A NEW UPPER BOUND FOR SEPARATING WORDS

ZACHARY CHASE

Abstract. We prove that for any distinct $x, y \in\{0,1\}^{n}$, there is a deterministic finite automaton with $\widetilde{O}\left(n^{1 / 3}\right)$ states that accepts x but not y. This improves Robson's 1989 upper bound of $\widetilde{O}\left(n^{2 / 5}\right)$.

1. Introduction

Given a positive integer n and two distinct $0-1$ strings $x, y \in\{0,1\}^{n}$, let $f_{n}(x, y)$ denote the smallest positive integer m such that there exists a deterministic finite automaton with m states that accepts x but not y (of course, $f_{n}(x, y)=f_{n}(y, x)$). Define $f(n):=\max _{x \neq y \in\{0,1\}^{n}} f_{n}(x, y)$. The "separating words problem" is to determine the asymptotic behavior of $f(n)$. An easy example [3] shows $f(n)=\Omega(\log n)$, which is the best lower bound known to date. Goralcik and Koubek [3] in 1986 proved an upper bound of $f(n)=o(n)$, and Robson [4] in 1989 proved an upper bound of $f(n)=O\left(n^{2 / 5} \log ^{3 / 5} n\right)$. Despite much attempt, there has been no further improvement to the upper bound to date.

In this paper, we improve the upper bound on the separating words problem to $f(n)=\widetilde{O}\left(n^{1 / 3}\right)$.

Theorem 1. For any distinct $x, y \in\{0,1\}^{n}$, there is a deterministic finite automaton with $O\left(n^{1 / 3} \log ^{7} n\right)$ states that accepts x but not y.

We made no effort to optimize the (power of the) logarithmic term $\log ^{7} n$.

2. Definitions and Notation

A deterministic finite automaton (DFA) M is a 4-tuple ($\left.Q, \delta, q_{1}, F\right)$ consisting of a finite set Q, a function $\delta: Q \times\{0,1\} \rightarrow Q$, an element $q_{1} \in Q$, and a subset $F \subseteq Q$. We call elements $q \in Q$ "states". We call q_{1} the "initial state" and the elements of F the "accept states". We say M accepts a string $x=x_{1}, \ldots, x_{n} \in\{0,1\}^{n}$ if (and only if) the sequence defined by $r_{1}=q_{1}, r_{i+1}=\delta\left(r_{i}, x_{i}\right)$ for $1 \leq i \leq n$, has $r_{n+1} \in F$.

For a positive integer n, we write $[n]$ for $\{1, \ldots, n\}$. We write \sim as shorthand for $=(1+o(1))$. In our inequalities, C and c refer to (large and small, respectively) absolute constants that sometimes change from line to line. For functions f and g,

[^0]we say $f=\widetilde{O}(g)$ if $|f| \leq C|g| \log ^{C}|g|$ for some constant C. We say a set $A \subseteq[n]$ is d-separated if $a, a^{\prime} \in A, a \neq a^{\prime}$ implies $\left|a-a^{\prime}\right| \geq d$. For a set $A \subseteq[n]$, a prime p, and a residue $i \in[p]_{0}:=\{0, \ldots, p-1\}$, let $A_{i, p}=\{a \in A: a \equiv i(\bmod p)\}$.

For a string $x=x_{1}, \ldots, x_{n} \in\{0,1\}^{n}$ and a (sub)string $w=w_{1}, \ldots, w_{l} \in\{0,1\}^{l}$, let $\operatorname{pos}_{w}(x):=\left\{j \in\{1, \ldots, n-l+1\}: x_{j+k-1}=w_{k}\right.$ for all $\left.1 \leq k \leq l\right\}$ denote the set of all (starting) positions at which w occurs as a (contiguous) substring in x.

3. An easy $\widetilde{O}\left(n^{1 / 2}\right)$ BOUND, AND MOTIVATION OF OUR ARGUMENT

In this section, we sketch an argument of an $\widetilde{O}\left(n^{1 / 2}\right)$ upper bound for the separating words problem, and then how to generalize that argument to obtain $\widetilde{O}\left(n^{1 / 3}\right)$.

For any two distinct strings $x, y \in\{0,1\}^{n}$, the sets $\operatorname{pos}_{1}(x)$ and $\operatorname{pos}_{1}(y)$ are of course different. A natural way, therefore, to try to separate different strings x, y is to find a small prime p and a residue $i \in[p]_{0}$ so that $\left|\operatorname{pos}_{1}(x)_{i, p}\right| \neq\left|\operatorname{pos}_{1}(y)_{i, p}\right|$; if we can find such a p and i, then since ${ }^{1}$ there will be a prime q of size $q=O(\log n)$ with $\left|\operatorname{pos}_{1}(x)_{i, p}\right| \not \equiv\left|\operatorname{pos}_{1}(y)_{i, p}\right|(\bmod q)$, there will be a deterministic finite automaton with $2 p q=O(p \log n)$ states that accepts one string but not the other (see Lemma 4.1). We are thus led to the following (purely number-theoretic) problem.

Problem 3.1. For given n, determine the minimum k such that for any distinct $A, B \subseteq[n]$, there is some prime $p \leq k$ and some $i \in[p]_{0}$ for which $\left|A_{i, p}\right| \neq\left|B_{i, p}\right|$.

Problem 3.1 has been considered in [5], [6], and [7] ${ }^{2}$ (and possibly other places) and was essentially solved in each. We present a simple solution, also discovered in [7].
Claim 3.2. For any distinct $A, B \subseteq[n]$, there is some prime $p=O(\sqrt{n \log n})$ and some $i \in[p]_{0}$ for which $\left|A_{i, p}\right| \neq\left|B_{i, p}\right|$.
Proof. (Sketch) Fix distinct $A, B \subseteq[n]$. Suppose k is such that $\left|A_{i, p}\right|=\left|B_{i, p}\right|$ for all primes $p \leq k$ and all $i \in[p]_{0}$. For a prime p, let $\Phi_{p}(x)$ denote the $p^{\text {th }}$ cyclotomic polynomial, of degree $p-1$. Then since $\sum_{j=1}^{n} 1_{A}(j) e^{2 \pi i \frac{a j}{p}}=\sum_{j=1}^{n} 1_{B}(j) e^{2 \pi i \frac{a j}{p}}$ for all $p \leq k$ and all $a \in[p]_{0}$, the polynomials $\Phi_{p}(x)$, for $p \leq k$, divide $\sum_{j=1}^{n}\left(1_{A}(j)-\right.$ $\left.1_{B}(j)\right) x^{j}=: f(x)$. Therefore, $\prod_{p \leq k} \Phi_{p}(x)$ divides $f(x)$. Since $A \neq B, f$ is not identically 0 and thus must have degree at least $\sum_{p \leq k}(p-1) \sim \frac{1}{2} \frac{k^{2}}{\log k}$. Since the degree of f is trivially at most n, we must have $(1+o(1)) \frac{1}{2} \frac{k^{2}}{\log k} \leq n$.

By a standard pigeonhole argument (see Section 7), the bound $\widetilde{O}(\sqrt{n})$ is sharp.
A natural idea to improve this $\widetilde{O}(\sqrt{n})$ bound for the separating words problem is to consider the sets $\operatorname{pos}_{w}(x)$ and $\operatorname{pos}_{w}(y)$ for longer w. The length of w is actually

[^1]not important in terms of its "cost" to the number of states needed, just as long as it is at most p, where we will be considering $\left|\operatorname{pos}_{w}(x)_{i, p}\right|$ and $\left|\operatorname{pos}_{w}(y)_{i, p}\right|$ (see Lemma 4.1). One immediate benefit of considering longer w is that the sets $\operatorname{pos}_{w}(x)$ and $\operatorname{pos}_{w}(y)$ are smaller than $\operatorname{pos}_{1}(x)$ and $\operatorname{pos}_{1}(y)$; indeed, for example, it can be shown without much difficulty that for any distinct $x, y \in\{0,1\}^{n}$, there is some w of length $n^{1 / 3}$ such that $\operatorname{pos}_{w}(x)$ and $\operatorname{pos}_{w}(y)$ are distinct sets of size at most $n^{2 / 3}$. Thus, to get a bound of $\widetilde{O}\left(n^{w / 3}\right)$ on the separating words problem, it suffices to show the following.

Problem 3.3. For any distinct $A, B \subseteq[n]$ of sizes $|A|,|B| \leq n^{2 / 3}$, there is some prime $p=\widetilde{O}\left(n^{1 / 3}\right)$ and some $i \in[p]_{0}$ so that $\left|A_{i, p}\right| \neq\left|B_{i, p}\right|$.

As in the proof sketch above, this problem is equivalent to a statement about a product of cyclotomic polynomials dividing a sparse polynomial of small degree (see the last page of [7]). We were not able to solve Problem 3.3. However, we make the additional observation that we can take w so that $\operatorname{pos}_{w}(x)$ and $\operatorname{pos}_{w}(y)$ are well-separated sets. Indeed, if w has length $2 n^{1 / 3}$ and has no period of length at most $n^{1 / 3}$, then $\operatorname{pos}_{w}(x)$ and $\operatorname{pos}_{w}(y)$ are $n^{1 / 3}$-separated sets. As we'll use later, Lemmas 1 and 2 of [4] show that such w are common enough to ensure there is a choice with $\operatorname{pos}_{w}(x) \neq \operatorname{pos}_{w}(y)$. Our main technical theorem is thus the following ${ }^{3}$.

Theorem 2. Let A, B be distinct subsets of $[n]$ that are each $n^{1 / 3}$-separated. Then there is some prime $p=\widetilde{O}\left(n^{1 / 3}\right)$ and some $i \in[p]_{0}$ so that $\left|A_{i, p}\right| \neq\left|B_{i, p}\right|$.

Although Theorem 2 is also equivalent to a question about a product of cyclotomic polynomials dividing a certain type of polynomial, we were not able to make progress through number theoretic arguments. Rather, we reverse the argument of Scott [6], by noting that if there is some small m so that the $m^{\text {th }}$-moments of A and B differ, i.e. $\quad \sum_{a \in A} a^{m} \neq \sum_{b \in B} b^{m}$, then there is some small p and some $i \in[p]_{0}$ so that $\left|A_{i, p}\right| \not \equiv\left|B_{i, p}\right| \bmod p\left(\right.$ and thus $\left.\left|A_{i, p}\right| \neq\left|B_{i, p}\right|\right) .^{4}$

The benefit of considering the "moments" problem is that it is more susceptible to complex analytic techniques. Borwein, Erdélyi, and Kós [1] use complex analytic techniques to show that for any distinct $A, B \subseteq[n]$, there is some $m \leq C \sqrt{n}$ with $\sum_{a \in A} a^{m} \neq \sum_{b \in B} b^{m}$. One proof of theirs was to show that any polynomial p of degree n with $|p(0)|=1$ and coefficients bounded by 1 in absolute value must be at least $\exp (-C \sqrt{n})$ at some point close to 1 . We were able to adapt this proof to find a small(er) m such that $\sum_{a \in A} a^{m} \neq \sum_{b \in B} b^{m}$ in the case that A, B are well-separated sets, and thus prove Theorem 2.

The adaptations we make are quite significant. See Lemma 6.3 and Lemma 6.4.

[^2]
4. Proof of Theorem 1

In this section, we quickly deduce Theorem 1 from our main number-theoretic theorem which we prove in Section 5. Recall we say $A \subseteq[n]$ is d-separated if $\left|a-a^{\prime}\right| \geq d$ for any distinct $a, a^{\prime} \in A$.

Theorem 2. Let A, B be distinct subsets of $[n]$ that are each $n^{1 / 3}$-separated. Then there is some prime $p \in\left[\frac{1}{2} C^{\prime} n^{1 / 3} \log ^{6} n, C^{\prime} n^{1 / 3} \log ^{6} n\right]$ and some $i \in[p]_{0}$ so that $\left|A_{i, p}\right| \neq\left|B_{i, p}\right|$. Here, $C^{\prime}>0$ is an absolute constant.

Recall that, for a string $x=x_{1}, \ldots, x_{n} \in\{0,1\}^{n}$ and a (sub)string $w=w_{1}, \ldots, w_{l} \in$ $\{0,1\}^{l}$, we defined $\operatorname{pos}_{w}(x):=\left\{j \in\{1, \ldots, n-l+1\}: x_{j+k-1}=w_{k}\right.$ for all $\left.1 \leq k \leq l\right\}$.

Lemma 4.1. Let m, n be positive integers, $i \in[m]_{0}$ a residue mod m, q a prime number, $a \in[q]_{0} a$ residue $\bmod q$, and $w \in\{0,1\}^{l}$ a string of length $l \leq m$. Then there is a determinsitic finite automaton with $2 m q$ states that, for any string $x \in\{0,1\}^{n}$, accepts x if and only if $\left|\left\{j \in \operatorname{pos}_{w}(x): j \equiv i(\bmod m)\right\}\right| \equiv a(\bmod q)$.
Proof. Write $w=w_{1}, \ldots, w_{l}$. We assume $l>1$; a minor modification to the following yields the result for $l=1$. We interpret indices of $w \bmod m$, which we may, since $l \leq m$. Let the states of the DFA be $\mathbb{Z}_{m} \times\{0,1\} \times \mathbb{Z}_{q}$. The initial state is $(1,0,0)$. If $j \not \equiv i(\bmod m)$ and $\epsilon \in\{0,1\}$, set $\delta((j, 0, s), \epsilon)=(j+1,0, s)$. If $j \equiv i$ $(\bmod m)$, set $\delta\left((j, 0, s), w_{1}\right)=(j+1,1, s)$ and $\delta\left((j, 0, s), 1-w_{1}\right)=(j+1,0, s)$. If $j \not \equiv i+l-1(\bmod m)$, set $\delta\left((j, 1, s), w_{j-i+1}\right)=(j+1,1, s)$ and $\delta\left((j, 1, s), 1-w_{j-i+1}\right)=$ $(j+1,0, s)$. Finally, if $j \equiv i+l-1(\bmod m)$, set $\delta\left((j, 1, s), w_{l}\right)=(j+1,0, s+1)$ and $\delta\left((j, 1, s), 1-w_{l}\right)=(j+1,0, s)$. The set of accept states is $\mathbb{Z}_{m} \times\{0,1\} \times\{a\}$.

Theorem 1. For any distinct $x, y \in\{0,1\}^{n}$, there is a deterministic finite automaton with $O\left(n^{1 / 3} \log ^{7} n\right)$ states that accepts x but not y.

Proof. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be two distinct strings in $\{0,1\}^{n}$. If $x_{k} \neq y_{k}$ for some $k<2 n^{1 / 3}$, then we are done ${ }^{5}$, so we may suppose otherwise. Let $k \geq 2 n^{1 / 3}$ be the first index with $x_{k} \neq y_{k}$. Let $w^{\prime}=x_{k-2 n^{1 / 3}+1}, \ldots, x_{k-1}$ be a (common sub)string of x and y of length $2 n^{1 / 3}-1$. By Lemma 1 and Lemma 2 of [4], there is some choice $w \in\left\{w^{\prime} 0, w^{\prime} 1\right\}$ for which $A:=\operatorname{pos}_{w}(x)$ is $n^{1 / 3}$-separated and $B:=\operatorname{pos}_{w}(y)$ is $n^{1 / 3}{ }_{-}$ separated. By the choice of k, we have $A \neq B$, so Theorem 2 implies there is some prime $p \in\left[\frac{1}{2} C^{\prime} n^{1 / 3} \log ^{6} n, C^{\prime} n^{1 / 3} \log ^{6} n\right]$ and some $i \in[p]_{0}$ for which $\left|A_{i, p}\right| \neq\left|B_{i, p}\right|$. Since $\left|A_{i, p}\right|$ and $\left|B_{i, p}\right|$ are at most n, there is some prime $q=O(\log n)$ for which $\left|A_{i, p}\right| \not \equiv\left|B_{i, p}\right|(\bmod q)$. Since $|w|=2 n^{1 / 3} \leq p$, by Lemma 4.1 there is a deterministic finite automaton with $2 p q=O\left(n^{1 / 3} \log ^{7} n\right)$ states that accepts x but not y.

[^3]
5. Proof of Theorem 2

In this section, we deduce Theorem 2 from the following complex analytic theorem, which we prove in Section 6.

Let \mathcal{P}_{n} denote the collection of all polynomials $p(x)=1-\sigma x^{d}+\sum_{j=n^{1 / 3}}^{n} a_{j} x^{j} \in$ $\mathbb{C}[x]$ such that $1 \leq d<n^{1 / 3}, \sigma \in\{0,1\}$, and $\left|a_{j}\right| \leq 1$ for each j.

Theorem 3. There is some absolute constant $C_{1}>0$ so that for all $n \geq 2$ and all $p \in \mathcal{P}_{n}$, it holds that $\max _{x \in\left[1-n^{-2 / 3}, 1\right]}|p(x)| \geq \exp \left(-C_{1} n^{1 / 3} \log ^{5} n\right)$.

The deduction of Theorem 2 from Theorem 3 follows from first showing the polynomial $p(x):=\sum_{n \in A} x^{n}-\sum_{n \in B} x^{n}$ cannot be divisible by a large power of $x-1$. We will use part of Lemma 5.4 of [1], stated below.

Lemma 5.1. Suppose the polynomial $f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{C}[x]$ has $\left|a_{j}\right| \leq 1$ for each j. If $(x-1)^{k}$ divides $f(x)$, then $\max _{1-\frac{k}{9 n} \leq x \leq 1}|f(x)| \leq(n+1)\left(\frac{e}{9}\right)^{k}$.

Proposition 5.2. There exists an absolute constant $C>0$ so that for all $n \geq 1$ and all $p(x) \in \mathcal{P}_{n}$, the polynomial $(x-1)^{\left\lfloor C n^{1 / 3} \log ^{5} n\right\rfloor}$ does not divide $p(x)$.
Proof. Take $C>0$ large. Take $p(x) \in \mathcal{P}_{n}$. Suppose for the sake of contradiction that $(x-1)^{C n^{1 / 3} \log ^{5} n}$ divided $p(x)$. Then, by Lemma 5.1 and Theorem 3,

$$
\begin{aligned}
(n+1)\left(\frac{e}{9}\right)^{C n^{1 / 3} \log ^{5} n} & \geq \max _{x \in\left[1-\frac{C}{9} n^{-2 / 3} \log ^{5} n, 1\right]}|p(x)| \\
& \geq \max _{x \in\left[1-n^{-2 / 3}, 1\right]}|p(x)| \\
& \geq e^{-C_{1} n^{1 / 3} \log ^{5} n}
\end{aligned}
$$

which is a contradiction if C is large enough.
We now exploit the (well-known) equivalence between common moments and a large vanishing of the associated polynomial at $x=1$.

Proposition 5.3. Let A, B be distinct subsets of $[n]$ that are each $n^{1 / 3}$-separated. Then there is some non-negative integer $m=O\left(n^{1 / 3} \log ^{5} n\right)$ such that $\sum_{a \in A} a^{m} \neq$ $\sum_{b \in B} b^{m}$.
Proof. Let $f(x)=\sum_{j=0}^{n} \epsilon_{j} x^{j}$, where $\epsilon_{j}:=1_{A}(j)-1_{B}(j)$. Let $\tilde{f}(x)=\frac{f(x)}{x^{r}}$, where r is maximal with respect to $\epsilon_{0}, \ldots, \epsilon_{r-1}=0$. We may assume without loss of generality that $\tilde{f}(0)=1$. Then the fact that A, B are $n^{1 / 3}$-separated implies $\tilde{f}(x) \in \mathcal{P}_{n}$. By Proposition 5.2, $(x-1)^{C n^{1 / 3}} \log ^{5} n$ does not divide $\tilde{f}(x)$ and thus does not divide $f(x)$. This means that there is some non-negative integer $k \leq C n^{1 / 3} \log ^{5} n-1$ so that $f^{(k)}(1) \neq 0$. Take a minimal such k. If $k=0$, we're of course done. Otherwise, since $f^{(m)}(1)=\sum_{j=0}^{n} j(j-1) \ldots(j-m+1) \epsilon_{j}$ for $m \geq 1$, it's easy to inductively see that $\sum_{j \in A} j^{m}=\sum_{j \in B} j^{m}$ for all $0 \leq m \leq k-1$ and then $\sum_{j \in A} j^{k} \neq \sum_{j \in B} j^{k}$.

We can now deduce Theorem 2.
Theorem 2. Let A, B be distinct subsets of $[n]$ that are each $n^{1 / 3}$-separated. Then there is some prime $p \in\left[\frac{1}{2} C^{\prime} n^{1 / 3} \log ^{6} n, C^{\prime} n^{1 / 3} \log ^{6} n\right]$ and some $i \in[p]_{0}$ so that $\left|A_{i, p}\right| \neq\left|B_{i, p}\right|$. Here, $C^{\prime}>0$ is an absolute constant.
Proof. By Proposition 5.3, take $m=O\left(n^{1 / 3} \log ^{5} n\right)$ such that $\sum_{a \in A} a^{m} \neq \sum_{b \in B} b^{m}$. Since $\left|\sum_{a \in A} a^{m}-\sum_{b \in B} b^{m}\right| \leq n n^{m} \leq \exp \left(O\left(n^{1 / 3} \log ^{6} n\right)\right)$, there is some prime $p \in\left[\frac{1}{2} C^{\prime} n^{1 / 3} \log ^{6} n, C^{\prime} n^{1 / 3} \log ^{6} n\right]$ such that $\sum_{a \in A} a^{m} \not \equiv \sum_{b \in B} b^{m}(\bmod p)$. Noting that $\sum_{a \in A} a^{m} \equiv \sum_{i=0}^{p-1}\left|A_{i, p}\right| i^{m}(\bmod p)$ and $\sum_{b \in B} b^{m} \equiv \sum_{i=0}^{p-1}\left|B_{i, p}\right| i^{m}(\bmod p)$, we see that there is some $i \in[p]_{0}$ for which $\left|A_{i, p}\right| \not \equiv\left|B_{i, p}\right|(\bmod p)$.

6. Proof of Theorem 3

In this section, we finish off the proof of Theorem 1 by proving the needed theorem about sparse Littlewood polynomials being "large" somewhere near 1.

Recall that \mathcal{P}_{n} denotes the collection of all polynomials $p(x)=1-\sigma x^{d}+\sum_{j=n^{1 / 3}}^{n} a_{j} x^{j}$ in $\mathbb{C}[x]$ such that $1 \leq d<n^{1 / 3}, \sigma \in\{0,1\}$, and $\left|a_{j}\right| \leq 1$ for each j.

Theorem 3. There is some absolute constant $C_{1}>0$ so that for all $n \geq 2$ and all $p \in \mathcal{P}_{n}$, it holds that $\max _{x \in\left[1-n^{-2 / 3}, 1\right]}|p(x)| \geq \exp \left(-C_{1} n^{1 / 3} \log ^{5} n\right)$.

For $a>0$, define \widetilde{E}_{a} to be the ellipse with foci at $1-a$ and $1-a+\frac{1}{4} a$ and with major axis $\left[1-a-\frac{a}{32}, 1-a+\frac{9 a}{32}\right.$]. We borrow ${ }^{6}$ Corollary 5.3 from [1]:
Lemma 6.1. For every $n \geq 1, p \in \mathcal{P}_{n}$, and $a>0$, we have $\left(\max _{z \in \widetilde{E}_{a}}|p(z)|\right)^{2} \leq$ $\frac{64}{39 a} \max _{x \in[1-a, 1]}|p(x)|$.

By Lemma 6.1, in order to prove Theorem 3 it suffices to show:
Proposition 6.2. There is an absolute constant $C>0$ so that for every $n \geq 1$ and every $p \in \mathcal{P}_{n}$, it holds that $\left(\max _{z \in \widetilde{E}_{n-2 / 3}}|p(z)|\right)^{2} \geq \exp \left(-C n^{1 / 3} \log ^{5} n\right)$.

While [1] certainly uses that \widetilde{E}_{a} is an ellipse, all we will use is about \widetilde{E}_{a} (besides using Lemma 6.1 as a black box) is that the interior of \widetilde{E}_{a}, denoted $\widetilde{E}_{a}^{\circ}$, contains a ball of radius $\frac{a}{10^{10}}$ centered at $1-a$. We begin with two lemmas.

In the proof of Theorem 5.1 of [1], the authors use the function $h(z)=(1-$ a) $\frac{z+z^{2}}{2}$ for a maximum modulus principle argument to lower bound the quantity $\left(\max _{z \in \widetilde{E}_{a}}|p(z)|\right)^{2}$. For $z=e^{2 \pi i t}$ for small t, the magnitude $\left|h\left(e^{2 \pi i t}\right)\right|$ is quadratically in t less than 1. For our purposes, we need a linear deviation of $\left|h\left(e^{2 \pi i t}\right)\right|$ from 1. This motivates the following lemma.

[^4]Lemma 6.3. There are absolute constants $c_{4}, c_{5}, C_{6}>0$ such that the following holds for $a>0$ small enough. Let $\tilde{h}(z)=\sum_{j=1}^{r} d_{j} z^{j}$ for

$$
d_{j}:=\frac{\lambda_{a}}{j^{2} \log ^{2}(j+3)}
$$

and $r:=a^{-1}$, where $\lambda_{a} \in(1,2)$ is such that $\sum_{j=1}^{r} d_{j}=1$. Let $h(z)=(1-a) \tilde{h}(z)$. Then $h(0)=0,\left|h\left(e^{2 \pi i t}\right)\right| \leq 1-a$ for each $t, h\left(e^{2 \pi i t}\right) \in \widetilde{E}_{a}^{\circ}$ for $t \in\left[-c_{4} a, c_{4} a\right]$, and

$$
\left|h\left(e^{2 \pi i t}\right)\right| \leq 1-c_{5} \frac{|t|}{\log ^{2}\left(a^{-1}\right)}
$$

for $t \in\left[-\frac{1}{2}, \frac{1}{2}\right] \backslash\left[-C_{6} a, C_{6} a\right]$.
Proof. Clearly $h(0)=0$ and $\left|h\left(e^{2 \pi i t}\right)\right| \leq 1-a$ for each t. Now, for any $t \in \mathbb{R}$,

$$
\left|\tilde{h}\left(e^{2 \pi i t}\right)-1\right|=\left|\sum_{j=1}^{r} d_{j}\left(e^{2 \pi i t j}-1\right)\right| \leq \sum_{j=1}^{r} d_{j} 2 \pi t j=2 \pi t \sum_{j=1}^{r} \frac{\lambda_{a}}{j \log ^{2}(j+3)} \leq C_{4} t
$$

for C_{4} absolute. Thus,

$$
\left|h\left(e^{2 \pi i t}\right)-(1-a)\right|=(1-a)\left|\tilde{h}\left(e^{2 \pi i t}\right)-1\right| \leq C_{4} t .
$$

If $|t| \leq c_{4} a$ for $c_{4}>0$ sufficiently small, we conclude $h\left(e^{2 \pi i t}\right) \in \widetilde{E}_{a}^{\circ}$.
We now go on to showing the last inequality in the statement of Lemma 6.3.
By summation by parts, for any $z \in \mathbb{C}$, we have
(1) $\sum_{j=1}^{r} \frac{\lambda_{a} z^{j}}{j^{2} \log ^{2}(j+3)}=\frac{\lambda_{a} \sum_{j=1}^{r} z^{j}}{r^{2} \log ^{2}(r+3)}+2 \lambda_{a} \int_{1}^{r} \frac{\left(\sum_{j \leq x} z^{j}\right)\left(\log (x+3)+\frac{x}{x+3}\right)}{x^{3} \log ^{3}(x+3)} d x$.

Quickly note that, for $z=1$, (1) gives

$$
\begin{equation*}
1=\frac{\lambda_{a}}{r \log ^{2}(r+3)}+2 \lambda_{a} \int_{1}^{r} \frac{\lfloor x\rfloor\left(\log (x+3)+\frac{x}{x+3}\right)}{x^{3} \log ^{3}(x+3)} d x . \tag{2}
\end{equation*}
$$

Trivially, for any $z \in \partial \mathbb{D}$, we have

$$
\begin{equation*}
\left|\frac{\lambda_{a} \sum_{j=1}^{r} z^{j}}{r^{2} \log ^{2}(r+3)}\right| \leq \frac{\lambda_{a}}{r \log ^{2}(r+3)} . \tag{3}
\end{equation*}
$$

Note that, for any $x \geq 1$,

$$
\begin{equation*}
\left|\sum_{j \leq x} z^{j}\right|=\left|z \frac{1-z^{\lfloor x\rfloor}}{1-z}\right| \leq \frac{2}{|1-z|} \leq t^{-1} \tag{4}
\end{equation*}
$$

for all $z=e^{2 \pi i t}$ with $t \in\left(0, \frac{1}{2}\right]$. Take $C_{6}>3$ to be chosen later. Note $t \in\left(C_{6} a, \frac{1}{2}\right]$ implies $3 t^{-1}<r$. For $z=e^{2 \pi i t}$ with $C_{6} a<t \leq \frac{1}{2}$, (4) and (2) imply

$$
\left|2 \lambda_{a} \int_{1}^{r} \frac{\left(\sum_{j \leq x} z^{j}\right)\left(\log (x+3)+\frac{x}{x+3}\right)}{x^{3} \log ^{3}(x+3)} d x\right| \leq
$$

$$
\begin{aligned}
& 2 \lambda_{a} \int_{1}^{3 t^{-1}} \frac{\lfloor x\rfloor\left(\log (x+3)+\frac{x}{x+3}\right)}{x^{3} \log ^{3}(x+3)} d x+2 \lambda_{a} \int_{3 t^{-1}}^{r} \frac{t^{-1}\left(\log (x+3)+\frac{x}{x+3}\right)}{x^{3} \log ^{3}(x+3)} d x \\
& \quad=1-2 \lambda_{a} \int_{3 t^{-1}}^{r} \frac{\left(\lfloor x\rfloor-t^{-1}\right) \cdot\left(\log (x+3)+\frac{x}{x+3}\right)}{x^{3} \log ^{3}(x+3)} d x-\frac{\lambda_{a}}{r \log ^{2}(r+3)} .
\end{aligned}
$$

Observe $\lfloor x\rfloor-t^{-1} \geq \frac{1}{2} x$ for $x \geq 3 t^{-1}$. Therefore,

$$
\begin{align*}
2 \lambda_{a} \int_{3 t^{-1}}^{r} \frac{\left(\lfloor x\rfloor-t^{-1}\right) \cdot\left(\log (x+3)+\frac{x}{x+3}\right)}{x^{3} \log ^{3}(x+3)} d x & \geq \lambda_{a} \int_{3 t^{-1}}^{r} \frac{1}{x^{2} \log ^{2}(x+3)} d x \\
& \geq \frac{\lambda_{a}}{\log ^{2}(r+3)} \int_{3 t^{-1}}^{r} \frac{1}{x^{2}} d x \\
& =\frac{\lambda_{a} t}{3 \log ^{2}(r+3)}-\frac{\lambda_{a}}{r \log ^{2}(r+3)} . \tag{6}
\end{align*}
$$

Combining (1), (3), (5), and (6), we conclude that, for any $t \in\left(C_{6} a, \frac{1}{2}\right]$,

$$
\begin{equation*}
\left|\tilde{h}\left(e^{2 \pi i t}\right)\right|=\left|\sum_{j=1}^{r} \frac{\lambda_{a} e^{2 \pi i j t}}{j^{2} \log ^{2}(j+3)}\right| \leq 1-\frac{\lambda_{a} t}{3 \log ^{2}(r+3)}+\frac{\lambda_{a}}{r \log ^{2}(r+3)} . \tag{7}
\end{equation*}
$$

Taking C_{6} to be much larger than 3 , (7) gives the bound

$$
\left|\tilde{h}\left(e^{2 \pi i t}\right)\right| \leq 1-c_{5} \frac{t}{\log ^{2}\left(a^{-1}\right)}
$$

for $t \in\left(C_{6} a, \frac{1}{2}\right]$, for suitable $c_{5}>0$. By symmetry, the proof is complete.
We from now on fix some $n \geq 1$ and some $p \in \mathcal{P}_{n}$ (defined at the beginning of the section). Let \tilde{p} be the truncation of p to terms of degree less than $n^{1 / 3}$; either $\tilde{p}=1$ or $\tilde{p}=1-x^{d}$ for some $1 \leq d<n^{1 / 3}$. Take $a=n^{-2 / 3}$, and let h be as in Lemma 6.3. Let $m=c_{4}^{-1} n^{2 / 3}$. Let $J_{1}=c_{5}^{-1} n^{-1 / 3} m \log ^{4} n$ and $J_{2}=m-J_{1}$.

In the proof below of Proposition 6.2, we will need to upper bound the product $\prod_{j=J_{1}}^{J_{2}-1}\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}}\right)\right)\right|$ by $\exp \left(\widetilde{O}\left(n^{1 / 3}\right)\right)$. We must be careful in doing so, as the trivial upper bound on each term is 2 and there are approximately $n^{2 / 3}$ terms. However, we expect the argument of $h\left(e^{2 \pi i \frac{j}{m}}\right)$ to behave as if it were random, and thus we expect $\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}}\right)\right)\right|$ to sometimes be smaller than 1 . The fact that the cancellation between terms smaller than 1 and terms greater than 1 is nearly perfect comes from the fact that $\log |\tilde{p}(h(w))|$ is harmonic, which we make crucial use of below.

Lemma 6.4. For any $t \in[0,1]$, we have $\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right| \geq \frac{1}{2} n^{-2 / 3}$. For any $\delta \in[0,1)$, we have $\prod_{j=J_{1}}^{J_{2}-1}\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j+\delta}{m}}\right)\right)\right| \leq \exp \left(C n^{1 / 3} \log ^{5} n\right)$ for some absolute $C>0$.

Proof. Clearly both inequalities hold if $\tilde{p}=1$, so suppose $\tilde{p}(x)=1-x^{d}$ for some $1 \leq d<n^{1 / 3}$. For the first inequality, we use

$$
\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right|=\left|1-h\left(e^{2 \pi i t}\right)^{d}\right| \geq 1-\left|h\left(e^{2 \pi i t}\right)\right|^{d} \geq 1-(1-a)^{d} \geq \frac{1}{2} a d \geq \frac{1}{2} n^{-2 / 3}
$$

We now move on to the second inequality. Define $g(t)=2 \log \left|\tilde{p}\left(h\left(e^{2 \pi i\left(t+\frac{\delta}{m}\right)}\right)\right)\right|$. For notational ease, we assume $\delta=0$; the argument about to come works for all $\delta \in[0,1)$. The first inequality implies g is C^{1}, so by the mean value theorem,

$$
\begin{align*}
\left|\frac{1}{m} \sum_{j=J_{1}}^{J_{2}-1} g\left(\frac{j}{m}\right)-\int_{J_{1} / m}^{J_{2} / m} g(t) d t\right| & =\left|\sum_{j=J_{1}}^{J_{2}-1} \int_{j / m}^{(j+1) / m}\left(g(t)-g\left(\frac{j}{m}\right)\right) d t\right| \\
& \leq \sum_{j=J_{1}}^{J_{2}-1} \int_{j / m}^{(j+1) / m}\left(\max _{\frac{j}{m} \leq y \leq \frac{j+1}{m}}\left|g^{\prime}(y)\right|\right) \frac{1}{m} d t \\
& \leq \frac{1}{m^{2}} \sum_{j=J_{1}}^{J_{2}-1} \max _{\frac{j}{m} \leq y \leq \frac{j+1}{m}}\left|g^{\prime}(y)\right| . \tag{8}
\end{align*}
$$

Since $w \mapsto \log |\tilde{p}(h(w))|$ is harmonic and $\log |\tilde{p}(h(0))|=\log |\tilde{p}(0)|=0$, we have

$$
\int_{0}^{1} g(t) d t=2 \int_{0}^{1} \log \left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right| d t=0
$$

and therefore

$$
\begin{equation*}
\left|\int_{J_{1} / m}^{J_{2} / m} g(t) d t\right| \leq\left|\int_{0}^{J_{1} / m} g(t) d t\right|+\left|\int_{J_{2} / m}^{1} g(t) d t\right| \tag{9}
\end{equation*}
$$

Since

$$
\frac{1}{2} n^{-2 / 3} \leq\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right| \leq 1
$$

for each t, we have

$$
\begin{equation*}
\left|\int_{0}^{J_{1} / m} g(t) d t\right|+\left|\int_{J_{2} / m}^{1} g(t) d t\right| \leq 2\left(\frac{J_{1}}{m}+\left(1-\frac{J_{2}}{m}\right)\right) \log n \leq C \frac{\log ^{5} n}{n^{1 / 3}} \tag{10}
\end{equation*}
$$

By (8), (9), and (10), we have

$$
\left|\frac{1}{m} \sum_{j=J_{1}}^{J_{2}-1} g\left(\frac{j}{m}\right)\right| \leq C \frac{\log ^{5} n}{n^{1 / 3}}+\frac{1}{m^{2}} \sum_{j=J_{1}}^{J_{2}-1} \max _{\frac{j}{m} \leq t \leq \frac{j+1}{m}}\left|g^{\prime}(t)\right| .
$$

Multiplying through by m, changing C slightly, and exponentiating, we obtain

$$
\begin{equation*}
\prod_{j=J_{1}}^{J_{2}-1}\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}}\right)\right)\right|^{2} \leq \exp \left(C n^{1 / 3} \log ^{5} n+\frac{1}{m} \sum_{j=J_{1} \frac{j}{m} \leq t \leq \frac{j+1}{m}}^{J_{2}-1} \max \left|g^{\prime}(t)\right|\right) . \tag{11}
\end{equation*}
$$

Note

$$
g^{\prime}\left(t_{0}\right)=\frac{\left.\frac{\partial}{\partial t}\left[\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right|^{2}\right]\right|_{t=t_{0}}}{\left|\tilde{p}\left(h\left(e^{2 \pi i t_{0}}\right)\right)\right|^{2}}
$$

We first show

$$
\left.\frac{\partial}{\partial t}\left[\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right|^{2}\right]\right|_{t=t_{0}} \leq 100 d
$$

for each $t_{0} \in[0,1]$. We start by noting

$$
\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right|^{2}=1+(1-a)^{2 d}\left(\left|\sum_{j=1}^{r} d_{j} e^{2 \pi i t j}\right|^{2}\right)^{d}-2 \operatorname{Re}\left[\left((1-a) \sum_{j=1}^{r} d_{j} e^{2 \pi i t j}\right)^{d}\right]
$$

Let

$$
f_{1}(t)=(1-a)^{2 d}\left(\left|\sum_{j=1}^{r} d_{j} e^{2 \pi i t j}\right|^{2}\right)^{d}
$$

Then,

$$
\begin{aligned}
f_{1}^{\prime}(t) & =(1-a)^{2 d} d\left(\left|\sum_{j=1}^{r} d_{j} e^{2 \pi i t j}\right|^{2}\right)^{d-1} \frac{\partial}{\partial t}\left[\left|\sum_{j=1}^{r} d_{j} e^{2 \pi i t j}\right|^{2}\right] \\
& =(1-a)^{2 d} d\left(\left|\sum_{j=1}^{r} d_{j} e^{2 \pi i t j}\right|^{2}\right)^{d-1} \sum_{1 \leq j_{1}, j_{2} \leq r} d_{j_{1}} d_{j_{2}} 2 \pi i\left(j_{1}-j_{2}\right) e^{2 \pi i\left(j_{1}-j_{2}\right) t}
\end{aligned}
$$

Since $\sum_{j=1}^{r} d_{j}=1$, we therefore have

$$
\begin{aligned}
\left|f_{1}^{\prime}(t)\right| & \leq 2 \pi d \sum_{1 \leq j_{1}, j_{2} \leq r} \lambda_{a}^{2} \frac{j_{1}+j_{2}}{j_{1}^{2} j_{2}^{2} \log ^{2}\left(j_{1}+3\right) \log ^{2}\left(j_{2}+3\right)} \\
& =4 \pi d\left(\sum_{j_{1}=1}^{r} \frac{\lambda_{a}}{j_{1} \log ^{2}\left(j_{1}+3\right)}\right)\left(\sum_{j_{2}=1}^{r} \frac{\lambda_{a}}{j_{2}^{2} \log ^{2}\left(j_{2}+3\right)}\right) \\
& \leq 50 d .
\end{aligned}
$$

Now, let

$$
f_{2}(t)=-2 \operatorname{Re}\left[\left((1-a) \sum_{j=1}^{r} d_{j} e^{2 \pi i t j}\right)^{d}\right]
$$

and note

$$
\begin{aligned}
f_{2}^{\prime}(t) & =\frac{\partial}{\partial t}\left[-2(1-a)^{d} \sum_{1 \leq j_{1}, \ldots, j_{d} \leq r} d_{j_{1}} \ldots d_{j_{d}} \cos \left(2 \pi t\left(j_{1}+\cdots+j_{d}\right)\right)\right] \\
& =4 \pi(1-a)^{d} \sum_{1 \leq j_{1}, \ldots, j_{d} \leq r} d_{j_{1}} \ldots d_{j_{d}}\left(j_{1}+\cdots+j_{d}\right) \sin \left(2 \pi t\left(j_{1}+\cdots+j_{d}\right)\right)
\end{aligned}
$$

yielding

$$
\begin{aligned}
\left|f_{2}^{\prime}(t)\right| & \leq 4 \pi \sum_{1 \leq j_{1}, \ldots, j_{d} \leq r} \lambda_{a}^{d} \frac{j_{1}+\cdots+j_{d}}{j_{1}^{2} \ldots j_{d}^{2} \log ^{2}\left(j_{1}+3\right) \ldots \log ^{2}\left(j_{d}+3\right)} \\
& =4 \pi d\left(\sum_{j_{1}=1}^{r} \frac{\lambda_{a}}{j_{1} \log ^{2}\left(j_{1}+3\right)}\right)\left(\sum_{j=1}^{r} \frac{\lambda_{a}}{j^{2} \log ^{2}(j+3)}\right)^{d-1} \\
& \leq 50 d .
\end{aligned}
$$

We have thus shown

$$
\left.\frac{\partial}{\partial t}\left[\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right|^{2}\right]\right|_{t=t_{0}} \leq 100 d
$$

for each $t_{0} \in[0,1]$.
Recall

$$
\left|\tilde{p}\left(h\left(e^{2 \pi i t}\right)\right)\right|=\left|1-h\left(e^{2 \pi i t}\right)^{d}\right| \geq 1-\left|h\left(e^{2 \pi i t}\right)\right|^{d}
$$

For $j \in\left[J_{1}, J_{2}\right] \subseteq\left[C_{6} a m,\left(1-C_{6} a\right) m\right]$, we use

$$
\left|h\left(e^{2 \pi i \frac{j}{m}}\right)\right| \leq 1-c_{5} \frac{\min \left(\frac{j}{m}, 1-\frac{j}{m}\right)}{\log ^{2} n}
$$

to obtain

$$
\frac{1}{m} \sum_{j=J_{1}}^{J_{2}-1} \max _{\frac{j}{m} \leq t \leq \frac{j+1}{m}}\left|g^{\prime}(t)\right| \leq \frac{1}{m} \sum_{j=J_{1}}^{J_{2}-1} \frac{100 d}{\left(1-\left(1-c_{5} \frac{\min \left(\frac{j}{m}, 1-\frac{j}{m}\right)}{\log ^{2} n}\right)^{d}\right)^{2}}
$$

Up to a factor of 2 , we may deal only with $j \in\left[J_{1}, \frac{m}{2}\right]$. Let $J_{*}=c_{5}^{-1} d^{-1} m \log ^{2} n$. Note that $j \leq J_{*}$ implies $c_{5} \frac{j}{m \log ^{2} n} \leq d^{-1}$ and $j \geq J_{*}$ implies $c_{5} \frac{j}{m \log ^{2} n} \geq d^{-1}$. Thus, using $(1-x)^{d} \leq 1-\frac{1}{2} x d$ for $x \leq \frac{1}{d}$, we have

$$
\begin{align*}
\frac{1}{m} \sum_{j=J_{1}}^{\min \left(J_{*}, \frac{m}{2}\right)} \frac{100 d}{\left(1-\left(1-c_{5} \frac{j}{m \log ^{2} n}\right)^{d}\right)^{2}} & \leq \frac{100 d}{m} \sum_{j=J_{1}}^{\min \left(J_{*}, \frac{m}{2}\right)} \frac{1}{\left(\frac{1}{2} c_{5} \frac{j}{m \log ^{2} n} d\right)^{2}} \\
& =\frac{400 m \log ^{4} n}{c_{5}^{2} d} \sum_{j=J_{1}}^{\min \left(J_{*}, \frac{m}{2}\right)} \frac{1}{j^{2}} \\
& \leq \frac{400 m \log ^{4} n}{c_{5}^{2} d} \frac{2}{J_{1}} \\
& \leq C n^{1 / 3} \tag{12}
\end{align*}
$$

Finally, since there is some $c>0$ such that $(1-x)^{l} \leq 1-c$ for all $l \in \mathbb{N}$ and $x \in\left[l^{-1}, 1\right]$, using the notation $\sum_{i=a}^{b} x_{i}=0$ if $a>b$, we see

$$
\begin{align*}
\frac{1}{m} \sum_{j=\min \left(J_{*}, \frac{m}{2}\right)+1}^{m / 2} \frac{100 d}{\left(1-\left(1-c_{5} \frac{j}{m \log ^{2} n}\right)^{d}\right)^{2}} & \leq \frac{100 d}{m} \sum_{j=\min \left(J_{*}, \frac{m}{2}\right)+1}^{m / 2} c^{-2} \\
& \leq C d \\
& \leq C n^{1 / 3} \tag{13}
\end{align*}
$$

Combining (12) and (13), we obtain

$$
\frac{1}{m} \sum_{j=J_{1}}^{J_{2}-1} \max _{\frac{j}{m} \leq \frac{j+1}{m}}\left|g^{\prime}(t)\right| \leq C n^{1 / 3}
$$

Plugging this upper bound into (11) yields the desired result.
Proof of Proposition 6.2. Define $g(z)=\prod_{j=0}^{m-1} p\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)$. Fix $z \in \partial \mathbb{D}$; say $z=$ $e^{2 \pi i\left(\frac{j_{0}}{m}+\delta\right)}$ for some $j_{0} \in\{0, \ldots, m-1\}$ and $\delta \in\left[0, \frac{1}{m}\right)$. For ease of notation, we assume $j_{0}=0$; the argument about to come is to any j_{0}. Then, $e^{2 \pi i \frac{j}{m}} z$ is in $\left\{e^{2 \pi i t}:-c_{4} a \leq t<c_{4} a\right\}$ if $j \in\{0, m-1\}$. Therefore, Lemma 6.4 followed by the maximum modulus principle (p is analytic) imply

$$
\begin{align*}
|g(z)| & \leq\left(\max _{w \in \widetilde{E}_{a}^{o}}|p(w)|\right)^{2} \prod_{j \notin\{0, m-1\}}\left|p\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right| \\
& \leq\left(\max _{w \in \widetilde{E}_{a}}|p(w)|\right)^{2} \prod_{j \notin\{0, m-1\}}\left|p\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right| . \tag{14}
\end{align*}
$$

Let $I=\left[J_{1}, J_{2}-1\right] \cap \mathbb{Z}$. For $j \notin I$, using the bound $|p(w)| \leq \frac{1}{1-|w|}$ for each $w \in \partial \mathbb{D}$, we see

$$
\left|p\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right| \leq \frac{1}{1-\left|h\left(e^{2 \pi i \frac{j}{m}} z\right)\right|} \leq \frac{1}{1-(1-a)}=n^{2 / 3}
$$

thereby obtaining

$$
\begin{equation*}
\prod_{j \notin I \cup\{0, m-1\}}\left|p\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right| \leq\left(n^{2 / 3}\right)^{\left(J_{1}-1\right)+\left(m-J_{2}+1\right)} \leq\left(n^{2 / 3}\right)^{C n^{1 / 3} \log ^{4} n} \leq e^{C n^{1 / 3} \log ^{5} n} . \tag{15}
\end{equation*}
$$

Now, for $j \in I$, since

$$
\left|h\left(e^{2 \pi i \frac{j}{m}} z\right)\right| \leq 1-c_{5} \frac{\min \left(\frac{j}{m}+\delta, 1-\left(\frac{j}{m}+\delta\right)\right)}{\log ^{2} n} \leq 1-c^{\prime} n^{-1 / 3} \log ^{2} n
$$

we have

$$
\left|p\left(h\left(e^{2 \pi i \frac{j}{m} z}\right)\right)-\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m} z}\right)\right)\right| \leq n e^{-c^{\prime} \log ^{2} n} \leq e^{-c \log ^{2} n}
$$

Therefore,

$$
\begin{equation*}
\prod_{j \in I}\left|p\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right| \leq \prod_{j \in I}\left(\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right|+e^{-c \log ^{2} n}\right) . \tag{16}
\end{equation*}
$$

By both parts of Lemma 6.4, we obtain

$$
\begin{align*}
\prod_{j \in I}\left(\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right|+e^{-c \log ^{2} n}\right) & =\sum_{I^{\prime} \subseteq I}\left(\prod_{j \in I \backslash I^{\prime}}\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right|\right) e^{-c\left(\log ^{2} n\right)\left|I^{\prime}\right|} \\
& =\sum_{I^{\prime} \subseteq I}\left(\prod_{j \in I}\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right|\right)\left(\prod_{j \in I^{\prime}}\left|\tilde{p}\left(h\left(e^{2 \pi i \frac{j}{m}} z\right)\right)\right|\right)^{-1} e^{-c\left(\log ^{2} n\right)\left|I^{\prime}\right|} \\
& \leq e^{C n^{1 / 3} \log ^{5} n} \sum_{I^{\prime} \subseteq I}\left(2 n^{2 / 3}\right)^{\left|I^{\prime}\right|} e^{-c\left(\log ^{2} n\right)\left|I^{\prime}\right|} \\
& \leq e^{C n^{1 / 3} \log ^{5} n} \sum_{I^{\prime} \subseteq I} e^{-c^{\prime}\left(\log ^{2} n\right)\left|I^{\prime}\right|} \\
& \leq e^{C n^{1 / 3} \log ^{5} n} \sum_{k=0}^{|I|}\binom{|I|}{k} e^{-c^{\prime} k \log ^{2} n} \\
(17) \quad & \leq 2 e^{C n^{1 / 3} \log ^{5} n} . \tag{17}
\end{align*}
$$

Combining (14), (15), (16), and (17), we've shown

$$
|g(z)| \leq\left(\max _{z \in \widetilde{E}_{a}}|p(z)|\right)^{2} e^{C n^{1 / 3} \log ^{5} n}
$$

As this holds for all $z \in \partial \mathbb{D}$, we have

$$
\max _{z \in \mathscr{D}}|g(z)| \leq\left(\max _{z \in \widetilde{E}_{a}}|p(z)|\right)^{2} e^{C n^{1 / 3} \log ^{5} n}
$$

To finish, note that $|g(0)|=|p(h(0))|^{m}=|p(0)|^{m}=1$, so, as g is clearly analytic, the maximum modulus principle implies $\max _{z \in \partial \mathbb{D}}|g(z)| \geq 1$.

7. Tightness of our methods

In this section, we prove the following, showing that our methods cannot be pushed further in some sense. We denote $\{0,1\}^{\leq p}:=\cup_{j=1}^{p}\{0,1\}^{j}$.
Proposition 7.1. For all n large, there are distinct strings $x, y \in\{0,1\}^{n}$ such that for all $p \leq \frac{1}{10} n^{1 / 3}, i \in[p]_{0}$, and $w \in\{0,1\} \leq p$, it holds that $\left|\operatorname{pos}_{w}(x)_{i, p}\right|=\left|\operatorname{pos}_{w}(y)_{i, p}\right|$.

We begin by showing Theorem 2 is tight, via a standard pigeonhole argument that has been used in a variety of other papers.
Proposition 7.2. For all n large, there are distinct $n^{1 / 3}$-separated subsets A, B of $[n]$ such that $\left|A_{i, p}\right|=\left|B_{i, p}\right|$ for all $p \leq c n^{1 / 3} \log ^{1 / 2} n$ and all $i \in[p]_{0}$.

Proof. Let Σ denote the collection of subsets $A \subseteq[n]$ that have at most one number from each of the intervals $\left[1, n^{1 / 3}\right],\left[2 n^{1 / 3}, 3 n^{1 / 3}\right],\left[4 n^{1 / 3}, 5 n^{1 / 3}\right], \ldots$ Note $|\Sigma| \geq\left(n^{1 / 3}\right)^{\frac{1}{3} n^{2 / 3}}=e^{\frac{1}{9} n^{2 / 3} \log n}$. On the other hand, for any $A \subseteq[n]$, the number of possible tuples $\left(\left|A_{i, p}\right|\right)_{\substack{p \leq k \\ i \in[p]_{0}}}$ is at most $\prod_{p \leq k} n^{p} \leq e^{\frac{k^{2}}{\log k} \log n}$. Taking $k=c n^{1 / 3} \log ^{1 / 2} n$ yields $\frac{k^{2}}{\log k} \log n<\frac{1}{9} n^{2 / 3} \log n$, meaning there are distinct $A, B \in \Sigma$ with the same tuple, i.e. $\left|A_{i, p}\right|=\left|B_{i, p}\right|$ for all $p \leq k$ and $i \in[p]_{0}$. As A, B are $n^{1 / 3}$-separated, the proof is complete.

Proof of Proposition 7.1. For a large n, let $A, B \subseteq[n / 2]$ be the sets guaranteed by Proposition 7.2. Let $x=\left(1_{A}\left(j-\frac{n}{4}\right)\right)_{j=1}^{n}, y=\left(1_{B}\left(j-\frac{n}{4}\right)\right)_{j=1}^{n} \in\{0,1\}^{n}$ be the strings with 1 s at indices in A and B then padded at the beginning and end by 0s. Fix $p \leq \frac{1}{10} n^{1 / 3}$ and $i \in[p]_{0}$. Since A, B are $\frac{1}{10} n^{1 / 3}$-separated, we have $\left|\operatorname{pos}_{w}(x)_{i, p}\right|=\left|\operatorname{pos}_{w}(y)_{i, p}\right|=0$ for all $w \in\{0,1\}^{\leq p}$ with at least two 1s. Since

$$
\operatorname{pos}_{0^{l}}(x)=[n-l+1] \backslash \sqcup_{s=0}^{l-1} \operatorname{pos}_{0^{s} 10^{l-1-s}}(x)
$$

it suffices to show $\left|\operatorname{pos}_{w}(x)_{i, p}\right|=\left|\operatorname{pos}_{w}(y)_{i, p}\right|$ for all $w \in\{0,1\}^{\leq p}$ with exactly one 1. Fix such a w; say $w=0^{s} 10^{l-1-s}$ for some $l \leq p$ and $s \in\{0, \ldots, l-1\}$. Then, due to the padding preventing boundary issues, $\operatorname{pos}_{w}(x)=\left\{j: x_{j+s}=1\right\}=\{j$: $\left.1_{A}\left(j+s-\frac{n}{4}\right)=1\right\}=A-s+\frac{n}{4}$ and thus $\left|\operatorname{pos}_{w}(x)_{i, p}\right|=\left|A_{i+s-\frac{n}{4}, p}\right|$. Similarly, $\left|\operatorname{pos}_{w}(y)_{i, p}\right|=\left|B_{i+s-\frac{n}{4}, p}\right|$. Since $p \leq c(n / 2)^{1 / 3} \log ^{1 / 2}(n / 2)$, the proof is complete.

8. Acknowledgments

I would like to thank my advisor Ben Green for several helpful comments on the readability of the paper and Noah Golowich for pointing out a flaw in a claimed generalization of one of the propositions in a previous version of the paper.

References

[1] P. Borwein, T. Erdélyi, and G. Kós, Littlewood-type problems on [0, 1], Proc. London Math. Soc. (3), 79(1):22-46, 1999.
[2] E.D. Demaine, S. Eisenstat, J. Shallit, D.A. Wilson, Remarks on Separating Words, Holzer, M. (ed.) DCFS 2011. LNCS, vol. 6808, 147-157, 2011.
[3] P. Goralcik and V. Koubek, On discerning words by automata, 13th Intern. Coll. on Automata Languages and Programming, Lect. Notes Comp. Sci. 226 (Springer, Berlin) 116-122, 1986.
[4] J. M. Robson, Separating strings with small automata, Inf. Proc. Lett., 30 (4): 209-214, 1989.
[5] J. M. Robson, Separating words with machines and groups, RAIRO Inform. Théor. App., 30:81-86, 1996.
[6] A. Scott, Reconstructing sequences, Discrete Mathematics, 175 (1):231-238, 1997.
[7] M. N. Vyalyı and R. A. Gimadeev, On separating words by the occurrences of subwords, Diskretn. Anal. Issled. Oper., 21(1):3-14, 2014.

Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK

E-mail address: zachary.chase@maths.ox.ac.uk

[^0]: Date: July 23, 2020.
 The author is partially supported by Ben Green's Simons Investigator Grant 376201 and gratefully acknowledges the support of the Simons Foundation.

[^1]: ${ }^{1}$ We make use of the fact that $q \mid a-b$ for all primes q in a set \mathcal{Q} implies $\prod_{q \in \mathcal{Q}} q \mid a-b$, along with standard estimates on $\prod_{q \in \mathcal{Q}} q$ for $\mathcal{Q}=\{q \leq k: q$ prime $\}$.
 ${ }^{2}$ In the last reference, they look for an integer $m \leq k$ and some $i \in[m]_{0}$ for which $\left|A_{i, m}\right| \neq\left|B_{i, m}\right|$, which is of course more economical. We decided to restrict to primes for aesthetic reasons.

[^2]: ${ }^{3}$ See page 4 for a more specific formulation.
 ${ }^{4}$ The implication just written is actually quite obvious (see the deduction of Theorem 2 from Proposition 5.3); the implication of Scott, however, that some small p and some $i \in[p]_{0}$ with $\left|A_{i, p}\right| \not \equiv\left|B_{i, p}\right|(\bmod p)$ implies the existence of some small m with $\sum_{a \in A} a^{m} \neq \sum_{b \in B} b^{m}$ is less trivial, though basically just follows from the fact that $1_{x \equiv i(\bmod p)} \equiv 1-(x-i)^{p-1}(\bmod p)$.

[^3]: ${ }^{5}$ Simply use a DFA on $2 n^{1 / 3}$ states that accepts exactly those strings starting with $x_{1}, \ldots, x_{2 n^{1 / 3}}$.

[^4]: ${ }^{6}$ They state Lemma 6.1 for $p \in \mathcal{S}$, where they define \mathcal{S} to be the set of all analytic functions f on the (open) unit disk such that $|f(z)| \leq \frac{1}{1-|z|}$ for each $z \in \mathbb{D}$. It is clear $\mathcal{P}_{n} \subseteq \mathcal{S}$ for each n.

