THE MAXIMUM NUMBER OF THREE TERM ARITHMETIC PROGRESSIONS, AND TRIANGLES IN CAYLEY GRAPHS

ZACHARY CHASE

Abstract

Let G be a finite Abelian group. For a subset $S \subseteq G$, let $T_{3}(S)$ denote the number of length three arithemtic progressions in S and $\operatorname{Prob}[S]=$ $\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}(x+y)$. For any $q \geq 1$ and $\alpha \in[0,1]$, and any $S \subseteq G$ with $|S|=\frac{|G|}{q+\alpha}$, we show $\frac{T_{3}(S)}{|S|^{2}}$ and $\operatorname{Prob}[S]$ are bounded above by $\max \left(\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}, \frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}, \gamma_{0}\right)$, where $\gamma_{0}<1$ is an absolute constant. As a consequence, we verify a graph theoretic conjecture of Gan, Loh, and Sudakov for Cayley graphs.

1. Introduction

The study of arithmetic progressions in subsets of integers and general Abelian groups is a central topic in additive combinatorics and has led to the development of many fascinating areas of mathematics. A famous result on three term arithmetic progressions (3APs) is Roth's theorem, which, in its finitary form, says that for each $\lambda>0$, for N large, any subset $S \subseteq\{1, \ldots, N\}$ of size $|S| \geq \lambda N$ contains a 3AP.

Once Roth's theorem ensures that all subsets of a given size have a 3AP, one can generate many 3APs. For example, Varnavides [4] proved that for each $\lambda>0$, there is some $c>0$ so that for all large N, every subset $S \subseteq\{1, \ldots, N\}$ with $|S| \geq \lambda N$ contains at least $c N^{2} 3 \mathrm{APs}$. A natural question is then how many 3APs a subset of $\{1, \ldots, N\}$ of a prescribed size can have. We look at this question in the group theoretic setting.

Fix $\lambda \in(0,1)$. Let p be a large prime and consider subsets $S \subseteq \mathbb{Z}_{p}$ of size $|S|=\lfloor\lambda p\rfloor$. If $T_{3}(S)$ denotes the number of 3APs in S, namely, the number of $x, d \in \mathbb{Z}_{p}$ with $x, x+d, x+2 d \in S$, then Croot [1] showed that

$$
\lim _{p \rightarrow \infty} \max _{\substack{S \\|S|=\lfloor\lambda p\rfloor}} \frac{T_{3}(S)}{|S|^{2}}
$$

exists, and then Green and Sisask [2] proved that the limit is in fact $\frac{1}{2}$, for all λ less than some absolute constant. In \mathbb{Z}_{n}, for n not prime, the situation is quite different, since subgroups have many 3 APs relative to their size. In this paper, we nevertheless get an upper bound, useful when the size of S is "far" from dividing n.

Date: September 11th, 2018.

Theorem 1. There is an absolute constant $\gamma_{1}<1$ so that for any finite Abelian group G of odd order, and for any $q \in \mathbb{N}, \alpha \in[0,1]$,

$$
\max _{\substack{S \subseteq G \\|S|=\frac{G \mid}{q+\alpha}}} \frac{T_{3}(S)}{|S|^{2}} \leq \max \left(\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}, \frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}, \gamma_{1}\right) .
$$

Related to $\frac{T_{3}(S)}{|S|^{2}}=\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}\left(\frac{x+y}{2}\right)$ is the quantity $\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}(x+y)$. This quantity, which we denote $\operatorname{Prob}[S]$, arises in the expression for the number of triangles in a Cayley graph with generating set S. Precisely, let G be an additive group of size n and $S \subseteq G$ a symmetric set not containing 0 . Connect $x, y \in G$ iff $x-y \in S$. We obtain an undirected graph on G with no self loops. The number of triangles in our graph is

$$
\frac{1}{6} \sum_{a, b, c \in G} 1_{S}(a-b) 1_{S}(b-c) 1_{S}(a-c) .
$$

Let $x=a-b$ and $y=b-c$. Then ranging over c, b, a is equivalent to ranging over c, y, x and thus

$$
|T|=\frac{1}{6} \sum_{x, y, c} 1_{S}(x) 1_{S}(y) 1_{S}(x+y)=\frac{1}{6} n \sum_{x, y \in S} 1_{S}(x+y)=\frac{1}{6} n|S|^{2} \operatorname{Prob}[S] .
$$

Quite recently, Gan, Loh, and Sudakov [3] resolved a conjecture of Engbers and Galvin regarding the maximum number of independent sets of size 3 that a graph with a given minimum degree and fixed size can have. Phrased in complementary graphs, they showed that given a maximum degree d and a positive integer $n \leq$ $2 d+2$, the maximum number of triangles that a graph on n vertices with maximum degree d can have is $\binom{d+1}{3}+\binom{n-(d+1)}{3}$. This immediately raised the question of what the maximum is for $n>2 d+2$. They conjectured the following.

Conjecture (Gan-Loh-Sudakov). Fix $d \geq 2$. For any positive integer n, if we write $n=q(d+1)+r$ for $0 \leq r \leq d$, then the maximum number of triangles that a graph on n vertices with maximum degree d can have is $q\binom{d+1}{3}+\binom{r}{3}$.

For each d, n, an example of a graph achieving $q\binom{d+1}{3}+\binom{r}{3}$ is simply a disjoint union of K_{d+1} 's and a K_{r}. The conjecture for a Cayley graph on an additive group G with generating set $S,|S|=\frac{|G|}{q+\alpha}$, takes the form $\operatorname{Prob}[S] \leq \frac{q+\alpha^{3}}{q+\alpha}$, up to smaller order terms. We verify the conjecture for Cayley graphs when $q \geq 7$.

Theorem 2. There is an absolute constant $\gamma_{0}<1$ so that the following holds. Let G be a finite Abelian group and take $q \in \mathbb{N}, \alpha \in[0,1]$. Then for any symmetric subset $S \subseteq G$ with $|S|=\frac{|G|}{q+\alpha}$,

$$
\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}(x+y) \leq \max \left(\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}, \frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}, \gamma_{0}\right) .
$$

Consequently, the Gan-Loh-Sudakov conjecture holds for Cayley graphs with generating set $|S| \leq \frac{n}{7}$.

We give a fourier analytic proof of Theorems 1 and 2. Here is a quick highlevel overview of the argument. We express the relevant "probability" (either $\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}\left(\frac{x+y}{2}\right)$ or $\left.\frac{1}{\mid S S^{2}} \sum_{x, y \in S} 1_{S}(x+y)\right)$ in terms of the fourier coefficients of 1_{S}. If the probability is large, then some nonzero fourier coefficient must be large. We deduce that (a dilate of) the residues of S of a certain modulus concentrate near 0 . Since there won't be "wraparound" near 0 , this allows us to transfer the problem to \mathbb{Z}, which is a setting where it's easier to bound the relevant probabilities. We can show from the result in \mathbb{Z} that we in fact must have many residues be 0 . This allows us to conclude that S is very close to a subgroup. Induction and a purely combinatorial argument finish the job from there.

Here is an outline of the paper. We first set our notation for Fourier analysis on \mathbb{Z}_{n}. Then we give the proof of Theorems 1 and 2, modulo two Lemmas, which we prove afterwards. After, we show the calculations deducing the Gan-Loh-Sudakov conjecture from our main theorem. Finally, we prove Theorems 1 and 2 when $q=1$.

2. Fourier Analysis on \mathbb{Z}_{n}

In this section, we briefly fix our notation for fourier analysis on \mathbb{Z}_{n} and obtain the fourier representation of the relevant quantities in the proofs to be given below. For a function $f: \mathbb{Z}_{n} \rightarrow \mathbb{C}$, define its (finite) fourier transform $\widehat{f}: \mathbb{Z}_{n} \rightarrow \mathbb{C}$ by

$$
\widehat{f}(m):=\frac{1}{n} \sum_{x \in \mathbb{Z}_{n}} f(x) e^{-2 \pi i \frac{x m}{n}}
$$

The following well-known equalities are straightforward.

$$
\begin{gathered}
\sum_{m \in \mathbb{Z}_{n}}|\widehat{f}(m)|^{2}=\frac{1}{n} \sum_{x \in \mathbb{Z}_{n}}|f(x)|^{2} \\
f(x)=\sum_{m \in \mathbb{Z}_{n}} \widehat{f}(m) e^{2 \pi i \frac{x m}{n}} .
\end{gathered}
$$

Let S be a symmetric subset of \mathbb{Z}_{n}. Then, $\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}(x+y)=$

$$
\begin{aligned}
& \frac{1}{|S|^{2}} \sum_{x, y \in \mathbb{Z}_{n}}\left[\sum_{m_{1} \in \mathbb{Z}_{n}} \widehat{1_{S}}\left(m_{1}\right) e^{2 \pi i \frac{x m_{1}}{n}}\right]\left[\sum_{m_{2} \in \mathbb{Z}_{n}} \widehat{1_{S}}\left(m_{2}\right) e^{2 \pi i \frac{y m_{2}}{n}}\right]\left[\sum_{m_{3} \in \mathbb{Z}_{n}} \widehat{1_{S}}\left(m_{3}\right) e^{2 \pi i \frac{(x+y) m_{3}}{n}}\right] \\
& \quad=\frac{1}{|S|^{2}} \sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{n}} \widehat{1_{S}}\left(m_{1}\right) \widehat{1_{S}}\left(m_{2}\right) \widehat{1_{S}}\left(m_{3}\right)\left[\sum_{x \in \mathbb{Z}_{n}} e^{2 \pi i \frac{x\left(m_{1}+m_{3}\right)}{n}}\right]\left[\sum_{y \in \mathbb{Z}_{n}} e^{2 \pi i \frac{y\left(m_{2}+m_{3}\right)}{n}}\right]
\end{aligned}
$$

and using

$$
\sum_{x \in \mathbb{Z}_{n}} e^{2 \pi i \frac{x k}{n}}=\left\{\begin{array}{lll}
n & k \equiv 0 & (\bmod n) \\
0 & k \not \equiv 0 & (\bmod n)
\end{array}\right.
$$

we obtain

$$
\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}(x+y)=\frac{n^{2}}{|S|^{2}} \sum_{m \in \mathbb{Z}_{n}} \widehat{1_{S}}(-m) \widehat{1_{S}}(-m) \widehat{1_{S}}(m)
$$

However, the symmetry of S implies that $\widehat{1_{S}}(m)=\widehat{1_{S}}(-m)$ for each $m \in \mathbb{Z}_{n}$. Therefore,

$$
\operatorname{Prob}[S]=\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}(x+y)=\frac{n^{2}}{|S|^{2}} \sum_{m \in \mathbb{Z}_{n}} \widehat{1_{S}}(m)^{3}
$$

Similarly, for any subset $S \subseteq \mathbb{Z}_{n}$,

$$
\frac{1}{|S|^{2}} \sum_{x, y \in S} 1_{S}\left(\frac{x+y}{2}\right)=\frac{n^{2}}{|S|^{2}} \sum_{m \in \mathbb{Z}_{n}} \widehat{1_{S}}(m)^{2} \widehat{1_{S}}(-2 m)
$$

3. Proof of Theorems 1 and 2

We induct on q. We discuss the base case $q=1$ in section 6 . Take some $q \geq 2$ and $\alpha \in[0,1]$. Let $S \subseteq \mathbb{Z}_{n}$ be a symmetric ${ }^{1}$ subset with $|S|=\frac{n}{q+\alpha}$.

Let $\gamma=\max \left(\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}, \frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}, \gamma_{0}\right)$. Assume, for the sake of contradiction, that $\operatorname{Prob}[S] \geq \gamma$. Then, as explained in section 2 ,

$$
\sum_{m} \widehat{1_{S}}(m)^{3} \geq \frac{d^{2}}{n^{2}} \gamma
$$

Note $\widehat{1_{S}}(0)^{3}=\frac{d^{3}}{n^{3}}$, so, since $\widehat{1_{S}}(m)$ is real for each m^{2},

$$
\gamma \frac{d^{2}}{n^{2}}-\frac{d^{3}}{n^{3}} \leq \sum_{m \neq 0} \widehat{1_{S}}(m)^{3} \leq\left(\sup _{m \neq 0} \widehat{1_{S}}(m)\right) \cdot \sum_{m \neq 0} \widehat{1_{S}}(m)^{2}=\left(\sup _{m \neq 0} \widehat{1_{S}}(m)\right) \cdot\left[\frac{d}{n}-\frac{d^{2}}{n^{2}}\right],
$$

where we used Plancherel in the last step. Take $m_{0} \neq 0$ with

$$
\widehat{1_{S}}\left(m_{0}\right) \geq \frac{d}{n} \frac{\gamma-\frac{d}{n}}{1-\frac{d}{n}}=: \frac{d}{n} \mu .
$$

Then,

$$
\mu \leq \frac{1}{d} \sum_{x \in S} e^{2 \pi i \frac{m_{0}}{n} x}=\frac{1}{d} \sum_{x \in S} e^{2 \pi i \frac{m_{0} / g}{n / g} x},
$$

where $g:=\operatorname{gcd}\left(m_{0}, n\right)$. Let

$$
A=\left\{x \in \mathbb{Z}_{n}: 2 \pi \frac{m_{0} / g}{n / g} x \in[-2 \pi / 3,2 \pi / 3] \quad(\bmod 2 \pi)\right\}
$$

[^0]$$
B=\mathbb{Z}_{n / g} \backslash A .^{3}
$$

Then, since $\widehat{1_{S}}\left(m_{0}\right)$ is real,

$$
d \mu \leq \sum_{x \in S} \cos \left(2 \pi \frac{m_{0} / g}{n_{0} / g} x\right) \leq|A|+(d-|A|)\left(-\frac{1}{2}\right)
$$

which implies

$$
\frac{|A|}{d} \geq \frac{2 \mu+1}{3}{ }^{4}
$$

For $z \in B$,

$$
\#\left\{(x, y) \in S^{2}: x+y=z\right\} \leq d
$$

and for $z \in A$,

$$
\begin{aligned}
& \#\{(x, y) \in B \times A: x+y=z\} \leq|B| \\
& \#\{(x, y) \in S \times B: x+y=z\} \leq|B| \\
& \#\{(x, y) \in A \times A: x+y=z\}=: C_{z}{ }^{5}
\end{aligned}
$$

Therefore,,

$$
\begin{gathered}
d^{2} \operatorname{Prob}[S] \leq d|B|+2|A||B|+\sum_{z \in A} C_{z} \\
=d(d-|A|)+2|A|(d-|A|)+|A|^{2} \operatorname{Prob}[A] .
\end{gathered}
$$

So, we must have

$$
\operatorname{Prob}[A] \geq \frac{\gamma+2 \frac{|A|^{2}}{d^{2}}-\frac{|A|}{d}-1}{\frac{|A|^{2}}{d^{2}}}
$$

If we let $f(x)=\frac{\gamma+2 x^{2}-x-1}{x^{2}}$, then $f^{\prime}(x)=-2 \gamma x^{-3}+x^{-2}+2 x^{-3}$ is positive for $x>0$. We've shown $\frac{|A|}{d} \geq \frac{2 \mu+1}{3}=: v^{6}$, so we get that

$$
\operatorname{Prob}[A] \geq \frac{\gamma+2 v^{2}-v-1}{v^{2}}=: \beta
$$

We now argue that the weight at 0 must be large. For each $i \in\left[-\frac{1}{3} \frac{n}{g}, \frac{1}{3} \frac{n}{g}\right]$, let $S_{i}=\{x \in S: x \equiv i(\bmod n / g)\}$. Let $a_{i}=\left|S_{i}\right|$. Note that for each $i, j \in\left[-\frac{1}{3} \frac{n}{g}, \frac{1}{3} \frac{n}{g}\right]$ such that $i+j \in\left[-\frac{1}{3} \frac{n}{g}, \frac{1}{3} \frac{n}{g}\right]$,
$\#\left\{\left(x_{i}, y_{j}, z_{i+j}\right) \in S_{i} \times S_{j} \times S_{i+j}: x_{i}+y_{j}=z_{i+j}\right\} \leq \min \left(\left|S_{i}\right|\left|S_{j}\right|,\left|S_{i}\right|\left|S_{i+j}\right|,\left|S_{j}\right|\left|S_{i+j}\right|\right) .^{7}$
The uniqueness of 0 is that $0+0=0$, so that $\#\left\{\left(x_{0}, y_{0}, z_{0}\right) \in S_{0}^{3}: x_{0}+y_{0}=z_{0}\right\}$ cannot be upper bounded by potentially smaller terms $\left|S_{i}\right|, i \neq 0$. Note that the

[^1]sets whose size we just bounded account for all the terms in the computation of $\operatorname{Prob}[A]$, since, by our choice of A, there is no "wraparound"..8

Take γ_{0} so that $\beta>\frac{9}{10}$ (for any q, α). $\gamma_{0}=.949$ works 9. Then Lemma 1 applies and we obtain,

$$
\frac{\left|S_{0}\right|}{|A|} \geq \operatorname{Prob}[A] \geq \beta
$$

It should be noted that we already get a contradiction if $g \leq \beta \nu d$ since we clearly must have $\left|S_{0}\right| \leq g$. In any event, we argue that this large a weight at 0 forces S to be close enough to the subgroup $\left\{0, \frac{n}{g}, \frac{2 n}{g}, \ldots, \frac{(g-1) n}{g}\right\}$ for us to get a direct upper bound on $\operatorname{Prob}[S]$. For ease, let

$$
\begin{gathered}
D=\{x \in S: x \equiv 0 \quad(\bmod n / g)\} \\
E=S \backslash D
\end{gathered}
$$

Then,

$$
\begin{gathered}
\operatorname{Prob}[S]=\frac{1}{d^{2}} \sum_{x, y \in S} 1_{S}(x+y) \\
=\frac{|D|^{2}}{d^{2}} \frac{1}{|D|^{2}} \sum_{x, y \in D} 1_{S}(x+y)+\frac{2}{d^{2}} \sum_{x \in D, y \in E} 1_{S}(x+y)+\frac{1}{d^{2}} \sum_{x, y \in E} 1_{S}(x+y) .
\end{gathered}
$$

Using that D is contained in a subgroup disjoint from E, we have the following (in)equalities

$$
\begin{gathered}
\sum_{x, y \in D} 1_{S}(x+y)=\sum_{x, y \in D} 1_{D}(x+y) \\
\sum_{x \in D, y \in E} 1_{S}(x+y)=\sum_{x \in D, y \in E} 1_{E}(x+y)=\sum_{y \in E} \sum_{x \in D} 1_{-y+E}(x) \leq \sum_{y \in E}|E| \\
\sum_{x, y \in E} 1_{S}(x+y) \leq|E|^{2} .^{10}
\end{gathered}
$$

Hence,

$$
\operatorname{Prob}[S] \leq \frac{|D|^{2}}{d^{2}} \operatorname{Prob}[D]+\frac{3}{d^{2}}|E|^{2}
$$

Using a cheaper "approximation" argument, similar to the one used previously, that doesn't capitalize on the fact that D is contained in a subgroup disjoint from E will yield an upper bound for $\operatorname{Prob}[S]$ larger than 1 .

[^2]Note $\frac{|D|}{d}=\frac{|D|}{|A|} \frac{|A|}{d} \geq \beta \nu$. Let $\eta=\frac{|D|}{d}, k=\frac{n}{g} \in \mathbb{N}, q^{\prime}=\left\lfloor\frac{g}{|D|}\right\rfloor$, and $\alpha^{\prime}=\frac{g}{|D|}-q^{\prime}$. Then by induction and the obvious observation that $\operatorname{Prob}[D]$ is independent of whether the ambient group is \mathbb{Z}_{n} or $\left\{0, \frac{n}{g}, \ldots,(g-1) \frac{n}{g}\right\}$,

$$
\operatorname{Prob}[D] \leq \max \left(\frac{\left(q^{\prime}\right)^{2}-\alpha^{\prime} q^{\prime}+\left(\alpha^{\prime}\right)^{2}}{\left(q^{\prime}\right)^{2}}, \frac{\left(q^{\prime}\right)^{2}+2 \alpha^{\prime} q^{\prime}+4\left(\alpha^{\prime}\right)^{2}-6 \alpha^{\prime}+3}{\left(q^{\prime}+1\right)^{2}}, \gamma_{0}\right)
$$

hence,
$\operatorname{Prob}[S] \leq \eta^{2} \max \left(\frac{\left(q^{\prime}\right)^{2}-\alpha^{\prime} q^{\prime}+\left(\alpha^{\prime}\right)^{2}}{\left(q^{\prime}\right)^{2}}, \frac{\left(q^{\prime}\right)^{2}+2 \alpha^{\prime} q^{\prime}+4\left(\alpha^{\prime}\right)^{2}-6 \alpha^{\prime}+3}{\left(q^{\prime}+1\right)^{2}}, \gamma_{0}\right)+3(1-\eta)^{2}$.
Note that the induction is justified, as $q^{\prime}=\left\lfloor\frac{g}{|D|}\right\rfloor \leq \frac{g}{|D|}<q$, since $\frac{g}{|D|} \leq \frac{n / 2}{\beta v d} \leq \frac{n / 2}{\frac{3}{4} d}=$ $\frac{2}{3}(q+\alpha)$, where we used that $\beta v \geq \frac{3}{4}$, which holds for $q \geq 2$. We finish by appealing to Lemma 2, which indeed applies when $\beta \nu \geq \frac{3}{4}$.

The above proof readily extends to an arbitrary finite Abelian group. Fix $r \geq 1$ and positive integers n_{1}, \ldots, n_{r}. Let $n=n_{1} \ldots n_{r}$ and S be a subset of $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{r}}$ of size $|S|=\frac{n}{q+\alpha}$. Since $\widehat{1_{S}}(0, \ldots, 0)=\frac{|S|}{n}$ and Plancherel holds, there is some $\left(m_{1}, \ldots, m_{r}\right) \neq(0, \ldots, 0)$ with

$$
\frac{d}{n} \mu:=\frac{d}{n} \frac{\gamma-\frac{d}{n}}{1-\frac{d}{n}} \leq \widehat{1_{S}}\left(m_{1}, \ldots, m_{r}\right)=\frac{1}{n} \sum_{\left(x_{1}, \ldots, x_{r}\right) \in S} e^{2 \pi i\left(\frac{m_{1} x_{1}}{n_{1}}+\cdots+\frac{m_{r} x_{r}}{n_{r}}\right)}
$$

Analogous to before, letting $A=\left\{\left(x_{1}, \ldots, x_{r}\right) \in S: 2 \pi\left(\frac{m_{1} x_{1}}{n_{1}}+\cdots+\frac{m_{r} x_{r}}{n_{r}}\right) \in\right.$ $\left.\left[\frac{-2 \pi}{3}, \frac{2 \pi}{3}\right](\bmod 2 \pi)\right\}$, we must have $\frac{|A|}{d} \geq \frac{2 \mu+1}{3}$. Let $S_{j}=\left\{\left(x_{1}, \ldots, x_{r}\right) \in S\right.$: $\left.e^{2 \pi i\left(\frac{m_{1} x_{1}}{n_{1}}+\cdots+\frac{m_{r} x_{r}}{n_{r}}\right)}=e^{2 \pi i \frac{j}{n}}\right\}$. Then, as before, we must have $\frac{\left|S_{0}\right|}{|A|} \geq \beta$. But S_{0} is a subgroup of $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{r}}$, so the same inductive argument finishes the job.

4. Proof of Lemmas

Lemma 1. Fix $d \geq 1$ and $\epsilon \in\left[0, \frac{1}{10}\right)$. Let $\left\{a_{j}\right\}_{j \in \mathbb{Z}}$ be a collection of non-negative integers such that $\sum_{i \in \mathbb{Z}} a_{i}=d$ and $a_{j}=a_{-j}$ for each $j \in \mathbb{Z}$. Then if

$$
\sum_{i, j} \min \left(a_{i} a_{j}, a_{i} a_{i+j}, a_{j} a_{i+j}\right) \geq(1-\epsilon) d^{2}
$$

we must have that

$$
a_{0} \geq(1-\epsilon) d
$$

Proof. Define $\operatorname{supp}\left(a_{j}\right):=\operatorname{supp}\left(\left(a_{j}\right)_{j \in \mathbb{Z}}\right):=\#\left\{n \geq 1: a_{n} \neq 0\right\}$. We induct on $\operatorname{supp}\left(a_{j}\right)$, with base case $\operatorname{supp}\left(a_{j}\right)=0$ obvious. Let $\left(a_{j}\right)_{j \in \mathbb{Z}}$ have $\operatorname{supp}\left(a_{j}\right)=: N+1$. Let $n+1$ be the largest index j for which $a_{j} \neq 0$. First assume that $a_{n+1} \leq \frac{1}{10} d$.

Define $\left(b_{j}\right)_{j \in \mathbb{Z}}$ via $b_{j}=a_{j}$ if $|j| \leq n$ and $b_{j}=0$ if $|j| \geq n+1$. Then $b_{j}=b_{-j}$ for $j \in \mathbb{Z}, \operatorname{supp}\left(b_{j}\right) \leq N$, and $\sum_{j \in \mathbb{Z}} b_{j}=d-2 a_{n+1}$. Note that

$$
\begin{gathered}
A_{n+1}:=\sum_{i, j} \min \left(a_{i} a_{j}, a_{i} a_{i+j}, a_{j} a_{i+j}\right) \\
\leq \sum_{i, j} \min \left(b_{i} b_{j}, b_{i} b_{i+j}, b_{j} b_{i+j}\right)+2 \sum_{k=1}^{n} a_{k} a_{n+1}+4 \sum_{-n \leq k \leq-1} a_{n+1} a_{k}+2 a_{n+1}^{2}+4 a_{n+1}^{2} \\
=: A_{n}+6 a_{n+1}\left(\frac{d-a_{0}-2 a_{n+1}}{2}\right)+6 a_{n+1}^{2} .
\end{gathered}
$$

Here we counted the number of ways $n+1$ or $-(n+1)$ can occur as $i+j$ for $i, j \neq 0$, then the number of ways $n+1$ or $-(n+1)$ can occur as i or j with no 0 as the other coordinate, and then accounted for the terms $(i, j)=(n+1,-(n+1)),(-(n+$ $1), n+1),(n+1,0),(-(n+1), 0),(0, n+1)$, and $(0,-(n+1))$. If $A_{n+1} \geq(1-\epsilon) d^{2}$, then

$$
(*) \quad A_{n} \geq(1-\epsilon) d^{2}-3 a_{n+1}\left(d-a_{0}\right)
$$

We first show $3 a_{0} \geq(1+2 \epsilon) d$. Bounding $a_{0} \geq 0$ in $\left(^{*}\right)$ gives

$$
A_{n} \geq \frac{(1-\epsilon) d^{2}-3 a_{n+1} d}{\left(d-2 a_{n+1}\right)^{2}}\left(d-2 a_{n+1}\right)^{2}
$$

To use the claim applied to $\left(b_{j}\right)_{j \in \mathbb{Z}}$ and total weight $d-2 a_{n+1}$, we must check that

$$
1-\frac{(1-\epsilon) d^{2}-3 a_{n+1} d}{\left(d-2 a_{n+1}\right)^{2}}<\frac{1}{10}
$$

It suffices to show

$$
1-\frac{(1-\epsilon) d^{2}-3 a_{n+1} d}{\left(d-2 a_{n+1}\right)^{2}}<\epsilon .
$$

Rearranging gives

$$
a_{n+1}<\frac{1-4 \epsilon}{4(1-\epsilon)} d
$$

which is true for $\epsilon<1 / 10$ and $a_{n+1}<\frac{d}{10}$. Hence, by induction,

$$
3 a_{0} \geq 3\left[\frac{(1-\epsilon) d^{2}-3 a_{n+1} d}{\left(d-2 a_{n+1}\right)^{2}}\right]\left(d-2 a_{n+1}\right)=3 \frac{(1-\epsilon) d^{2}-3 a_{n+1} d}{\left(d-2 a_{n+1}\right)} .
$$

This is larger than $(1+2 \epsilon) d$ iff

$$
a_{n+1}<\frac{2-5 \epsilon}{7-4 \epsilon} d
$$

This is true for $\epsilon<1 / 10$ and $a_{n+1}<d / 10$.
Now, let α be such that

$$
(1-\epsilon) d^{2}-3 a_{n+1}\left(d-2 a_{n+1}-a_{0}\right)-6 a_{n+1}^{2}=(1-\alpha)\left(d-2 a_{n+1}\right)^{2} .
$$

Then, assuming $\alpha<\frac{1}{10}$, we can use induction to get that

$$
a_{0} \geq(1-\alpha)\left(d-2 a_{n+1}\right) .
$$

So to finish the induction, it suffices to show that

$$
(1-\alpha)\left(d-2 a_{n+1}\right) \geq(1-\epsilon) d,
$$

which is equivalent to

$$
\frac{(1-\epsilon) d^{2}-3 a_{n+1}\left(d-a_{0}\right)}{d-2 a_{n+1}} \geq(1-\epsilon) d
$$

which, after simplifying, is equivalent to

$$
3 a_{0}>(1+2 \epsilon) d,
$$

which we have proven. Therefore, all we need to do is prove $\alpha<\frac{1}{10}$. It suffices to show $\alpha<\epsilon$. But, as we've just noted, $(1-\alpha)\left(d-2 a_{n+1}\right) \geq(1-\epsilon) d$, so $\alpha \leq$ $1-\frac{(1-\epsilon) d}{d-2 a_{n+1}} \leq 1-\frac{(1-\epsilon) d}{d}=\epsilon$, as desired.

We finish by arguing that we in fact must have $a_{n+1}<\frac{d}{10}$ for $\epsilon<\frac{1}{10}$. First note

$$
\sum_{i, j} a_{i} a_{j}-\sum_{i, j} \min \left(a_{i} a_{j}, a_{i} a_{i+j}, a_{j} a_{i+j}\right) \geq 4 \sum_{1 \leq k \leq n} a_{k} a_{n+1}+2 a_{n+1}^{2}
$$

Therefore, we have that

$$
d^{2} \geq(1-\epsilon) d^{2}+4 a_{n+1}\left(\frac{d-a_{0}-2 a_{n+1}}{2}\right)+2 a_{n+1}^{2}
$$

and hence,

$$
2 a_{n+1}^{2}-2 a_{n+1}\left(d-a_{0}\right)+\epsilon d^{2} \geq 0
$$

As one can verify, the proof given above (for $a_{n+1}<\frac{d}{10}$) works regardless of what a_{n+1} is, if $a_{0}>\left(\frac{1+2 \epsilon}{3}\right) d$. Therefore, we may assume $a_{0} \leq\left(\frac{1+2 \epsilon}{3}\right) d$ and get that we must have

$$
2 a_{n+1}^{2}-2 a_{n+1}\left(\frac{2-2 \epsilon}{3}\right) d+\epsilon d^{2} \geq 0
$$

So, $\frac{a_{n+1}}{d}<\frac{\frac{2-2 \epsilon}{3}-\sqrt{\left(\frac{2-2 \epsilon}{3}\right)^{2}-2 \epsilon}}{2}$ or $\frac{a_{n+1}}{d}>\frac{\frac{2-2 \epsilon}{3}+\sqrt{\left(\frac{2-2 \epsilon}{3}\right)^{2}-2 \epsilon}}{2}$. However, the first expression in ϵ is less than $\frac{1}{10}$ for $\epsilon<\frac{1}{10}$, and the second expression is greater than $\frac{1}{2}$ for $\epsilon<\frac{1}{10}$. Since we clearly can't have $a_{n+1}>\frac{d}{2}$, we're done.

Remark. It should be noted that the largest we can possibly take ϵ in the statement of Lemma 1 is $\epsilon=\frac{2}{9}$. Consider, for example, $a_{0}, a_{-1}, a_{1}=\frac{d}{3}$. Extending Lemma 1 from $\epsilon<\frac{1}{10}$ to $\epsilon<\frac{2}{9}$ will just slightly lower the value of γ_{0}, and will not allow one to get all the way down to $q \leq 3$.

Remark. In the 3AP setting we may not necessarily have that $a_{j}=a_{-j}$ for each $j \in \mathbb{Z}$. However, a suitable adjustment of the given proof shows that, for ϵ small enough, $\sum_{i, j} \min \left(a_{i} a_{j}, a_{i} a_{\frac{i+j}{2}}, a_{j} a_{\frac{i+j}{2}}\right) \geq(1-\epsilon) d^{2}$ implies $a_{j} \geq(1-\epsilon) d$ for some j. We can then just translate S to assume $j=0$.

Lemma 2. For $q \in \mathbb{N}, \alpha \in[0,1]$, define

$$
F(q, \alpha)=\max \left(\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}, \frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}, \gamma_{0}\right) .
$$

For any $q \geq 2, \alpha \in[0,1], 1 \leq k \leq q, \eta \in\left(\frac{3}{4}, 1\right]$, if we let $q^{\prime}=\left\lfloor\frac{q+\alpha}{k \eta}\right\rfloor$ and $\alpha^{\prime}=\frac{q+\alpha}{k \eta}-q^{\prime}$, then

$$
\eta^{2} F\left(q^{\prime}, \alpha^{\prime}\right)+3(1-\eta)^{2}<F(q, \alpha) .
$$

Proof. Fix any $q, k, q^{\prime} \geq 1$ and $\alpha \in[0,1]$. Substitute $\eta=\frac{q+\alpha}{\left(q^{\prime}+\alpha^{\prime}\right) k}$ and let

$$
f\left(\alpha^{\prime}\right):=\frac{(q+\alpha)^{2}}{k^{2}} \frac{1}{\left(q^{\prime}+\alpha^{\prime}\right)^{2}} F\left(q^{\prime}, \alpha^{\prime}\right)+3\left(1-\frac{q+\alpha}{\left(q^{\prime}+\alpha^{\prime}\right) k}\right)^{2} .
$$

We show that $f\left(\alpha^{\prime}\right)$ attains its maximum at (one of) the extreme values of α^{\prime}. Define

$$
\begin{gathered}
f_{1}\left(\alpha^{\prime}\right):=\frac{(q+\alpha)^{2}}{k^{2}} \frac{1}{\left(q^{\prime}+\alpha^{\prime}\right)^{2}} \frac{\left(q^{\prime}\right)^{2}-\alpha^{\prime} q^{\prime}+\left(\alpha^{\prime}\right)^{2}}{\left(q^{\prime}\right)^{2}}+3\left(1-\frac{q+\alpha}{\left(q^{\prime}+\alpha^{\prime}\right) k}\right)^{2} \\
f_{2}\left(\alpha^{\prime}\right):=\frac{(q+\alpha)^{2}}{k^{2}} \frac{1}{\left(q^{\prime}+\alpha^{\prime}\right)^{2}} \frac{\left(q^{\prime}\right)^{2}+2 \alpha^{\prime} q^{\prime}+4\left(\alpha^{\prime}\right)^{2}-6 \alpha^{\prime}+3}{(q+1)^{2}}+3\left(1-\frac{q+\alpha}{\left(q^{\prime}+\alpha^{\prime}\right) k}\right)^{2} .
\end{gathered}
$$

A straightforward computation shows

$$
\begin{gathered}
f_{1}^{\prime}\left(\alpha^{\prime}\right)=\frac{q+\alpha}{k^{2}} \frac{1}{\left(q^{\prime}+\alpha^{\prime}\right)^{3}} . \\
{\left[\left(2 \alpha^{\prime}-q^{\prime}\right)\left(\alpha^{\prime}+q^{\prime}\right)(q+\alpha)-2\left(\left(\alpha^{\prime}\right)^{2}-2 q^{\prime} \alpha^{\prime}+\left(q^{\prime}\right)^{2}\right)(q+\alpha)+6\left(k\left(\alpha^{\prime}+q^{\prime}\right)-(q+\alpha)\right)\right]} \\
f_{2}^{\prime}\left(\alpha^{\prime}\right)=\frac{q+\alpha}{k^{2}} \frac{1}{\left(q^{\prime}+\alpha^{\prime}\right)^{3}} . \\
{\left[\left(\alpha^{\prime}+q^{\prime}\right)\left(8 \alpha^{\prime}+2\left(q^{\prime}-3\right)\right)(q+\alpha)-2\left(4\left(\alpha^{\prime}\right)^{2}+2\left(q^{\prime}-3\right) \alpha^{\prime}+\left(q^{\prime}\right)^{2}+3\right)(q+\alpha)+6\left(k\left(\alpha^{\prime}+q^{\prime}\right)-(q+\alpha)\right)\right]}
\end{gathered}
$$

In each $f_{j}^{\prime}\left(\alpha^{\prime}\right)$, in the brackets, the quadratic term in α^{\prime} vanishes. Therefore, in the brackers is a term linear in α^{\prime}. In $f_{1}^{\prime}\left(\alpha^{\prime}\right)$ the coefficient of α^{\prime} is $q^{\prime}(q+\alpha)+4 q^{\prime}(q+\alpha)+6 k$, which is positive. Similarly, the coefficient of α^{\prime} in $f_{2}^{\prime}\left(\alpha^{\prime}\right)$ is $8 q^{\prime}(q+\alpha)+2\left(q^{\prime}-3\right)(q+$ $\alpha)-4\left(q^{\prime}-3\right)(q+\alpha)+6 k=\left(6 q^{\prime}+6\right)(q+\alpha)+6 k$, which is positive. Hence, $f_{1}\left(\alpha^{\prime}\right), f_{2}\left(\alpha^{\prime}\right)$ attain their maximum values only at the extreme values of α^{\prime}. Since $f\left(\alpha^{\prime}\right)=\max \left(f_{1}^{\prime}\left(\alpha^{\prime}\right), f_{2}^{\prime}\left(\alpha^{\prime}\right)\right)^{11}$, we see that $f\left(\alpha^{\prime}\right)$ attains its maximum at (one of) the extreme values of α^{\prime}.

Suppose $\frac{q+\alpha}{\left(q^{\prime}+\alpha^{\prime}\right) k}<1$ for some $\alpha^{\prime} \in(0,1)$. Then $\frac{q+\alpha}{\left(q^{\prime}+1\right) k}<1$. Note $\alpha^{\prime}=1 \Longrightarrow$ $F\left(q^{\prime}, \alpha^{\prime}\right)=1$, and $\eta^{2}+3(1-\eta)^{2}$ is increasing for $\eta>\frac{3}{4}$. Since $\eta>\frac{3}{4}$ and since $\eta<1$, we take $\eta=\frac{q+\alpha}{q+1}\left(\right.$ since $\left.q^{\prime} k \in \mathbb{N}\right)$. We obtain $\frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}$, which, of course, is at most $F(q, \alpha)$.

[^3]If $\frac{q+\alpha}{q^{\prime} k}<1$, then we take $\alpha^{\prime}=0$ and argue as above. Otherwise, the extreme value of α^{\prime} is the one making $\eta=1$, namely $\alpha_{\text {crit }}^{\prime}=\frac{q+\alpha}{k}-q^{\prime}$. At $\eta=1$, our desired inequality becomes $F\left(q^{\prime}, \alpha_{\text {crit }}^{\prime}\right) \leq F(q, \alpha)$. Since $\alpha_{\text {crit }}^{\prime} \in[0,1]$ and $q^{\prime} \in \mathbb{N}$, we have $q^{\prime}=\left\lfloor\frac{q+\alpha}{k}\right\rfloor, \alpha_{c r i t}^{\prime}=\left\{\frac{q+\alpha}{k}\right\}$, the fractional part. Therefore, it just suffices to show, generally, that

$$
q, k \geq 1, \alpha \in[0,1] \Longrightarrow F\left(\left\lfloor\frac{q+\alpha}{k}\right\rfloor,\left\{\frac{q+\alpha}{k}\right\}\right) \leq F(q, \alpha) .
$$

Clearly, the inequality holds if $F\left(\left\lfloor\frac{q+\alpha}{k}\right\rfloor,\left\{\frac{q+\alpha}{k}\right\}\right)=\gamma_{0}$. If $q=2$, then either $k=1$ and the inequality is an equality, or $k=2$ and $F\left(\left\lfloor\frac{q+\alpha}{k}\right\rfloor,\left\{\frac{q+\alpha}{k}\right\}\right)=F\left(1, \frac{\alpha}{2}\right)=$ $1-\frac{\alpha}{2}+\frac{\alpha^{2}}{4}$, while $F(q, \alpha) \geq \frac{4-2 \alpha+\alpha^{2}}{4}=1-\frac{\alpha}{2}+\frac{\alpha^{2}}{4}$. So, assume $q \geq 3$.

Note that $\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}=1-\frac{\alpha}{q}+\left(\frac{\alpha}{q}\right)^{2}$ is decreasing in $\frac{\alpha}{q}$ if $\frac{\alpha}{q}<\frac{1}{2}$. And for $q \geq 3$, $\frac{\alpha}{q}, \frac{\left\{\frac{q+\alpha}{k+}\right\}}{\left\lfloor\frac{q+\alpha}{k}\right\rfloor}<\frac{1}{2}$. Therefore, to show that

$$
\frac{\left\lfloor\frac{q+\alpha}{k}\right\rfloor^{2}-\left\{\frac{q+\alpha}{k}\right\}\left\lfloor\frac{q+\alpha}{k}\right\rfloor+\left\{\frac{q+\alpha}{k}\right\}^{2}}{\left\lfloor\frac{q+\alpha}{k}\right\rfloor^{2}} \leq \frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}},
$$

it suffices to show

$$
\frac{\left\{\frac{q+\alpha}{k}\right\}}{\left\lfloor\frac{q+\alpha}{k}\right\rfloor} \geq \frac{\alpha}{q}
$$

But $q\left\{\frac{q+\alpha}{k}\right\}=q\left(\frac{q+\alpha}{k}-\left\lfloor\frac{q+\alpha}{k}\right\rfloor\right)$, so the inequality reduces to $\frac{q}{k} \geq\left\lfloor\frac{q+\alpha}{k}\right\rfloor$, which is true since $\left\lfloor\frac{q+\alpha}{k}\right\rfloor=\left\lfloor\frac{q}{k}\right\rfloor$, since if $\frac{q}{k}<m \in \mathbb{N}$, then $\frac{q}{k} \leq m-\frac{1}{k}$.

Next, observe that

$$
\frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}=\frac{(q+1)^{2}-(2-2 \alpha)(q+1)+(2-2 \alpha)^{2}}{(q+1)^{2}}
$$

so since $\frac{2-2 \alpha}{q+1} \leq \frac{1}{2}$ for $q \geq 3$, as before it suffices to show that

$$
\frac{2-2\left\{\frac{q+\alpha}{k}\right\}}{\left\lfloor\frac{q+\alpha}{k}\right\rfloor+1} \geq \frac{2-2 \alpha}{q+1} .
$$

However, substituting $\left\{\frac{q+\alpha}{k}\right\}=\frac{q+\alpha}{k}-\left\lfloor\frac{q+\alpha}{k}\right\rfloor$, collecting terms with $q+\alpha$, and simplifying yields the equivalent

$$
\left\lfloor\frac{q+\alpha}{k}\right\rfloor+1 \geq \frac{q+1}{k} .
$$

And this is clearly true.

5. Verifying the Gan-Loh-Sudakov Conjecture for Cayley Graphs

We verify that our bound implies the bound in the Gan-Loh-Sudakov conjecture when $q \geq 7$. Take a finite Abelian group G and a symmetric subset $S \subseteq G$ not containing 0 . Let $n=|G|, S_{0}=S \cup\{0\}, d=|S|, q=\left\lfloor\frac{n}{\left|S_{0}\right|}\right\rfloor$, and $\alpha=\frac{n}{\left|S_{0}\right|}-q$. The benefit of working with S_{0} is that the graph-theoretic bound takes the simpler form

$$
\left|T_{c o n j}\right| \leq q\binom{d+1}{3}+\binom{r}{3}=q\binom{\left|S_{0}\right|}{3}+\binom{\alpha\left|S_{0}\right|}{3}
$$

Note
$\operatorname{Prob}\left[S_{0}\right]=\frac{1}{\left|S_{0}\right|^{2}} \sum_{x, y \in S_{0}} 1_{S_{0}}(x+y)=\frac{1}{\left|S_{0}\right|^{2}}\left[\sum_{x, y \in S} 1_{S_{0}}(x+y)+2 \sum_{y \in S} 1_{S_{0}}(y)+1_{S_{0}}(0+0)\right]$.
Taking into account that for each $x \in S$ there is exactly one $y \in S$ for which $x+y=0$, we see

$$
\operatorname{Prob}[S]=\frac{\left|S_{0}\right|^{2}}{|S|^{2}}\left[\operatorname{Prob}\left[S_{0}\right]-\frac{3|S|+1}{\left|S_{0}\right|^{2}}\right]
$$

The number of triangles in our Cayley graph is thus

$$
\frac{1}{6} n|S|^{2} \operatorname{Prob}[S]=\frac{1}{6}(q+\alpha)\left|S_{0}\right|^{3}\left[\operatorname{Prob}\left[S_{0}\right]-\frac{3|S|+1}{\left|S_{0}\right|^{2}}\right] .
$$

For ease, let $M=\max \left(\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}, \frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}, \gamma_{0}\right)$ so that, by Theorem 2 applied to S_{0} (which is symmetric), we may bound the number of triangles by

$$
\frac{1}{6}(q+\alpha) M\left|S_{0}\right|^{3}-\frac{1}{6}(q+\alpha)\left|S_{0}\right|\left(3\left|S_{0}\right|-2\right)
$$

As one may check, this is less than $q\binom{\left|S_{0}\right|}{3}+\binom{\alpha\left|S_{0}\right|}{3}$ iff

$$
\left[\left(q+\alpha^{3}\right)-(q+\alpha) M\right]\left|S_{0}\right|^{3}+\left[3 \alpha-3 \alpha^{2}\right]\left|S_{0}\right|^{2} \geq 0
$$

Therefore, it suffices to have $M \leq \frac{q+\alpha^{3}}{q+\alpha}$. We have $\gamma_{0} \leq \frac{q+\alpha^{3}}{q+\alpha}$ for all $q \geq 7$ and any $\alpha \in[0,1]$. And, for any $q \geq 1, \alpha \in[0,1]$,

$$
\begin{gathered}
\frac{q+\alpha^{3}}{q+\alpha}-\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}=\frac{\alpha^{3}\left(q^{2}-1\right)}{q^{2}(q+\alpha)} \\
\frac{q+\alpha^{3}}{q+\alpha}-\frac{q^{2}+2 \alpha q+4 \alpha^{2}-6 \alpha+3}{(q+1)^{2}}=\frac{(1-\alpha)^{2}(q-1)((2+\alpha) q+3 \alpha)}{(q+1)^{2}(q+\alpha)}
\end{gathered}
$$

are non-negative.

6. Base Case $q=1$

We finish by proving Theorems 1 and 2 when $|S|=\frac{n}{1+\alpha}$ for some $\alpha \in[0,1]$. Note

$$
\sum_{y \in S} \sum_{x \in G} 1_{S}(x+y)=\sum_{y \in S}|S|=|S|^{2} .
$$

So,

$$
\sum_{x, y \in S} 1_{S}(x+y)=|S|^{2}-\sum_{x \notin S} \sum_{y \in S} 1_{S}(x+y)=|S|^{2}-\sum_{x \notin S}|(-x+S) \cap S| .
$$

By pigeonhole, $|(-x+S) \cap S| \geq 2|S|-n$, and thus,

$$
|S|^{2} \operatorname{Prob}[S] \leq|S|^{2}-\sum_{x \notin S}(2|S|-n)=|S|^{2}\left(1-\alpha+\alpha^{2}\right)
$$

As $1-\alpha+\alpha^{2}=\frac{q^{2}-\alpha q+\alpha^{2}}{q^{2}}$ for $q=1$, Theorem 2 is established. Replacing S with $2 S$ in the appropriate places establishes Theorem 1 as well.

7. Acknowledgments

I would like to thank Po-Shen Loh for telling me the graph theoretic conjecture. I would also like to thank Adam Sheffer and Cosmin Pohoata for helpful comments.

References

[1] E. Croot, The minimal number of three-term arithmetic progressions modulo a prime converges to a limit, Canad. Math. Bull., 51 (2008), 47-56.
[2] B. Green and O. Sisask. On the maximal number of 3 -term arithmetic progressions in subsets of $\mathbb{Z} / p \mathbb{Z}$. Bull. Lond. Math. Soc., 40(6):945-955, 2008.
[3] W. Gan, P. Loh, and B. Sudakov, Maximizing the number of independent sets of a fixed size, Combinatorics, Probability and Computing, 24 (2015), 521-527
[4] P. Varnavides On Certain Sets of Positive Density Journal London Math. Soc. 34 (1959), 358-360.
[5] J. Cutler and A. J. Radcliffe, The Maximum Number of Complete Subgraphs of Fixed Size in a Graph with Given Maximum Degree. J. Graph Theory, 84 (2017), 134-145

Department of Mathematics, California Institute of Technology, Pasadena, CA, 91125

E-mail address: zchase@caltech.edu

[^0]: ${ }^{1}$ In the 3AP setting, we do not assume S is symmetric.
 ${ }^{2}$ In the 3AP setting, we instead do $\gamma \frac{d^{2}}{n^{2}}-\frac{d^{3}}{n^{3}} \leq \sup _{m \neq 0}\left|\widehat{1_{S}}(-2 m)\right| \cdot\left[\frac{d}{n}-\frac{d^{2}}{n^{2}}\right]$. Then we take m_{0} with $\left|\widehat{1_{S}}\left(m_{0}\right)\right| \geq \frac{d}{n} \mu$. Finally, we can translate S so that $\widehat{1_{S}}\left(m_{0}\right)$ is real and positive.

[^1]: ${ }^{3}$ In the 3 AP setting, we let $A=\left\{x \in \mathbb{Z}_{n}: 2 \pi \frac{m_{0} / g}{n / g} x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}$ and $B=\mathbb{Z}_{n / g} \backslash A$.
 ${ }^{4}$ In the 3AP setting, we get $d \mu \leq|A|+(d-|A|) 0$ and thus $\frac{|A|}{d} \geq \mu$.
 ${ }^{5}$ In the 3AP setting, the sets will merely have $2 z$ instead of z - the same estimates thus hold.
 ${ }^{6}$ In the 3AP setting, we have $\nu:=\mu$.
 ${ }^{7}$ In the 3AP setting, we'll be looking at $\left[-\frac{1}{4} \frac{n}{g}, \frac{1}{4} \frac{n}{g}\right]$ instead. Also, we'll have $2 z_{\frac{i+j}{2}} \in S_{\frac{i+j}{2}}$ instead of $z_{i+j} \in S_{i+j}$, and $\left|S_{\frac{i+j}{2}}\right|$ instead of $\left|S_{i+j}\right|$. This alters Lemma 1 not too significantly.

[^2]: ${ }^{8}$ In the 3 AP setting, the lack of wraparound for $x, y \in\left[-\frac{1}{4} \frac{n}{g}, \frac{1}{4} \frac{n}{g}\right](\bmod n / g)$ follows from the fact that either $x+y$ is even and then of course $\frac{x+y}{2} \in\left[-\frac{1}{4} \frac{n}{g}, \frac{1}{4} \frac{n}{g}\right]$, or it's odd and then $\frac{x+y}{2}=(x+y) \frac{n+1}{2}=\frac{x+y-1}{2}+\frac{g-1}{2} \frac{n}{g}+\frac{\frac{n}{g}+1}{2}=\frac{x+y-1}{2}+\frac{\frac{n}{g}+1}{2}(\bmod n / g) ;$ since $\frac{x+y-1}{2} \in\left[-\frac{1}{4} \frac{n}{g}, \frac{1}{4} \frac{n}{g}\right]$ we therefore see that $\frac{x+y}{2} \notin\left[-\frac{1}{4} \frac{n}{g}, \frac{1}{4} \frac{n}{g}\right](\bmod n / g)$.
 ${ }^{9}$ In the 3AP setting, we get a larger value for γ_{1}, but of course, a value less than 1 .
 ${ }^{10}$ In the 3AP setting, we replace $x+y$ with $\frac{x+y}{2}$. If $x, y \in D$, then $\frac{x+y}{2} \in D$. And if $x \in D, y \in E$, then $x+y$ can't be in $2^{-1} D=D$. The three analogous (in)equalities thus hold.

[^3]: ${ }^{11}$ Clearly $\eta^{2} \gamma_{0}+3(1-\eta)^{2} \leq \gamma_{0}$ for $\eta \in\left(\frac{3}{4}, 1\right)$, since $\gamma_{0}>\frac{3}{7}$. So, we assume $F\left(q^{\prime}, \alpha^{\prime}\right) \neq \gamma_{0}$.

