# ON THE ITERATES OF DIGIT MAPS 

ZACHARY CHASE


#### Abstract

Given a base $b$, a "digit map" is a map $f: \mathbb{Z} \geq 0 \rightarrow \mathbb{Z} \geq 0$ of the form $f\left(\sum_{i=0}^{n} a_{i} b^{i}\right)=\sum_{i=0}^{n} f_{*}\left(a_{i}\right), 0 \leq a_{i} \leq b-1$ for each $i$, where $f_{*}:\{0,1, \ldots, b-$ $1\} \rightarrow \mathbb{Z} \geq 0$ satisfies $f_{*}(0)=0$ and $f_{*}(1)=1$. It has been proven for $b=10$ and $f_{*}(m)=m^{2}$, and various generalizations thereof, that there are arbitrarily long sequences of consecutive positive integers that end up at 1 under repeated application of $f$. In this paper, we significantly generalize these results, providing a complete classification of digit maps for which, given any periodic point $n$, there are arbitrarily long sequences of consecutive positive integers that end up $n$.


## 1. Introduction

In this paper, we look at functions that take in a positive integer and output the sum of its values on the digits of that integer. Precisely, for a fixed base $b$, we start with a function $f_{*}:\{0,1, \ldots, b-1\} \rightarrow \mathbb{Z}^{\geq 0}$ and then obtain a map $f: \mathbb{Z}^{\geq 0} \rightarrow \mathbb{Z}^{\geq 0}$ given by $f\left(\sum_{i=0}^{n} a_{i} b^{i}\right)=\sum_{i=0}^{n} f_{*}\left(a_{i}\right)$, where $0 \leq a_{i} \leq b-1$. We study long-term iterates of the map $f$; that is, we start with a positive integer $n$ and repeatedly apply $f$, to obtain the sequence $n, f(n), f(f(n)), f(f(f(n))), \ldots$

In Richard Guy's book "Unsolved Problems in Number Theory", Guy poses many questions regarding $(2,10)$-happy numbers [3]. An $(e, b)$-happy number is a number that, under iterates of the digit map $f$ induced by $f_{*}(m)=m^{e}$ in base $b$, eventually reaches 1. In [4], Pan proved that there exist arbitrarily long sequences of consecutive $(e, b)$-happy numbers assuming that if a prime $p$ divides $b-1$, then the integer $p-1$ does not divide $e-1$.

A question appearing in Guy's book [3] is that of gaps in the happy number sequence. It is easy to see that, for any digit map, every positive integer eventually ends up in some finite cycle, i.e. a collection of positive integers $\left\{n_{1}, \ldots, n_{k}\right\}$ such that $f\left(n_{i}\right)=n_{i+1}$ for $1 \leq i \leq k-1$ and $f\left(n_{k}\right)=f\left(n_{1}\right)$. For example, the cycles generated by the $(2,10)$-happy number digit map are $\{1\}$ and $\{4,16,37,58,89,145,42,20\}$. A gap in the happy number sequence, therefore, corresponds to consecutive numbers that end up in the latter cycle. In this paper, a special case of what we prove is that indeed for any $u$ in an $(e, b)$-happy number cycle, we can find arbitrarily long sequences of consecutive integers that end up in the same cycle as $u$. This answers the question of Guy.

Date: May 1, 2020.

Significantly more broadly, we provide a complete classification of digit maps for which there are arbitrarily long sequences of consecutive integers ending up in any prespecified cycle. To state our main theorem, we say that a digit map $f$ with base $b$ has a modular obstruction if $\operatorname{gcd}\left(f_{*}(1)-1, \ldots, f_{*}(b-1)-(b-1), b-1\right)>1$. We call a positive integer $u$ in some cycle a cycle number and any positive integer ending up in that cycle a $u$-integer.

Theorem 1. Let $f$ be a digit map. If $f$ has a modular obstruction, then for any cycle number $u$, there do not exist two consecutive u-integers. If $f$ does not have a modular obstruction, then for any cycle number $u$ and any positive integer $n$, there exist $n$ consecutive $u$-integers.

For example, working in base 10 , if we construct the digit map $f_{*}:\{0, \ldots, 9\} \rightarrow$ $\mathbb{Z} \geq 0$ by setting $f_{*}(0)=0, f_{*}(1)=1, f_{*}(9)=7$, and choosing any values for $2,3,4,5,6,7$, and 8 , then we are guaranteed that there will exist arbitrarily long sequences of consecutive positive integers that end up at 1 under repeated application of $f$. The result of Theorem 1 consumes the work of H. Pan [4], H. Grundman and E. A. Teeple in [2], and E. El-Sedy and S. Siksek in [1].

## 2. Proof of Theorem 1

We first quickly prove the first part of Theorem 1 . Suppose that $f$ has a modular obstruction: there is some $g>1$ with $g \mid b-1$ and $f_{*}(m) \equiv m(\bmod g)$ for each $1 \leq m \leq b-1$. Then, for any $n \in \mathbb{N}$, it holds that $f(n) \equiv n(\bmod g)$; indeed, if $n=\sum_{j=0}^{k} a_{j} b^{j}$, then, since $b \equiv 1(\bmod g)$,

$$
f(n) \equiv \sum_{j=0}^{k} f_{*}\left(a_{j}\right) \equiv \sum_{j=0}^{k} a_{j} \equiv \sum_{j=0}^{k} a_{j} b^{j} \quad(\bmod g)
$$

Therefore, for any $n \in \mathbb{N}$ and $r \geq 1$, the iterate $f^{r}(n)$ is congruent to $n \bmod g$. Consequently, if there were a cycle number $u$ and corresponding $n, r_{1}, r_{2} \geq 1$ with $f^{r_{1}}(n)=f^{r_{2}}(n+1)=u$, we'd have $n \equiv n+1(\bmod g)$, absurd.

We now move on to the second part of Theorem 1. We first use a few short results of Pan and introduce new techniques and results in Lemma 3 and Corollary 2.2. Specifically, the proofs of Lemma 1, Corollary 2.1, and Lemma 2 are basically identical to the proofs given by Pan; we just fit them to our notation.

Lemma 1. Let $x$ and $m$ be arbitrary positive integers. Then for each $r \geq 1$, there exists a positive integer $l$ such that

$$
f^{r}(l+y)=f^{r}(l)+f^{r}(y)=x+f^{r}(y)
$$

for each $1 \leq y \leq m$.

Proof. We use induction on $r$. When $r=1$, choose a positive integer $s$ such that $b^{s}>m$ and let

$$
l_{1}=\sum_{j=0}^{x-1} b^{s+j} .
$$

Clearly for any $1 \leq y \leq m$,

$$
f\left(l_{1}+y\right)=f\left(l_{1}\right)+f(y)=x+f(y)
$$

Now assume $r>1$ and the assertion of Lemma 1 holds for the smaller values of $r$. Note there exists an $m^{\prime}$ such that $f(y) \leq m^{\prime}$ for $1 \leq y \leq m$. Therefore, by induction hypothesis, there exists an $l_{r-1}$ such that

$$
f^{r-1}\left(l_{r-1}+f(y)\right)=f^{r-1}\left(l_{r-1}\right)+f^{r-1}(f(y))=x+f^{r}(y)
$$

for $1 \leq y \leq m$. Let

$$
l_{r}=\sum_{j=0}^{l_{r-1}-1} b^{s+j}
$$

where $s$ satisfies $b^{s}>m$. Then,

$$
f^{r}\left(l_{r}\right)=f^{r-1}\left(f\left(l_{r}\right)\right)=f^{r-1}\left(l_{r-1}\right)=x
$$

and for each $1 \leq y \leq m$,

$$
\begin{aligned}
f^{r}\left(l_{r}+y\right) & =f^{r-1}\left(f\left(l_{r}+y\right)\right)=f^{r-1}\left(f\left(l_{r}\right)+f(y)\right) \\
& =f^{r-1}\left(l_{r-1}+f(y)\right)=f^{r-1}\left(l_{r-1}\right)+f^{r}(y)=f^{r}\left(l_{r}\right)+f^{r}(y) .
\end{aligned}
$$

Definition 2.1. Let $D=D\left(f_{*}, b\right)$ be the set of all positive integers that are in some cycle, that is $u \in D$ if and only if $f^{r}(u)=u$ for some $r \geq 1$. It is easy to see that $D$ is finite.

Definition 2.2. Take some $u \in D$. We say a positive integer $n$ is a $u$-integer if $f^{r}(n)=u$ for some $r \geq 1$. We say two positive integers $m, n$ are concurrently $u$-integers if for some $r \geq 1, f^{r}(m)=f^{r}(n)=u$.

Note that two $u$-integers $m, n$ are not concurrently $u$-integers only if $u$ belongs to a cycle of length greater than 1 in $D$ and $m, n$ are at different places in the cycle at a certain time. Note "concurrently $u$-integers" is a transitive relation. Now fix $u$ and we will prove that there are arbitrarily long sequences of consecutive $u$-integers. First, we make a reduction.

Corollary 2.1. Assume that there exists $h \in \mathbb{N}$ such that $h+x$ is a u-integer for all $x \in D$. Then for arbitrary $m \in \mathbb{N}$, there exists $l \in \mathbb{N}$ such that $l+1, l+2, \ldots, l+m$ are u-integers.

Proof. By the definition of $D$, there exists $r \in \mathbb{N}$ such that $f^{r}(y) \in D$ for all $1 \leq y \leq m$. By Lemma 1 , there exists $l \in \mathbb{N}$ so that

$$
f^{r}(l+y)=h+f^{r}(y)
$$

for $1 \leq y \leq m$. Since $f^{r}(l+y)$ is then a $u$-integer, $l+y$ is as well, for $1 \leq y \leq m$.

Lemma 2. Assume that for each $x \in D$ there exists $h_{x} \in \mathbb{N}$ such that $h_{x}+u$ and $h_{x}+x$ are concurrently $u$-integers. Then there exists $h \in \mathbb{N}$ such that $h+x$ is a $u$-integer for each $x \in D$.

Proof. We shall prove that, under the assumption of Lemma 2, for each subset $X$ of $D$ containing $u$, there exists $h_{X} \in \mathbb{N}$ such that $h_{X}+x$ is a $u$-integer for each $x \in X$.

The cases $|X|=1$ and $|X|=2$ are clear. Assume $|X|>2$ and that the assertion holds for every smaller value of $|X|$. Take some $x \in X$, with $x \neq u$. Then $h_{x}+u$ and $h_{x}+x$ are concurrently $u$-integers, so take $r \in \mathbb{N}$ large enough so that $f^{r}\left(h_{x}+u\right)=$ $f^{r}\left(h_{x}+x\right)=u$ and $f^{r}\left(h_{x}+y\right) \in D$ for all $y \in X$. Let $X^{*}=\left\{f^{r}\left(h_{x}+y\right) \mid y \in X\right\}$. Then, $X^{*}$ is clearly a subset of $D$ containing $u$ with $\left|X^{*}\right|<|X|$. Therefore, by induction, there exists $h_{X^{*}} \in \mathbb{N}$ such that $h_{X^{*}}+f^{r}\left(h_{x}+y\right)$ is a $u$-integer for each $y \in X$. By Lemma 1 , there exists $l \in \mathbb{N}$ satisfying

$$
f^{r}\left(l+h_{x}+y\right)=h_{X^{*}}+f^{r}\left(h_{x}+y\right)
$$

for every $y \in X$. Thus, $h_{X}:=l+h_{x}$ works. The induction is complete.
We now proceed to prove the hypothesis of Lemma 2. Note it suffices to show that for any fixed difference $d$, we can find two concurrent $u$-integers with difference $d$. This is the statement of Corollary 2.2. We first need one more lemma.

Lemma 3. Let $h$ be a u-integer. Then for every integer a, there exists a u-integer $l$ such that $l \equiv a(\bmod f(b-1))$, and such that $l$ and $h$ are concurrently $u$-integers.

Proof. Let $l_{1}$ be a $u$-integer such that

$$
l_{1}>f(a)+(b-1) f(b-1) \max _{1 \leq m \leq b-1} f(m) .
$$

We now find some $l_{2}$ with $f\left(l_{2}\right)=l_{1}$ and $l_{2} \equiv a(\bmod f(b-1))$. Since

$$
\operatorname{gcd}(f(1)-1, \ldots, f(b-1)-(b-1), f(b-1))=1
$$

we may take $r_{1}, \ldots, r_{b-1} \in\{0, \ldots, f(b-1)\}$ so that

$$
r_{1}(1-f(1))+\cdots+r_{b-1}(b-1-f(b-1)) \equiv f(a)-l_{1} \quad(\bmod f(b-1)) .
$$

Note that

$$
L:=l_{1}-f(a)-r_{1} f(1)-\cdots-r_{b-1} f(b-1)
$$

satisfies $L \geq 1$. By the pigeonhole principle, there is some $b^{\prime} \in\{0, \ldots, b-1\}$ such that $b^{j} \equiv b^{\prime}(\bmod f(b-1))$ for infinitely many $j$. Let $j_{1}<j_{2}<\cdots<j_{L}<t_{1}^{(1)}<$
$\cdots<t_{r_{1}}^{(1)}<\cdots<t_{1}^{(b-1)}<\cdots<t_{r_{b-1}}^{(b-1)}$ satisfy $b^{j_{i}} \equiv b^{t_{s}^{(k)}} \equiv b^{\prime}(\bmod f(b-1))$ for each $i, s$, and $k$, and satisfy $b^{j_{1}}>a$.

Let

$$
l_{2}=a+\sum_{n=1}^{L} b^{j_{n}}+\sum_{m=1}^{b-1} \sum_{j=1}^{r_{m}} m b^{t_{j}^{(m)}}
$$

Due to the inequality $b^{j_{1}}>a$, we have

$$
f\left(l_{2}\right)=f(a)+L+r_{1} f(1)+\cdots+r_{b-1} f(b-1)=l_{1},
$$

and due to the choice of $r_{i}$ 's, we have

$$
l_{2} \equiv a+b^{\prime}\left[L+r_{1}+2 r_{2}+\cdots+(b-1) r_{b-1}\right] \equiv a \quad(\bmod f(b-1))
$$

Now we generate $l_{3}, l_{4}, \ldots$ inductively by choosing $l_{n+1}$ so that $l_{n+1} \equiv a(\bmod f(b-$ 1)) and $f\left(l_{n+1}\right)=l_{n}$. Note that since the cycle that $u$ is in is finite, it must be that one of the $l_{n}$ 's is concurrently a $u$-integer with $h$.

Corollary 2.2. For each $x \in \mathbb{N}$, there is a u-integer $l$ such that $l$ and $l+x$ are concurrently $u$-integers.

Proof. Fix $x \in \mathbb{N}$. Take $s \in \mathbb{N}$ such that $b^{s}>x$. Let $x_{1}=b^{s}-x$. Take a $u$-integer $h^{\prime}$ such that

$$
h^{\prime} \equiv f\left(x_{1}\right) \quad(\bmod f(b-1))
$$

Let $V$ be the cycle set that $u$ is in. By Lemma 3, for each $v^{\prime} \in V$, there exists $l_{v^{\prime}}$ such that $l_{v^{\prime}} \equiv 1(\bmod f(b-1))$, and $l_{v^{\prime}}$ and $v^{\prime}$ are concurrently $u$-integers. Fixing an $l_{v^{\prime}}$ for each $v^{\prime} \in V$, let $M=\max _{v^{\prime} \in V} l_{v^{\prime}}$.

Since the proof of Lemma 3 guarantees infinitely many $u$-integers in a given residue, we may (and do) fix $h>f\left(x_{1}\right)+M$ to be a $u$-integer with $h \equiv f\left(x_{1}\right)$ $(\bmod f(b-1))$. Let $v$ be in the cycle of $u$ so that $h$ and $v$ are concurrently $u$ integers. Now take the $u$-integer $N=l_{v}$ so that $N \equiv 1(\bmod f(b-1))$, and $N$ and $v$ are concurrently $u$-integers. Take a positive integer $t$ so that $b^{t}>b^{s+\left\lfloor\frac{h}{f(b-1)}\right\rfloor+1}$. Let $x_{2}=x_{1}+b^{t} \sum_{j=1}^{N-1} b^{j}$. Note $f\left(x_{2}\right)=f\left(x_{1}\right)+(N-1)$ since $b^{t}>b^{s}>x_{1}$. Thus,

$$
f\left(x_{2}\right) \equiv f\left(x_{1}\right) \equiv h \quad(\bmod f(b-1)) .
$$

Also, $f\left(x_{2}\right)=f\left(x_{1}\right)+(N-1) \leq f\left(x_{1}\right)+M-1<h$. Write $h=f(b-1) k+f\left(x_{2}\right)$ and note that we have $k>0$. Also note $k \leq\left\lfloor\frac{h}{f(b-1)}\right\rfloor+1<t-s$. Let

$$
l=x_{2}+\sum_{j=0}^{k-1}(b-1) b^{s+j} .
$$

Then,

$$
\begin{aligned}
f(l) & =f\left(x_{1}+b^{t} \sum_{j=1}^{N-1} b^{j}+b^{s} \sum_{j=0}^{k-1}(b-1) b^{j}\right) \\
& =f\left(x_{1}+b^{s}\left[b^{t-s} \sum_{j=1}^{N-1} b^{j}+\sum_{j=0}^{k-1}(b-1) b^{j}\right]\right) \\
& =f\left(x_{1}\right)+f\left(b^{t-s} \sum_{j=1}^{N-1} b^{j}+\sum_{j=0}^{k-1}(b-1) b^{j}\right),
\end{aligned}
$$

and since $\sum_{j=0}^{k-1}(b-1) b^{j}=b^{k}-1<b^{t-s}$, we have

$$
f(l)=f\left(x_{1}\right)+(N-1)+k f(b-1)=f\left(x_{2}\right)+k f(b-1)=h .
$$

Further,

$$
f(l+x)=f\left(b^{s}+\sum_{j=0}^{k-1}(b-1) b^{s+j}+b^{t} \sum_{j=1}^{N-1} b^{j}\right)=f\left(b^{s+k}+b^{t} \sum_{j=1}^{N-1} b^{j}\right),
$$

which is equal to $N$. Since $h$ and $N$ are concurrently $u$-integers, it follows that $l$ and $l+x$ are concurrently $u$-integers, as desired.

Theorem 1.1 now follows from Corollary 2.1, Lemma 2, and Corollary 2.2.

## 3. Acknowledgments

I would like to thank Serin Hong for reading this carefully and for providing great feedback. I also thank Akash Parikh, Omer Tamuz, and an anonymous referee for providing insightful comments.

## References

[1] E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math 30 (2000), 565-570.
[2] H. G. Grundman and E. A. Teeple, Sequences of consecutive happy numbers, Rocky Mountain J. Math. 37 (2007), 19053-1916.
[3] R.K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag, New York, 1994.
[4] H. Pan, On consecutive happy numbers, J. Number Theory 128 (2008), 1646-1654.
Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK

E-mail address: zachary.chase@maths.ox.ac.uk

