be the infimum of the
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areas of all Lipschitz maps g : D → X where D is the standard 2-disc and g|∂D is
a monotone reparameterization of c. Consider

FillM (l) := sup{FArea(c) | c : S1 → M̃ length(c) ≤ l},

the genus zero, 2-dimensional, isoperimetric function of M .

Theorem 4.1 (Filling Theorem). FillM (l) ' δπ1M (l).

A similar statement holds for isoperimetric functions of more general compact
spaces with upper curvature bounds. Similar theorems also hold with area replaced
by other invariants of the geometry of filling-discs. Among these, the most actively
studied is intrinsic diameter (i.e. diameter measured in the induced length metric
on the disc); in this case, FArea and the Dehn function are replaced by (intrinsic)
isodiametric functions. When translated into algebra, bounds on intrinsic diameter
correspond to bounds on the length of the conjugating words xi in (4.1).

Results giving lower bounds on intrinsic diameter often proceed via extrinsic
diameter, i.e. diameter measured in the metric on the ambient space. It was only
recently that Tim Riley and I constructed the first compact manifolds for which
the isodiametric functions corresponding to the choice intrinsic-versus-extrinsic
have distinct asymptotic behaviour [43]. This extends a considerable body of work
relating different aspects of the geometry of filling discs [64, 84].

4.2. The Isoperimetric Spectrum. A major theme in geometric group
theory in the 1990s and into this century has been the struggle to determine which
' classes of functions arise as Dehn functions. (I shall say little about the comple-
mentary challenge of calculating the Dehn functions of groups of special interest.)

The development of our knowledge can be charted by how the set

IP = {ρ ∈ [1,∞) | f(n) = nρ is ' a Dehn function}

came to be understood. This set is called the isoperimetric spectrum. I should
emphasize that it is far from the case that all Dehn functions are of the form nα:
there are non-polynomial Dehn functions such as nα logn, as well as examples
of small presentations with huge Dehn functions, e.g. faster than any iterated
exponential (see 4.4). If Γ has unsolvable word problem, δΓ(n) will grow faster
than any recursive function (indeed this serves as a definition of such groups).

The class of groups with linear Dehn functions coincides with the class of hy-
perbolic groups. The non-hyperbolic groups in C0 and Auto have quadratic Dehn
functions. Certain combable groups have cubic Dehn functions (3.2), as does the
3-dimensional Heisenberg group. In about 1992, sequences of groups (Γd)d∈N such
that the Dehn function of Γd is polynomial of degree d were discovered by Gro-
mov [64], Baumslag-Miller-Short [7], and Bridson-Pittet [42]. The literature now
contains such sequences with all manner of additional properties. An example of
a group whose Dehn function is polynomial of degree d + 1 is Zd oφ Z, where
φ ∈ GL(d,Z) has 1s on the diagonal and superdiagonal and zeroes elsewhere.

A result of Gromov [65], reproved by many people, states that if the Dehn
function of a group is sub-quadratic (i.e. δΓ(n) = o(n2)) then δΓ(n) ' n. Thus
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IP∩ (1, 2) is empty. This begs the question of what other gaps there may be in IP,
and whether there are any non-integral exponents at all. I settled this last question
by constructing the abc groups of [20], formed by taking three torus bundles over
the circle (different dimensions) and amalgamating their fundamental groups along
central cyclic subgroups. Indiscrete families of exponents were first constructed in
[86]. Noel Brady and I [15] completed the understanding of the coarse structure
of IP by constructing a dense set of exponents in [2,∞).

Theorem 4.2. The closure of IP is {1} ∪ [2,∞).

We proved this by associating to each pair of positive integers p ≥ q an aspher-
ical 2-complex whose fundamental group

Gp,q = 〈a, b, s, t | [a, b] = 1, saqs−1 = apb, taqt−1 = apb−1〉,

has Dehn function ' n2 log
2
(2p/q). These complexes are obtained by attaching a

pair of annuli to a torus in a manner that ensures the existence of a family of
discs in the universal cover that display a certain snowflake geometry. With Max
Forester and Ravi Shankar [16], we developed a more sophisticated version of the
snowflake construction that yields a much larger class of isoperimetric exponents,
showing in particular that [2,∞) ∩ Q ⊆ IP.

Once one knows that IP is not a discrete set, one assumes that it will follow the
general pattern of group theory by exhibiting all plausible levels of complexity. This
expectation is realized in a remarkable piece of work by M. Sapir, J-C. Birget and
E. Rips [86] who give a comprehensive description of Dehn functions δΓ(n) < n4 by
encoding the time functions of Turing machines. (The fine structure of IP ∩ (2, 4)
has yet to be determined.) In a subsequent work with A.Yu. Ol’shanskii [19] the
same authors prove that the word problem for Γ is in NP if and only if Γ is a
subgroup of a finitely presented group with polynomial Dehn function.

4.3. Groups with quadratic Dehn functions. The structure of IP
provides us with two classes of groups that demand special attention — the groups
with linear Dehn functions (which we know to be the hyperbolic groups) and the
groups with quadratic Dehn functions. It is far from clear what to expect from
groups in this second class. They have simply-connected asymptotic cones [80]
but so do many (not all [23]) other groups with polynomial Dehn functions. It
is unknown if they all have a solvable conjugacy problem. IP(2) contains many
nilpotent groups N that are not virtually abelian and certain non-nilpotent poly-
cyclic groups [53]. It is unknown if it contains any solvable groups that are not
virtually polycyclic. Thurston proposed that SL(n,Z), n ≥ 4, should be in IP(2)
but this has not been confirmed. V. Guba [67] proved that Richard Thompson’s
group (which is torsion-free, of type FP∞, and infinite dimensional) lies in IP(2).
Groves and I proved the same for groups of the form Fn o Z [33].

4.4. Applications to the geometry and topology of manifolds.
The dictionary of equivalence illustrated by the Filling Theorem translates infor-
mation about Dehn functions into statements about the geometry of manifolds.
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But there are also less obvious mechanisms that allow one to gain geometric and
topological information from an understanding of the nature of Dehn functions.

The Andrews-Curtis conjecture is one of the famous open problems of low-
dimensional topology. It is related to the Zeeman conjecture and the smooth
4-dimensional Poincaré conjecture [72]. It asserts that one can reduce any bal-
anced presentation 〈a1, . . . , an | r1, . . . , rn〉 of the trivial group to the presentation
〈a1, . . . , an | a1, . . . , an〉 by a sequence of certain elementary moves. The main
construction of [31] associates a balanced presentation Pw to each word w in the
generators of a group B satisfying a deletion condition. Pw presents the trivial
group if and only if w = 1 in B. Moreover, if Pw presents {1} then it satisfies
the Andrews-Curtis conjecture but the number of elementary moves required to
trivialise it is bounded below by log Area∗B(w).

One gets dramatic lower bounds by taking B = 〈a, t | [tat−1, a] = ar−1〉,
since δB(n) ' ∆rblog2 nc where ∆r(m) is defined by ∆r(1) := r and ∆r(m+1) :=
r∆r(m). In this case Pw has 4 generators and relations of total length 2(10+|w|+r).

In a remarkable series of papers, A. Nabutovsky and S. Weinberger [78] use
Dehn functions to explore the sub-level sets of functionals such as diameter on
moduli spaces of metrics for closed manifolds Mn, n ≥ 5. The constructions in
[31] allow one to extend parts of their work to dimension 4.

4.5. Higher-dimensional isoperimetric inequalities. In the Rie-
mannian context, having considered the isoperimetric problem for discs filling
loops, it is natural to explore fillings of higher-dimensional spheres. In particu-
lar one wants to understand the isoperimetric function that bounds the volume
of optimal ball-fillings. Correspondingly, one defines the k-th order Dehn function
δ(k) of a finitely presented group Γ that has a classifying space X with a compact
(k+1)-skeleton X(k+1). Such functions were introduced by Gromov [64]. Roughly
speaking δ(k)(l) bounds the number of (k + 1)-cells required to fill any singular
k-sphere in X(k) comprised of at most l k-cells. The algebraic foundations of the
subject were worked out carefully by Alonso et al. [3] and interpreted more topo-
logically in [24]. From an algebraic point of view, δ(k)(l) provides the least upper
bound on the number of summands required to express an element [f ] ∈ πk(X(k))
as a Γ-linear combination of the attaching maps of the (k + 1)-cells of X . The '
equivalence class of δ(k) is an invariant of quasi-isometry.

In each dimension k one has the isoperimetric spectrum

IP(k) = {α ∈ [1,∞) | f(x) = xα is ' a k-th order Dehn function}.

Until recently, our knowledge even for IP(2) was remarkably sparse, but my recent
work with Brady, Forester and Shankar [16] remedies this. We prove that if P is
an irreducible non-negative integer matrix with Perron-Frobenius eigenvalue λ > 1,
and r is an integer greater than every row sum in P , then for every k ≥ 2 there is
a group Γ = Σk−1Gr,P with a compact (k + 1)-dimensional classifying space such

that δ(k)(x) ' x2 log
λ
(r). It follows from this and a related result in [16] that IP(k)

is dense in the range [1+1/k,∞). Indeed the case of 1×1 matrices alone leads to:

Theorem 4.3. Q ∩ [1 + 1
k ,∞) ⊂ IP(k).
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The exponent 1+1/k arises for Zk+1. Comparing with IP = IP(1), it is tempting

to speculate that IP
(k)

= {1} ∪ [1 + 1/k,∞) but there are reasons to doubt this.

One suspects that the fine structure of IP(k) is similar to that of IP(1).

The group Gr,P is the fundamental group of an aspherical 2-complex Xr,P

assembled from a finite collection of annuli and tori; the rational number r encodes
the multiplicities of the attaching maps while the matrix P encodes a prescription
for the number and orientation of the tubes connecting each pair of tori. Least-
area discs in X̃r,P exhibit a more subtle form of the snowflake geometry from
[15]. When r is an integer, certain families of these discs admit a precise scaling
by a factor of r. One stacks scaled copies of them to form embedded 3-balls in
the universal covering of the mapping torus associated to a certain 2-letter HNN
extension ΣGr,P of Gr,P . These balls provide a lower bound on δ(2) of ΣGr,P ; this
proves to be sharp. The balls inherit the scaling property, so one can iterate.

The calculation of δ(k) for Σ(k−1)Gr,P involves an induction on dimension. In
order to make this work smoothly, one must bound not only the isoperimetric
behaviour of disc-fillings for spheres but also the isoperimetric behaviour of other
pairs of compact manifolds (M,∂M) mapping to the complexes in question. The
topological approach to δ(k) taken in [24] is well-adapted to such generalizations.

The homological filling invariants of the groups Σ(k−1)Gr,P exhibit a similar
range of behaviour. Such invariants provide upper bounds on the size of (cellular)
(k+1)-chains needed to fill k-cycles in the universal covering of a classifying space
with finite (k + 1)-skeleton; size is measured using the `1-norm associated to the
cellular basis. These invariants are easier to work with than their homotopical
counterparts and relate well to the Riemannian setting – see [64] and [55] chap. 10.

5. Subdirect products of hyperbolic groups

The results in this section highlight a dichotomy in the behaviour of the finitely
presented subgroups of direct products of hyperbolic groups: in general the struc-
ture of such subgroups can be fiendishly complicated; but for free groups and limit
groups, these subgroups are remarkably controlled.

5.1. Encoding wildness. E. Rips [85] found a simple algorithm that asso-
ciates to a finite presentation Q a short exact sequence 1 → N → H → Q → 1,
where Q is the group that Q presents, N is a 2-generator group, and H is a 2-
dimensional hyperbolic group. To get H from Q, one adds two new generators
a1, a2, replaces the relations r = 1 of Q by relations r = Ur(a1, a2) and adds a new
relation x−ε

i ajx
ε
i = Vi,j,ε(a1, a2) for each generator xi in Q and j = 1, 2, ε = ±1;

the words Ur and Vi,j,ε are chosen to satisfy a small-cancellation condition. This
construction depends on the specific presentation Q, not just the group Q.

The flexibility of the Rips construction is such that (at the expense of increasing
the number of generators of N) one can arrange for H to have additional properties
such as being the fundamental group of a compact negatively curved 2-complex
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[93], [35] p.225, or residually finite [94]. Thus one can encode all of the complex-
ity of finite group-presentations (the lions of figure 1) into the finitely generated
subgroups of such H . But such constructions say nothing about finitely presented
subgroups because, by a theorem of R. Bieri [14], N is not finitely presentable if
Q is infinite. The following theorem from [6] obviates this difficulty.

Theorem 5.1 (1-2-3 Theorem). Suppose that 1 → N → Γ → Q
p
→ 1 is exact.

If N is finitely generated, Γ is finitely presented and Q is of type F3, then the
fibre-product P := {(γ1, γ2) | p(γ1) = p(γ2)} ⊆ Γ × Γ is finitely presented.

The name of this theorem comes from the fact that the groups N,Γ, Q are
assumed to be of type F1, F2 and F3 respectively. (Recall that a group G is of
type Fk if there exists a K(G, 1) with compact k-skeleton.) The F3 hypothesis
says π2 of a presentation 2-complex for Q is finitely generated as a ZQ-module.
This allows one to control the relations among the generators of N ×N (cf. [4]).

By combining the Rips construction and the 1-2-3 Theorem, one can encode
the complexities of arbitrary finitely presented groups directly into the structure of
finitely presented subgroups of direct products of hyperbolic groups.

An application of this principle is described it the next section. Several other
applications are given in [6], one of which was refined in [40] to prove that there
exist 2-dimensional hyperbolic groups Γ such that there is no algorithm to decide
isomorphism among the finitely presented subgroups of Γ × Γ × Γ.

5.2. Subdirect products of surface Groups. John Stallings [89] and
Robert Bieri [13] showed that among the kernels of maps from direct products of
free groups to abelian groups one finds a range of finiteness properties; in particular
there exist finitely presented subgroups of F2 × F2 × F2 whose third homology is
not finitely generated and finitely presented subgroups S of a direct product of
n free groups that are of type Fn−1 with Hn(S,Z) not finitely generated. Thus
one senses that the wild behaviour observed above may continue among subdirect
products of free groups, and indeed it does for finitely generated subgroups [76].

But Gilbert Baumslag and Jim Roseblade proved that the only finitely pre-
sented subgroups S of a direct product of two free groups are the obvious ones:
such S are free or have a subgroup of finite index that is the product of its inter-
sections with the factors. Howie, Miller, Short and I [39] discovered an analogous
phenomenon in higher dimensions, cf. (5.3).
If a subgroup S of a direct product of n free and surface groups is of type4 Fn then
S has a subgroup of finite index that is a direct product of free and surface groups.

The case of surface groups is important because of its implications concerning
the fundamental groups of compact Kähler manifolds. The work of Delzant and
Gromov [52] shows that if such a group Γ is torsion-free and has sufficient multi-
ended splittings, then there is an exact sequence 1 → Zn → Γ0 → S → 1, where
S is a subdirect product of surface groups and Γ0 ⊂ Γ has finite index. Motivated
by this, one would like to understand all finitely presented subdirect products of

4It is enough that finite-index subgroups of S have Hi(−, Z) finitely generated for i ≤ n.
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surface groups. In [41] Miller and I proved the following theorem and a weaker
version (involving nilpotent quotients) for products of arbitrarily many surfaces.

Theorem 5.2. If S is a finitely presented subgroup of a direct product of at most
three surface groups, then either S is virtually a product of free and surface groups
(the case where S is of type F3) or else G is virtually the kernel of a map from a
product of surface groups to an abelian group (the Stallings-Bieri situation).

One hopes that a complete classification of the finitely presented subdirect
products of free and surface groups may be within reach. What we have already
proved shows that the conjugacy and membership problems are solvable for all
finitely presented subgroups of direct products of surface groups. This would not
remain true if one were to replace surface groups by arbitrary 2-dimensional hyper-
bolic groups or Kleinian groups. Likewise, the splitting phenomenon for subgroups
of type Fn does not extend to these classes. But it is does extend to limit groups.

5.3. Limit groups again. A finitely generated group L is fully residually
free if for each finite subset X ⊂ L there is a homomorphism to a finitely generated
free group ψX : L → F that is injective on X . It is difficult to prove that such L
are finitely presented but it is then easy to deduce that these are the limit groups
defined in (1.2). The term limit group was coined by Sela to connote that these
are the groups that occur as limits of stable sequences φn : G → F , where G is
an arbitrary finitely generated group and stable means that for each g ∈ G either
Ig = {n ∈ N : φn(g) = 1} or Jg = {n ∈ N : φn(g) 6= 1} is finite; the limit is the
quotient of G by {g | |Ig | = ∞}.

Such sequences arise when one studies Hom(G,F ). A homomorphism φ : G →
F gives an action of G on the tree that it the Cayley graph of F , and it is profitable
to examine sequences (φn) in the space of G-actions on R-trees. By bringing to
bear much of what is known about such spaces, Sela ([87] et seq.) obtains a finite
parameterization of Hom(G,F ) and a hierarchical decomposition of limit groups.
His description of the elementarily free groups EF ⊂ L solves a famous problem of
A. Tarski. Similar results were obtained in a parallel project by O. Kharlampovich
and A. Myasnikov [71]. For an introduction to limit groups, see [10].

Jim Howie and I [37, 38] and H. Wilton [92] have been using Sela’s work to
explore the subgroup structure of limit groups and their direct products. The
similarities with surface groups include:

Theorem 5.3. [37] If G1, . . . , Gn are elementarily free and Γ ⊂ G1 × · · · × Gn

is of type FPn, then there are finitely presented subgroups Hi ⊂ Gi such that Γ is
isomorphic to a finite-index subgroup of H1 × · · · ×Hn.

It is likely that this can be extended from EF to L as conjectured by Sela.

6. Two questions of Grothendieck

In this section I shall outline my solution with Fritz Grunewald to two problems
concerning profinite completions and representations of groups that were posed by
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Alexander Grothendieck in 1970 [66]. The proof exemplifies two general points
that I made earlier: the importance of being able to craft groups with specific
properties, and the usefulness of the encodings into subdirect products.

6.1. Profinite completions. The profinite completion of a group Γ is the
inverse limit of the directed system of finite quotients of Γ; it is denoted by Γ̂. If Γ
is residually finite, the natural map Γ → Γ̂ is injective. In [66] Grothendieck related
the representation theory of a finitely generated group to its profinite completion:
if A 6= 0 is a commutative ring and u : Γ1 → Γ2 is a homomorphism of finitely
generated groups, then û : Γ̂1 → Γ̂2 is an isomorphism if and only the restriction
functor u∗A : RepA(Γ2) → RepA(Γ1) is an equivalence of categories, where RepA(Γ)
is the category of finitely presented A-modules with a Γ-action.

Grothendieck investigated under what circumstances û : Γ̂1 → Γ̂2 being an
isomorphism implies that u is an isomorphism. This led him to pose the following
problem: Let Γ1 and Γ2 be finitely presented, residually finite groups and let u :
Γ1 → Γ2 be a homomorphism such that û : Γ̂1 → Γ̂2 is an isomorphism of profinite
groups. Does it follow that u is an isomorphism from Γ1 onto Γ2?

A negative solution to the corresponding problem for finitely generated groups
was given by Platonov and Tavgen [81]. But there is an emphasis on finite pre-
sentability in Grothendieck’s problem because of his original motivation for study-
ing profinite completions: he wanted to understand the extent to which the topo-
logical fundamental group of a complex projective variety determines the algebraic
fundamental group, and vice versa. In the Spring of 2003 Fritz Grunewald and I
settled Grothendieck’s question in the negative.

Theorem 6.1. There exist residually finite, 2-dimensional, hyperbolic groups H
and finitely presented subgroups P ⊆ Γ := H ×H of infinite index, such that P is
not abstractly isomorphic to Γ, but u : P ↪→ Γ induces an isomorphism û : P̂ → Γ̂.

The first ingredient in the proof is the following distillation of arguments of
Platonov and Tavgen [81]. Let 1 → N → H → Q→ 1 be a short exact sequence of
groups with fibre product u : P ↪→ H ×H. If Q is superperfect5 and has no finite
quotients, and H is finitely generated, then û : P̂ → Ĥ × Ĥ is an isomorphism.

One applies this criterion to the output of an algorithm obtained by combining
D. Wise’s refinement [94] of the Rips construction with the 1-2-3 Theorem [6]:

There is an algorithm that associates to any finite aspherical presentation Q a
short exact sequence 1 → N → H → Q→ 1 and a finite presentation for the fibre
product P ⊂ H ×H, where H is hyperbolic and residually finite.

To complete the proof, one needs suitable input presentations Q. A simple
calculation in homology shows that if a perfect group has a balanced presentation
then it is superperfect. Thus it suffices to construct balanced, aspherical presenta-
tions of infinite groups with no non-trivial finite quotients. The following example
was constructed in [34]; earlier examples are due to G. Higman [69]. Let p ≥ 2.

〈a1, a2, â1, â2 | a−1
1 ap

2a1a
−p−1
2 , â−1

1 âp
2â1â

−p−1
2 , a−1

1 [â2, â
−1
1 â2â1], â

−1
1 [a2, a

−1
1 a2a1]〉.

5H1(Q, Z) = H2(Q, Z) = 0
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At the expense of complicating the construction of the Grothendieck pair P ↪→
Γ×Γ, one can replace the requirement that the input presentation Q be aspherical
by the hypothesis that Q be of type F3. This allows one to associate a Grothendieck
pair to any group of type F3, for if G is a class (such as F3) closed under the
formation of HNN extensions and amalgamated free products along free groups,
one can embed any group G ∈ G into a G ∈ G that has no finite quotients [28].

6.2. Grothendieck’s Tannaka duality groups. In the same paper
[66] as he raised the problem described above, Grothendieck described an idea
for reconstructing a residually finite group from the tensor product structure of
its representation category RepA(Γ). He encoded this structure into a Tannaka
duality group: if Mod(A) is the category of all finitely generated A-modules and
F : RepA(Γ) → Mod(A) is the forgetful functor, Grothendieck defines clA(Γ) to
be the group of natural self-transformations of the functor F that are compatible
with the tensor product ⊗A. And he poses the following problem: If Γ is a finitely
presented, residually finite group, is the natural monomorphism from Γ to clA(Γ)
an isomorphism for every non-zero commutative ring A, or at least some suitable
commutative ring A 6= 0?

Theorem 6.2. [34] If P is one of the groups constructed in Theorem 6.1, then P
is of infinite index in clA(P ) for every commutative ring A 6= 0.

Previously, Alex Lubotzky [75] had exhibited finitely presented, residually finite
groups Γ such that Γ → clA(Γ) is not surjective when A = Z.
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