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Abstract. We prove that for any distinct x, y ∈ {0, 1}n, there is a deterministic finite

automaton with Õ(n1/3) states that accepts x but not y. This improves Robson’s 1989

bound of Õ(n2/5). Using a similar complex analytic technique, we improve the upper bound
on worst case trace reconstruction, showing that any unknown string x ∈ {0, 1}n can be

reconstructed with high probability from exp(Õ(n1/5)) independently generated traces.

1. Introduction

Telling two strings apart using a small collection of tools or a limited amount of data is
a basic problem of the sciences. In this paper, we study two such problems and initiate the
exploitation of the fruitful connection between them and a third closely related problem.

The separating words problem asks for the smallest deterministic finite automaton needed
to separate two given 0-1 strings of length n, in the worst case as a function of n. Specifically,
for distinct x, y ∈ {0, 1}n, let fn(x, y) denote the smallest positive integer m such that there
exists a deterministic finite automaton with m states that accepts x but not y (one easily
has fn(x, y) = fn(y, x)). Defining f(n) := maxx 6=y∈{0,1}n fn(x, y), the “separating words
problem” is to determine the asymptotic behavior of f(n). An easy example [14] shows
f(n) = Ω(log n), which is the best lower bound known to date. Goralcik and Koubek [14]
in 1986 proved an upper bound of f(n) = o(n), and Robson [25] in 1989 proved an upper

bound of f(n) = O(n2/5 log3/5 n). Our first contribution is breaking the longstanding Õ(n2/5)

barrier and improving the upper bound to Õ(n1/3).

Theorem 1. For any distinct x, y ∈ {0, 1}n, there is a deterministic finite automaton with
O(n1/3 log7 n) states that accepts x but not y.

Motivated by the study of reconstructing DNA, the trace reconstruction problem asks to
determine an unknown string x ∈ {0, 1}n from many traces of x. Specifically, a trace of x is
obtained by deleting each bit of x with probability q, independently, and concatenating the
remaining string. For example, a trace of 11001 could be 101, obtained by deleting the second
and third bits. The trace reconstruction question asks for the minimum T = T (n) such that
any x ∈ {0, 1}n can be reconstructed with probability at least 0.99 from T independently
generated traces of x. For a more precise statement of the problem, see Section 3.

Holenstein, Mitzenmacher, Panigrahy, and Wieder [17] established an upper bound, that

exp(Õ(n1/2)) traces suffice. Nazarov and Peres [23] and De, O’Donnell, and Servedio [11]
simultaneously obtained the (previous) best upper bound known, that exp(O(n1/3)) traces
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suffice. Batu et. al. [3] proved a lower bound of n, which was improved to Ω̃(n5/4) by Holden

and Lyons [15], which was then improved to Ω̃(n3/2) by the author [7]. There has been a
surge of interest in the trace reconstruction problem in the last four years – see, e.g. [24],
[16], [1], [2], [10], [9], [4], [21], [19], [22].

Our second contribution is an improvement to the upper bound, to exp(Õ(n1/5)).

Theorem 2. For any deletion probability q ∈ (0, 1) and any δ > 0, there exists C > 0 so
that any unkown string x ∈ {0, 1}n can be reconstructed with probability at least 1− δ from
exp(Cn1/5 log5 n) independent traces of x.

Here is an outline of the paper. In Section 2, we explain the connections between the
separating words problem, trace reconstruction, and a third closely related problem. In
Section 3, we rigorously define the separating words problem and the trace reconstruction
problem. In Section 4, we set our notation for the paper. In Section 5, we sketch the proofs
Theorems 1 and 2. In Section 6, we prove Theorems 1 and 2 assuming two complex analytic
theorems, that we then prove in Section 7, modulo a technical lemma that we prove in the
Appendix.

2. Connections

The catalyst behind the development of the technical methods used to establish Theorems
1 and 2 was the exploration of the deep connections between the separating words problem,
trace reconstruction, and a third problem, which we now mention.

What is the minimum k such that for any distinct x, y ∈ {0, 1}n, there is some w ∈ {0, 1}k
appearing a different number of times in x and y as a subsequence (i.e., a not-necessarily-
contiguous substring)? The best upper bound known to date is k = O(

√
n), due to Krasikov

and Roditty [18], and the best lower bound is eΩ(
√

logn), due to Dudik and Schulman [13].
This problem is referred to as the “reconstruction from subsequences” problem, or as the
“k-deck” problem.

The connections between the k-deck problem, trace reconstruction, and the separating
words problem are abundant, but have not seemed to have been mentioned, or exploited,
before in the literature1. Even at a basic level, there are intriguing similarities between the
three problems. For example, for seemingly completely different reasons, pairs x, y ∈ {0, 1}n
without “padding” (i.e., pairs for which there is some small i with xi 6= yi) can be separated
by a DFA with few states, and can be distinguished with high probability from few traces.
More importantly, the proof of the exp(O(n1/3)) upper bound for trace reconstruction is
an analytic version of the proof of the upper bound of O(

√
n) for the k-deck problem (both

proofs use a form of “single bit statistics”); and a number theoretic version of the proof yields

an Õ(n1/2) bound for the separating words problem (explained in Section 5). Additionally,
currently, very self-similar strings, such as the Thue-Morse sequence (and its complement,
each with some padding), are strings we do not know how to handle in any of the three
problems.

1The connections between the k-deck problem and trace reconstruction have been mentioned in the
literature.
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In this paper, we exploit the connection between the three problems by using another

proof of the Õ(
√
n) upper bound for the k-deck problem, by Scott [26]. Specifically, we

reverse an implication of his, noting the basic fact that if two sets A,B ⊆ [n] have a different
small moment (i.e., there is some small m ∈ Z≥0 with

∑
a∈A a

m 6=
∑

b∈B b
m), then there

is some small prime p and some residue i ∈ [p] with |{a ∈ A : a ≡ i mod p}| 6= |{b ∈
B : b ≡ i mod p}|. We then develop new complex analytic methods, building upon the
complex analytic methods previously used in the k-deck problem and the trace reconstruction
problem, to improve the upper bound on the separating words problem by showing that any
distinct well-separated sets A,B ⊆ [n] have a different small moment (see Theorem 2).
Complex analytic methods have not previously been used to attack the separating words
problem.

Our complex analytic arguments are then further built upon to improve the upper bound
on the trace reconstruction problem, using also the observation (discovered independently
in [8] and in [22]) that (weighted) substring counts can be reconstructed from few traces.

We hope this paper will initiate further research into the connections between the three
mentioned problems, leading to further progress on each.

3. Formal Problem Statements

3.1. The Separating Words Problem.

A deterministic finite automaton (DFA) M is a 4-tuple (Q, δ, q1, F ) consisting of a finite
set Q, a function δ : Q × {0, 1} → Q, an element q1 ∈ Q, and a subset F ⊆ Q. We call
elements q ∈ Q “states”. We call q1 the “initial state” and the elements of F the “accept
states”. We say M accepts x = x1, . . . , xn ∈ {0, 1}n if and only if the sequence defined by
r1 = q1, ri+1 = δ(ri, xi) for 1 ≤ i ≤ n, has rn+1 ∈ F .

For distinct x, y ∈ {0, 1}n, let fn(x, y) denote the smallest positive integer m such that
there exists a deterministic finite automaton with m states that accepts x but not y. De-
fine f(n) := maxx 6=y∈{0,1}n fn(x, y). The “separating words problem” is to determine the
asymptotic behavior of f(n).

3.2. Trace Reconstruction.

Fix δ ∈ (0, 1) and q ∈ (0, 1). For strings w, x, let f(w;x) denote the number of times
w appears as a subsequence in x; that is, f(w;x) equals the number of strictly increasing
tuples (i0, . . . , i|w|−1) such that xij = wj for 0 ≤ j ≤ |w| − 1. For each x ∈ {0, 1}n, let µx
denote the probability distribution on {0, 1}≤n given by µx(w) = (1− q)|w|qn−|w|f(w;x). Let
µTx denote the product measure on ({0, 1}≤n)T induced by µx.

Take n ≥ 1. We say we can reconstruct any string x ∈ {0, 1}n from T traces if there exists
a function F : ({0, 1}≤n)T → {0, 1}n satisfying

PŨ1,...,ŨT∼µTx
[F (Ũ1, . . . , ŨT ) = x] ≥ 1− δ

for each x ∈ {0, 1}n (where the Ũ j denote the T independently generated traces).
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The trace reconstruction problem is to determine the smallest value T = T (n, q, δ) for
which we can reconstruct any string x ∈ {0, 1}n from T traces. The most common (and
natural) regime is having a fixed q and δ, and asking for the asymptotics of T as a function
of n (going to infinity).

4. Notation

For a positive integer n, we write [n] for {1, . . . , n}. We write ∼ as shorthand for =
(1 + o(1)). In our inequalities, C and c refer to (large and small, respectively) absolute

constants that sometimes change from line to line. For functions f and g, we say f = Õ(g) if
|f | ≤ C|g| logC |g| for some constant C. We say a set A ⊆ [n] is d-separated if a, a′ ∈ A, a 6= a′

implies |a−a′| ≥ d. For a set A ⊆ [n], a prime p, and a residue i ∈ [p], let Ai,p = {a ∈ A : a ≡
i (mod p)}. For a string x = x1, . . . , xn ∈ {0, 1}n and a (sub)string w = w1, . . . , wl ∈ {0, 1}l,
let posw(x) := {j ∈ {1, . . . , n − l + 1} : xj+k−1 = wk for all 1 ≤ k ≤ l} denote the set of all
(starting) positions at which w occurs as a substring in x.

For strings w, x, we sometimes write 1xk+i=wi as shorthand for
∏|w|−1

i=0 1xk+i=wi . Let D =
{z ∈ C : |z| < 1}. The symbol Ex denotes the expectation under the probability distribution

over traces generated by the string x. For a trace Ũ , we define Ũj = 2 for j > |Ũ |; this is

simply to make “Ũj = 0” and “Ũj = 1” each false. We use 00 := 1. For a function f and a
set E, denote ||f ||E := maxz∈E |f(z)|.

5. Sketches of Proofs

5.1. Separating Words. In this subsection, we sketch an argument of an Õ(n1/2) upper
bound for the separating words problem, and then how to generalize that argument to obtain

Õ(n1/3).

For any two distinct strings x, y ∈ {0, 1}n, the sets pos1(x) and pos1(y) are of course
different. A natural way, therefore, to try to separate different strings x, y is to find a small
prime p and a residue i ∈ [p] so that |pos1(x)i,p| 6= |pos1(y)i,p|; if we can find such a p and i,
then since there will be a prime q of size q = O(log n) with |pos1(x)i,p| 6≡ |pos1(y)i,p| (mod q),
there will be a deterministic finite automaton with 2pq = O(p log n) states that accepts one
string but not the other (see Lemma 2). We are thus led to the following problem.

Problem 5.1. For given n, determine the minimum k such that for any distinct A,B ⊆ [n],
there is some prime p < k and some i ∈ [p] for which |Ai,p| 6= |Bi,p|.

Problem 5.1 has been considered in [26] and in [27]2 (and possibly other places) and was
essentially solved in each. We present a simple solution, also discovered in [27].

Claim 5.1. For any distinct A,B ⊆ [n], there is some prime p = O(
√
n log n) and some

i ∈ [p] for which |Ai,p| 6= |Bi,p|.

Proof. (Sketch) Fix distinct A,B ⊆ [n]. Suppose k is such that |Ai,p| = |Bi,p| for all primes
p ≤ k and all i ∈ [p]. For a prime p, let Φp(x) denote the pth cyclotomic polynomial,

of degree p − 1. Then since
∑n

j=1 1A(j)e2πiaj
p =

∑n
j=1 1B(j)e2πiaj

p for all p ≤ k and all

2In the latter reference, they look for an integer m < k and some i ∈ [m] for which |Ai,m| 6= |Bi,m|, which
is of course more economical. We decided to restrict to primes for aesthetic reasons.
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a ∈ [p], the polynomials Φp(x), for p ≤ k, divide
∑n

j=1(1A(j)− 1B(j))xj =: f(x). Therefore,∏
p≤k Φp(x) divides f(x). Since A 6= B, f is not identically 0 and thus must have degree

at least
∑

p≤k(p − 1) ∼ 1
2
k2

log k
. Since the degree of f is obviously at most n, we must have

k2

log k
≤ 3n. The result follows. �

A natural idea to improve this Õ(
√
n) bound for the separating words problem is to

consider the sets posw(x) and posw(y) for longer w. The length of w is actually not important
in terms of its “cost” to the number of states needed, just as long as it is at most p, where
we will be considering |posw(x)i,p| and |posw(y)i,p| (see Lemma 2). One immediate benefit
of considering longer w is that the sets posw(x) and posw(y) are smaller than pos1(x) and
pos1(y); indeed, for example, it can be shown without much difficulty that for any distinct
x, y ∈ {0, 1}n, there is some w of length n1/3 such that posw(x) and posw(y) are distinct sets

of size at most n2/3. Thus, to get a bound of Õ(n1/3), it suffices to show the following.

Problem 5.2. For any distinct A,B ⊆ [n] of sizes |A|, |B| ≤ n2/3, there is some prime

p = Õ(n1/3) and some i ∈ [p] such that |Ai,p| 6= |Bi,p|.

As in the proof sketch above, this problem is equivalent to a statement about a product
of cyclotomic polynomials dividing a sparse polynomial of small degree (see the last page of
[27]). We were not able to solve Problem 5.2. However, we make the additional observation
that we can take w so that posw(x) and posw(y) are well-separated sets. Indeed, if w has
length 2n1/3 and has no period of length at most n1/3, then posw(x) and posw(y) are n1/3-
separated sets. Lemmas 1 and 2 of [25] show that such w are common enough to ensure
there is a choice with posw(x) 6= posw(y). Our main theorem is the following3.

Theorem 3. Let A,B be distinct subsets of [n] that are each n1/3-separated. Then there is

some prime p = Õ(n1/3) and some i ∈ [p] so that |Ai,p| 6= |Bi,p|.

Although Theorem 2 is also equivalent to a question about a product of cyclotomic poly-
nomials dividing a certain type of polynomial, we were not able to make progress through
number theoretic arguments. Rather, we reverse the argument of Scott [26], by noting that if
there is some small m so that the mth-moments of A and B differ, i.e.

∑
a∈A a

m 6=
∑

b∈B b
m,

then there is some small p and some i ∈ [p] so that |Ai,p| 6= |Bi,p|. The benefit of considering
the moments problem is that it is more susceptible to complex analytic techniques. Borwein,
Erdélyi, and Kós [6] use complex analytic techniques to show that for any distinct A,B ⊆ [n],
there is some m ≤ C

√
n with

∑
a∈A a

m 6=
∑

b∈B b
m. They gave two proofs. One was to find

a polynomial p of degree at most C
√
n such that |p(0)| > |p(1)| + · · · + |p(n)|; another was

to show that any polynomial p of degree n with |p(0)| = 1 and coefficients bounded by 1
in absolute value must be at least exp(−C

√
n) at some point close to 1. We were able to

greatly expand upon this second proof to handle sparser polynomials, which we encounter
due to the fact that our sets A,B are n1/3-separated.

5.2. Trace Reconstruction.

We suppose the deletion probability, q, is equal to 1
2

for this section.

3See page 7 for a more specific formulation.
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To obtain the upper bound of exp(O(n1/3)), one first notes that it suffices to distinguish
between any two distinct strings x, y ∈ {0, 1}n (see [23] for details). Then, the main idea is
to count the number of traces with a 1 at a certain index j (depending on x and y); there is
some choice j such that the count for x will differ substantially enough from the count for y,
in expectation. To establish the existence of such a j, it suffices to show that the polynomial∑n−1

k=0 [xk − yk]zk is not too small for some z close to 1 on the unit circle. The sufficiency
stems from the identity

(1) Ex

[
n−1∑
j=0

1Ũj=1(2z − 1)j

]
=

1

2

n−1∑
k=0

xkz
k,

valid for any complex number z ∈ C, where Ũ denotes a random trace of x.

Two recent papers on trace reconstruction, [8] and [22], made the observation that, from
not too many traces of a given x ∈ {0, 1}n, one can determine the number of times a given
string w appears as a contiguous substring of x. The identity allowing one to do this is
significantly more nontrivial than (1). For example, setting z = 1 in (1) merely recovers the
easy fact that the expected number of 1s in a trace of x is equal to half of the number of 1s
in x; however, the following identity, counting the number of contiguous 01’s appearing in
x, is far from obvious at first sight:

Ex

[ ∑
0≤j0<j1≤n−1

1Ũj0=01Ũj1=1(−1)j1−j0−1

]
=

1

4
#{0 ≤ k ≤ n− 2 : xk = 0, xk+1 = 1}.

In this paper, we weight the various j0’s differently, in analogy to (1):

Ex

 ∑
0≤j0<···<jl−1≤n−1

(
l−1∏
i=0

1Ũji=wi

)
(2z − 1)j0

(
l−1∏
i=1

(−1)ji−ji−1−1

) = 2−l
n−1∑
k=0

(
l−1∏
i=0

1xk+i=wi

)
zk,

valid for any l ≥ 1, any w = w0, . . . , wl−1 ∈ {0, 1}l, and any z ∈ C. See Proposition 6.2 for
a generalization and a proof.

What we capitalize on is that, for suitable choices of w, the polynomial
∑n−1

k=0

(∏l−1
i=0 1xk+i=wi

)
zk

is far sparser than
∑n−1

k=0 1xk=1z
k. See Theorem 5.

6. Proofs of Main Theorems

Let Pµn be the collection of all polynomials4 p(z) = 1 − εzd +
∑n

j=nµ cjz
j with 1 ≤ d <

nµ, ε ∈ {0, 1}, and |cj| ≤ 1 for each j. We prove the following two complex analytic theorems
in the appendix. We assume them to be true for the rest of the present section.

Theorem 4. For any µ ∈ (0, 1), there is some C1 > 0 so that for all n ≥ 2 and all p ∈ Pµn ,
it holds that

max
x∈[1−n−2µ,1]

|p(x)| ≥ exp(−C1n
µ log5 n).

We will be applying Theorem 4 with µ = 1
3
.

4Throughout the paper, we omit floor functions when they don’t meaningfully affect anything.
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Theorem 5. For any µ ∈ (0, 1), there is some C2 > 0 so that for any n ≥ 2 and any p ∈ Pµn ,
it holds that

max
|θ|≤n−2µ

|p(eiθ)| ≥ exp(−C2n
µ log5 n).

We will be applying Theorem 5 with µ = 1
5
.

6.1. Proof of Theorem 1. The idea of the proof (assuming Theorem 4) is as follows. As
sketched in Section 5 (and as we will rigorously prove soon), it suffices to show that any
distinct n1/3-separated sets A,B ⊆ [n] have some different small moment. The sets A,B
having a different small moment is equivalent to the polynomial p(x) :=

∑
n∈A x

n−
∑

n∈B x
n

not being divisible by a large power of x− 1, which is roughly equivalent to p(x) not being
uniformly too small in some interval [1− ε, 1]. And we know by Theorem 4 that this is true.

We will use part of Lemma 5.4 of [6], stated below.

Lemma 1. Suppose f(x) =
∑n

j=0 ajx
j has aj ∈ C, |aj| ≤ 1 for each j. If (x − 1)k divides

f(x), then max1− k
9n
≤x≤1 |f(x)| ≤ (n+ 1)( e

9
)k.

Proposition 6.1. There exists an absolute constant C > 0 so that for all n ≥ 1 and all

p(x) ∈ P1/3
n , the polynomial (x− 1)bCn

1/3 log5 nc does not divide p(x).

Proof. Take C > 0 large. Take p(x) ∈ P1/3
n . Suppose for the sake of contradiction that

(x− 1)Cn
1/3 log5 n divided p(x). Then, by Lemma 1 and Theorem 4,

(n+ 1)(
e

9
)Cn

1/3 log5 n ≥ max
x∈[1−C

9
n−2/3 log5 n,1]

|p(x)|

≥ max
x∈[1−n−2/3 log5 n,1]

|p(x)|

≥ e−C1n1/3 log5 n,

which is a contradiction if C is large enough. �

Theorem 6. Let A,B be distinct subsets of [n] that are each n1/3-separated. Then there is
some non-negative integer m = O(n1/3 log5 n) such that

∑
a∈A a

m 6=
∑

b∈B b
m.

Proof. Let f(x) =
∑n

j=0 εjx
j, where εj := 1A(j) − 1B(j). Let f̃(x) = f(x)

xr
, where r is

maximal with respect to ε0, . . . , εr−1 = 0. We may assume without loss of generality that

f̃(0) = 1. Then the fact that A,B are n1/3-separated implies f̃(x) ∈ P1/3
n . By Proposition

6.1, (x − 1)Cn
1/3 log5 n does not divide f̃(x) and thus does not divide f(x). This means that

there is some k ≤ Cn1/3 log5 n − 1, k ≥ 0, so that f (k)(1) 6= 0. Take a minimal such k. If
k = 0, we’re of course done. Otherwise, since f (m)(1) =

∑n
j=0 j(j − 1) . . . (j −m + 1)εj for

m ≥ 1, it’s easy to inductively see that
∑

j∈A j
m =

∑
j∈B j

m for all 0 ≤ m ≤ k− 1 and then∑
j∈A j

k 6=
∑

j∈B j
k. �

Theorem 2. Let A,B be distinct subsets of [n] that are each n1/3-separated. Then there is
some prime p ∈ [1

2
C ′n1/3 log6 n,C ′n1/3 log6 n] and some i ∈ [p] so that |Ai,p| 6= |Bi,p|. Here,

C ′ > 0 is an absolute constant.
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Proof. By Theorem 6, take m = O(n1/3 log5 n) such that
∑

a∈A a
m 6=

∑
b∈B b

m. Since∣∣∑
a∈A a

m −
∑

b∈B b
m
∣∣ ≤ nnm ≤ exp(O(n1/3 log6 n)), by basic estimates on the prime count-

ing function there is some prime p ∈ [1
2
C ′n1/3 log6 n,C ′n1/3 log6 n] such that

∑
a∈A a

m 6≡∑
b∈B b

m (mod p). Noting that
∑

a∈A a
m ≡

∑p−1
i=0 |Ai,p|im (mod p) and

∑
b∈B b

m ≡
∑p−1

i=0 |Bi,p|im
(mod p), we see that there is some i ∈ [p] for which |Ai,p| 6≡ |Bi,p| (mod p). �

With our main technical theorem proven, we now establish the improved upper bound for
the separating words problem.

Recall that, for a string x = x1, . . . , xn ∈ {0, 1}n and a (sub)string w = w1, . . . , wl ∈
{0, 1}l, we defined posw(x) = {j ∈ {1, . . . , n− l + 1} : xj+k−1 = wk for all 1 ≤ k ≤ l}.

Lemma 2. Let m,n be positive integers, i ∈ [m] a residue mod m, q a prime number, a ∈ [q]
a residue mod q, and w ∈ {0, 1}l a string of length l ≤ m. Then there is a determinsitic finite
automaton with 2mq states that accepts a string x ∈ {0, 1}n if and only if |{j ∈ posw(x) :
j ≡ i (mod m)}| ≡ a (mod q).

Proof. Write w = w1, . . . , wl. We assume l > 1; a minor modification to the following yields
the result for l = 1. We interpret indices of w mod m, which we may, since l ≤ m. Let the
states of the DFA be Zm × {0, 1} × Zq. The initial state is (1, 0, 0). If j 6≡ i (mod m) and
ε ∈ {0, 1}, set δ((j, 0, s), ε) = (j + 1, 0, s). If j ≡ i (mod m), set δ((j, 0, s), w1) = (j + 1, 1, s)
and δ((j, 0, s), 1 − w1) = (j + 1, 0, s). If j 6≡ i + l − 1 (mod m), set δ((j, 1, s), wj−i+1) =
(j + 1, 1, s) and δ((j, 1, s), 1 − wj−i+1) = (j + 1, 0, s). Finally, if j ≡ i + l − 1 (mod m), set
δ((j, 1, s), wl) = (j + 1, 0, s + 1) and δ((j, 1, s), 1− wl) = (j + 1, 0, s). The accept states are
Zm × {0, 1} × {a}. �

We are now ready to prove Theorem 1, restated below.

Theorem 1. For any distinct x, y ∈ {0, 1}n, there is a deterministic finite automaton with
O(n1/3 log7 n) states that accepts x but not y.

Proof. Let x1, . . . , xn and y1, . . . , yn be two distinct strings in {0, 1}n. If xi 6= yi for some
i < 2n1/3, then we are of course done, so we may suppose otherwise. Let i ≥ 2n1/3 be the
first index with xi 6= yi. Let w′ = xi−2n1/3+1, . . . , xi−1 be a (sub)string of length 2n1/3 − 1.
By Lemma 1 and Lemma 2 of [25], there is some choice w ∈ {w′0, w′1} for which A :=
posw(x) is n1/3-separated and B := posw(y) is n1/3-separated. Clearly A 6= B, so Corollary
2 implies there is some prime p ∈ [1

2
C ′n1/3 log6 n,C ′n1/3 log6 n] and some i ∈ [p] for which

|Ai,p| 6= |Bi,p|. Since |Ai,p| and |Bi,p| are at most n, there is some prime q = O(log n) for
which |Ai,p| 6≡ |Bi,p| (mod q). Since |w| = 2n1/3 ≤ p, by Lemma 2 there is a deterministic
finite automaton with 2pq = O(n1/3 log7 n) states that accepts x but not y. �

6.2. Proof of Theorem 2. Fix q ∈ (0, 1), and let p = 1 − q. Our starting point is the
following identity (see Section 5 for an introduction to it).
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Proposition 6.2. For any x ∈ {0, 1}n, l ≥ 1, w ∈ {0, 1}l, and z0, . . . , zl−1 ∈ C, we have

Ex

p−l ∑
0≤j≤n−1

∆1,...,∆l−1≥1

1Ũj=w0

(
l−1∏
i=1

1Ũj+∆1+···+∆i
=wi

)
(
z0 − q
p

)j

(
l−1∏
i=1

(
zi − q
p

)∆i−1

)
=

∑
k0<···<kl−1

(
l−1∏
i=0

1xki=wi

)
zk0

0

(
l−1∏
i=1

z
ki−ki−1−1
i

)
.

Proof. By basic combinatorics, the left hand side is

p−l
∑

j,∆1,...,∆l−1

∑
k0<···<kl−1

1 xki=wi
∀0≤i≤l−1

(
k0

j

)(
k1 − k0 − 1

∆1 − 1

)(
k2 − k1 − 1

∆2 − 1

)
. . .

(
kl−1 − kl−2 − 1

∆l−1 − 1

)
×pj+∆1+···+∆l−1+1qkl−1+1−(j+∆1+···+∆l−1+1)

×(
z0 − q
p

)j(
z1 − q
p

)∆1−1 . . . (
zl−1 − q

p
)∆l−1−1

=
∑

k0<···<kl−1

1 xki=wi
∀0≤i≤l−1

(∑
j

(
k0

j

)
(z0 − q)jqk0−j

)(∑
∆1

(
k1 − k0 − 1

∆1 − 1

)
(z1 − q)∆1−1qk1−k0−1−(∆1−1)

)

× · · · ×

∑
∆l−1

(
kl−1 − kl−2 − 1

∆l−1 − 1

)
(zl−1 − q)∆l−1−1qkl−1−kl−2−1−(∆l−1−1)


=

∑
k0<···<kl−1

1 xki=wi
∀0≤i≤l−1

zk0
0 z

k1−k0−1
1 . . . z

kl−1−kl−2−1
l−1 .

�

Proposition 6.3. For any distinct x, y ∈ {0, 1}n, if xi = yi for all 0 ≤ i < 2n1/5 − 1, then

there are w ∈ {0, 1}2n1/5
and z0 ∈ {eiθ : |θ| ≤ n−2/5} such that∣∣∣∣∣∑

k

[1xk+i=wi − 1yk+i=wi ]z
k
0

∣∣∣∣∣ ≥ exp(−Cn1/5 log5 n).

Proof. Let i ≥ 2n1/5 − 1 be the first index with xi 6= yi. Let w′ = xi−2n1/5+1, . . . , xi−1.
Lemmas 1 and 2 of [25] imply that there is some choice w ∈ {w′0, w′1} such that the indices
k for which xk+i = wi for all 0 ≤ i ≤ 2n1/5 − 1 are n1/5-separated, and such that the
indices k for which yk+i = wi for all 0 ≤ i ≤ 2n1/5 − 1 are n1/5-separated. Therefore, if

p(z) :=
∑

k[1xk+i=wi − 1yk+i=wi ]z
k, then εp(z)

zm
∈ P1/5

n for some ε ∈ {−1, 1} and 0 ≤ m ≤ n.

Thus, by Theorem 5, there is some θ ∈ [−n−2/5, n−2/5] such that exp(−C2n
1/5 log5 n) ≤

|εp(e
iθ)

eimθ
| = |p(eiθ)|. Take z0 = eiθ. �

In a previous version of this paper, we used Proposition 6.2 with z1, . . . , zl−1 = 0 and z0

chosen according to Proposition 6.3 to prove Theorem 2, which only worked for q ≤ 1/2,
for if q > 1/2, then (−q/p)∆i−1 would be too large in magnitude (for ∆i ≈ n), leading to
too large a variance to well-enough approximate

∑
k[1xk+i=wi − 1yk+i=wi ]z

k
0 with few traces.
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The idea of Shyam Narayanan was to choose z1, . . . , zl−1 close to 1 so that ( zi−q
p

)∆i−1 would

no longer be too large in magnitude, while also keeping the right hand side of Proposition
6.2 not too small. The following corollary, due to him, establishes the existence of such
z1, . . . , zl−1.

Corollary 6.1. For any distinct x, y ∈ {0, 1}n, if xi = yi for all 0 ≤ i < 2n1/5 − 1, then

there are w ∈ {0, 1}2n1/5
, z0 ∈ {eiθ : |θ| ≤ n−2/5}, z1, . . . , z2n1/5−1 ∈ [1 − 2p, 1] such that, for

l := 2n1/5,∣∣∣∣∣∣
∑

k0<···<kl−1

[1xki=wi − 1yki=wi ]z
k0
0 z

k1−k0−1
1 . . . z

kl−1−kl−2−1
l−1

∣∣∣∣∣∣ ≥ exp(−C ′n1/5 log5 n).

Proof. Let w and z0 be those guaranteed by Proposition 6.3. Let

f(z1) =

(
n

2n1/5

)−1 ∑
k0<···<kl−1

[1xki=wi − 1yki=wi ]z
k0
0 z

kl−1−k0−(l−1)
1 .

Note that f is a polynomial in z1 with each coefficient trivially upper bounded by 1 in
absolute value. Therefore, by Theorem 5.1 of [6],(

n

2n1/5

)
max

z1∈[1−2p,1]
|f(z1)| ≥

(
n

2n1/5

)
|f(0)|c1/(2p) exp(− c2

2p
)

≥
(

n

2n1/5

)((
n

2n1/5

)−1

exp(−Cn1/5 log5 n)

)c1/(2p)

exp(− c2

2p
)

≥ exp(−C ′n1/5 log5 n).

The corollary follows by taking a z1 realizing this maximum and then setting z2, . . . , zl−1 =
z1. �

Proof of Theorem 2. Take distinct x, y ∈ {0, 1}n. If xi 6= yi for some i < 2n1/5 − 1,
then, by Lemma 4.1 of [24], x and y can be distinguished with high probability with
exp(O(n1/15)) ≤ exp(C ′′n1/5 log5 n) traces. So suppose otherwise. Let w, z0, z1, . . . , z2n1/5−1

be those guaranteed by Corollary 6.1. Since z1, . . . , z2n1/5−1 ∈ [1 − 2p, 1], each of zi−q
p

,

1 ≤ i ≤ 2n1/5 − 1, is between −1 and 1, and so the expression in brackets in Proposition
6.2 has magnitude upper bounded by n|2z0 − 1|n22n1/5

, which by [23], is upper bounded by

n exp( n
n4/5 )22n1/5

. Therefore, since the expression in brackets in Proposition 6.2 is a function
of just the observed traces, by Corollary 6.1 and a standard Höeffding inequality argument
(see [23] for details; note the pigeonhole is not necessary), we see exp(C ′′′n1/5 log5 n) traces
suffice to distinguish between x and y. As explained in [23], this suffices to establish Theorem
2. �

7. Proofs of Theorems 4 and 5

We may of course assume n is large.
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Let a = n−2µ and r = a−1/2. Let r∗ ∈ [r] be such that
r∗∑
j=1

1

log2(j + 3)
−

r∑
j=r∗+1

1

log2(j + 3)
∈ [20, 21];

such an r∗ clearly exists. Let {
εj = +1 if 1 ≤ j ≤ r∗

εj = −1 if r∗ + 1 ≤ j ≤ r
.

Let λa ∈ (1, 2) be such that
r∑
j=1

λa

j2 log2(j + 3)
= 1.

Let

dj =
λa

j2 log2(j + 3)
.

Define

h̃(z) = λ̃a

r∑
j=1

εjdjz
j,

where λ̃a ∈ (1, 2) is such that h̃(1) = 1. Define

h(z) = (1− a10)h̃(z).

Define Ẽa to be the ellipse with foci at 1 − a and 1 − a + 1
4
a and with major axis [1 − a −

a
32
, 1− a+ 9a

32
]. Let

α = eia, β = e−ia,

and denote

It = {z ∈ C : arg(
α− z
z − β

) = t}

for t ≥ 0. Note that I0 is the line segment connecting α and β and Ia = {eiθ : |θ| ≤ a} is the
set on which we wish to lower bound p at some point. Let

Ga = {z ∈ C : arg(
α− z
z − β

) ∈ (
a

2
, a)}

be the open region bounded by Ia/2 and Ia.

We needed our choice of h to satisfy (i) |h(e2πit)| ≤ 1− c|t| for |t| > a1/2 (up to logs), (ii)
|h(e2πit)| ≥ 1−Ca2 for |t| ≈ a, and (iii) h(∂D) ⊆ D. Some thought shows that a polynomial
with positive coefficients will not work. A summation by parts argument shows (i) holds,
regardless of the values of εj. We had roughly half of the εj’s be −1 so that (ii) holds.
However, due to our required normalization that h(1) is basically 1, the negative coefficients

make it so that h might not map into the unit disk. Luckily, though, h̃, and thus h, does
map into the unit disk. We prove that in the appendix.

Lemma 3. For any t ∈ [−π, π], h̃(eit) ∈ D.
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Lemma 4. There are absolute constants c4, c5, C6 > 0 such that the following hold for a > 0

small enough. First, h(e2πit) ∈ Ga for |t| ≤ c4a. Second, |h(e2πit)| ≤ 1 − c5
|t|

log2(a−1)
for

t ∈ [−1
2
, 1

2
] \ [−C6a

1/2, C6a
1/2].

Proof. Take |t| ≤ a. Then,

h̃(e2πit) = λ̃a

r∗∑
j=1

λa

j2 log2(j + 3)
(1 + 2πitj − 2π2t2j2 +O(t3j3))

− λ̃a
r∑

j=r∗+1

λa

j2 log2(j + 3)
(1 + 2πitj − 2π2t2j2 +O(t3j3)).

By our choice of r∗, h(e2πit) = 1− δ+ εi for δ := c1t
2 +a10 +O( t3r2

log2 r
) and ε := c2t+O( t3r2

log2 r
),

where c1, c2 are bounded positive constants that are bounded away from 0. By multiplying
the denominator by its conjugate, we have

arg

(
eia − (1− δ + εi)

(1− δ + εi)− e−ia

)
= arg

( [
eia − (1− δ + εi)

]
·
[
(1− δ − εi)− eia

] )
.

The ratio of the imaginary part to the real part of the term inside arg(·) is

2(1− δ − cos(a)) sin(a)

− cos2(a) + 2(1− δ) cos(a)− (1− δ)2 + sin2(a)− ε2
.

Writing cos(a) = 1 − 1
2
a2 + O(a4) and sin(a) = a + O(a3), and using δ = O(a2), the above

simplifies to
a3 − 2aδ +O(a4)

a2 − ε2 +O(a3)
.

If |t| ≤ c4a, then, as δ = c1t
2 + a10 + O( t3r2

log2 r
), ε = c2t + O( t3r2

log2 r
), the inverse tangent of the

above is at least a
2
; the arctangent is at most a, since, by Lemma 3, h(e2πit) lies in the unit

disk (alternatively, one may note 2aδ > ε2).

We now establish the second part of the lemma. Take some m ≤ r (for now). By
summation by parts, for any z ∈ C, we have

(2)
m∑
j=1

λaz
j

j2 log2(j + 3)
=

λa
∑m

j=1 z
j

m2 log2(m+ 3)
+ 2λa

∫ m

1

(
∑

j≤x z
j)
(
log(x+ 3) + x

x+3

)
x3 log3(x+ 3)

dx.

Quickly note that, for z = 1, (2) gives

(3) 1 =
λa

m log2(m+ 3)
+ 2λa

∫ m

1

bxc
(
log(x+ 3) + x

x+3

)
x3 log3(x+ 3)

dx.

Trivially, for any z ∈ ∂D, we have

(4)

∣∣∣∣∣ λa
∑m

j=1 z
j

m2 log2(m+ 3)

∣∣∣∣∣ ≤ λa

m log2(m+ 3)
.

Note that, for any x ≥ 1,

(5)

∣∣∣∣∣∑
j≤x

zj

∣∣∣∣∣ =

∣∣∣∣z1− zbxc

1− z

∣∣∣∣ ≤ 2

|1− z|
≤ t−1
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for all z = e2πit with t ∈ (0, 1
2
]. For z = e2πit with t ∈ (0, 3m−1), (5) and (3) imply∣∣∣∣∣2λa
∫ m

1

(
∑

j≤x z
j)
(
log(x+ 3) + x

x+3

)
x3 log3(x+ 3)

dx

∣∣∣∣∣ ≤
2λa

∫ 3t−1

1

bxc
(
log(x+ 3) + x

x+3

)
x3 log3(x+ 3)

dx+ 2λa

∫ m

3t−1

t−1
(
log(x+ 3) + x

x+3

)
x3 log3(x+ 3)

dx

(6) = 1− 2λa

∫ m

3t−1

(bxc − t−1) ·
(
log(x+ 3) + x

x+3

)
x3 log3(x+ 3)

dx− λa

m log2(m+ 3)
.

Observe bxc − t−1 ≥ 1
2
x for x ≥ 3t−1. Therefore,

2λa

∫ m

3t−1

(bxc − t−1) ·
(
log(x+ 3) + x

x+3

)
x3 log3(x+ 3)

dx ≥ λa

∫ m

3t−1

1

x2 log2(x+ 3)
dx

≥ λa

log2(m+ 3)

∫ m

3t−1

1

x2
dx

(7) =
λat

3 log2(m+ 3)
− λa

m log2(m+ 3)
.

Combining (2), (4), (6), and (7), we conclude that, for any t > 3m−1,

(8)
∣∣∣h̃(e2πit)

∣∣∣ =

∣∣∣∣∣
m∑
j=1

λae
2πijt

j2 log2(j + 3)

∣∣∣∣∣ ≤ 1− λat

3 log2(m+ 3)
+

λa

m log2(m+ 3)
.

By symmetry, we see∣∣∣h̃(e2πit)
∣∣∣ =

∣∣∣∣∣
m∑
j=1

λae
2πijt

j2 log2(j + 3)

∣∣∣∣∣ ≤ 1− λa|t|
3 log2(m+ 3)

+
λa

m log2(m+ 3)

for any t ∈ [−1/2, 1/2] \ [−3m−1, 3m−1]. For m = r∗, if |t| > C6a
1/2, for say C6 = 100, then

certainly |t| > 3m−1, and so we have

(9)

∣∣∣∣∣
r∗∑
j=1

λae
2πitj

j2 log2(j + 3)

∣∣∣∣∣ ≤ 1− c |t|
log2(a−1)

.

for some absolute c > 0. We can crudely bound

(10)

∣∣∣∣∣
r∑

j=r∗+1

λae
2πitj

j2 log2(j + 3)

∣∣∣∣∣ ≤ 4

log2(a−1)

1

r∗
.

Combining (9) and (10), we obtain∣∣∣∣∣
r∑
j=1

λaεje
2πitj

j2 log2(j + 3)

∣∣∣∣∣ ≤ 1− c′5
|t|

log2(a−1)
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for |t| ≥ C6r
−1, with c′5 > 0 small and C6 large enough. Now, since

λ̃−1
a =

r∗∑
j=1

λa

j2 log2(j + 3)
−

r∑
j=r∗+1

λa

j2 log2(j + 3)

= 1− 2
r∑

j=r∗+1

λa

j2 log2(j + 3)

≥ 1− 2
2

log2(a−1)

2

r∗

≥ 1− 20

r log2(a−1)
,

we see ∣∣∣∣∣λ̃a
r∑
j=1

λaεje
2πitj

j2 log2(j + 3)

∣∣∣∣∣ ≤ 1− c5
|t|

log2(a−1)

for |t| ≥ C6r
−1, provided C6 is large enough. Since 1− a10 ≤ 1, we are done. �

Let m = c−1
4 n2µ, J1 = c−1

5 n−µm log4 n, and J2 = m− J1.

Lemma 5. Let u(z) = ζ − zd for some ζ ∈ ∂D and some d ≤ nµ. Then, for any δ ∈ [0, 1),

we have
∏J2−1

j=J1
|p̃(h(e2πi j+δ

m ))| ≤ exp(Cnµ log5 n).

Proof. First note that

(11) |u(h(e2πiθ))| ≥ 1− |h(e2πiθ)|d ≥ 1− (1− a10)d ≥ a10.

Define g(t) = 2 log |u(h(e2πi(t+ δ
m

)))|. For notational ease, we assume δ = 0; the argument
about to come works for all δ ∈ [0, 1). Since (11) implies g is C1, by the mean value theorem
we have ∣∣∣∣∣ 1

m

J2−1∑
j=J1

g

(
j

m

)
−
∫ J2/m

J1/m

g(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
J2−1∑
j=J1

∫ (j+1)/m

j/m

(
g(t)− g

(
j

m

))
dt

∣∣∣∣∣
≤

J2−1∑
j=J1

∫ (j+1)/m

j/m

(
max

j
m
≤y≤ j+1

m

|g′(y)|

)
1

m
dt

≤ 1

m2

J2−1∑
j=J1

max
j
m
≤y≤ j+1

m

|g′(y)|.(12)

Since w 7→ log |u(h(w))| is harmonic and log |u(h(0))| = log |u(0)| = 0, we have∫ 1

0

g(t)dt = 2

∫ 1

0

log |u(h(e2πit))|dt = 0,

and therefore

(13)

∣∣∣∣∣
∫ J2/m

J1/m

g(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ J1/m

0

g(t)dt

∣∣∣∣∣+

∣∣∣∣∫ 1

J2/m

g(t)dt

∣∣∣∣ .
Since

a10 ≤
∣∣u(h(e2πit))

∣∣ ≤ 2
14



for each t, we have

(14)

∣∣∣∣∣
∫ J1/m

0

g(t)dt

∣∣∣∣∣+

∣∣∣∣∫ 1

J2/m

g(t)dt

∣∣∣∣ ≤ 20

(
J1

m
+ (1− J2

m
)

)
log n ≤ C

log5 n

nµ
.

By (12), (13), and (14), we have∣∣∣∣∣ 1

m

J2−1∑
j=J1

g(
j

m
)

∣∣∣∣∣ ≤ C
log5 n

nµ
+

1

m2

J2−1∑
j=J1

max
j
m
≤t≤ j+1

m

|g′(t)|.

Multiplying through by m, changing C slightly, and exponentiating, we obtain

(15)

J2−1∏
j=J1

∣∣∣u(h(e2πi j
m ))
∣∣∣2 ≤ exp

(
Cnµ log5 n+

1

m

J2−1∑
j=J1

max
j
m
≤t≤ j+1

m

|g′(t)|

)
.

Note

g′(t0) =

∂
∂t

[
|u(h(e2πit))|2

]∣∣∣
t=t0

|u(h(e2πit0))|2
.

We first show

(16)
∂

∂t

[
|u(h(e2πit))|2

]∣∣∣
t=t0
≤ 500d

for each t0 ∈ [0, 1]. Let d̃j = λ̃aεjdj so that h(e2πit) = (1− a10)
∑r

j=1 d̃je
2πitj. Then,

∣∣u (h(e2πit)
)∣∣2 =

∣∣∣∣∣∣(1− a10)d

(
r∑
j=1

d̃je
2πijt

)d

− ζ

∣∣∣∣∣∣
2

(17) = (1− a10)2d

∣∣∣∣∣
r∑
j=1

d̃je
2πijt

∣∣∣∣∣
2
d − 2 Re

(1− a10)dζ

(
r∑
j=1

d̃je
2πijt

)d
+ 1.

The derivative of the first term of (17) is

(18) (1− a10)2dd

∣∣∣∣∣
r∑
j=1

d̃je
2πijt

∣∣∣∣∣
2
d−1

r∑
j1,j2=1

d̃j1 d̃j22π(j1 − j2)e2πi(j1−j2)t.

Since
r∑
j=1

|d̃j| = λ̃a ≤ 1 + 4a1/2

and
r∑
j=1

j|d̃j| ≤ 4,

we can upper bound (18) by

d(1 + 4a1/2)2(d−1)(1 + 4a1/2)4,
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which is upper bounded by 250d (say), since d ≤ a−1/2. As the second term of (17) is

2(1− a10)dζ
∑

1≤j1,...,jd≤r

d̃j1 . . . d̃jd cos (2π(j1 + · · ·+ jd)t) ,

the derivative of the second term of (17) is

−2(1− a10)dζ
∑

1≤j1,...,jd≤r

2π(j1 + · · ·+ jd)d̃j1 . . . d̃jd sin (2π(j1 + · · ·+ jd)t) ,

which is also upper bounded by (crudely) 250d. We’ve thus shown (16).

Recall |u(h(e2πiθ))| ≥ 1 − |h(e2πiθ)|d. For j ∈ [J1, J2] ⊆ [C6a
1/2m, (1 − C6a

1/2)m], we use
(by Lemma 4)

|h(e2πi j
m )| ≤ 1− c5

min( j
m
, 1− j

m
)

log2 n
to obtain

1

m

J2−1∑
j=J1

500d(
1− (1− c5

min( j
m
,1− j

m
)

log2 n
)
d
)2 .

Up to a factor of 2, we may deal only with j ∈ [J1,
m
2

]. Let J∗ = c−1
5 d−1m log2 n. Note

that j ≤ J∗ implies c5
j

m log2 n
≤ d−1 and j ≥ J∗ implies c5

j
m log2 n

≥ d−1. Thus, using

(1− x)d ≤ 1− 1
2
xd for x ≤ 1

d
, we have

1

m

min(J∗,
m
2

)∑
j=J1

500d(
1− (1− c5

j
m log2 n

)
d
)2 ≤

500d

m

min(J∗,
m
2

)∑
j=J1

1(
1
2
c5

j
m log2 n

d
)2

=
2000m log4 n

c2
5d

min(J∗,
m
2

)∑
j=J1

1

j2

≤ 2000m log4 n

c2
5d

2

J1

≤ Cnµ.(19)

Finally, since there is some c > 0 such that (1 − x)l ≤ 1 − c for all l ∈ N and x ∈ [l−1, 1],

using the notation
∑b

i=a xi = 0 if a > b, we see

1

m

m/2∑
j=min(J∗,

m
2

)+1

500d(
1− (1− c5

j
m log2 n

)
d
)2 ≤

500d

m

m/2∑
j=min(J∗,

m
2

)+1

c−2

≤ Cd

≤ Cnµ.(20)

Combining (19) and (20), we obtain

1

m

J2−1∑
j=J1

max
j
m
≤ j+1

m

|g′(t)| ≤ Cnµ.

Plugging this upper bound into (15) yields the desired result. �
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Let Qµn denote all polynomials of the form (z − α)(z − β)p(z) for p ∈ Pµn .

Corollary 7.1. For any q ∈ Qµn and δ ∈ [0, 1),
∏

j 6∈{0,m−1} |q(h(e2πi j+δ
m z))| ≤ exp(Cnµ log5 n).

Proof. Take q ∈ Qn; say q(z) = (z − α)(z − β)p(z) for p ∈ Pµn . For j ∈ {1, . . . , J1 − 1} and

for j ∈ {J2, . . . ,m− 2}, by Lemma 3 we can bound |q(h(e2πi j
m z))| ≤ 4n, to obtain

(21)
∏

j 6∈{J1,...,J2−1}

|q(h(e2πi j+δ
m ))| ≤ (4n)J1−1+m−J2−1 ≤ eCn

µ log5 n.

By applying Lemma 5 to u(z) := α− z and to u(z) := β− z and multiplying the results, we
see

(22)

J2−1∏
j=J1

|u(h(e2πi j+δ
m ))| ≤ eCn

µ log5 n,

where u(z) := (z−α)(z−β). Let p̃(z) ∈ {1, 1−zd} be the truncation of p to terms of degree
less than nµ. Then, since Lemma 4 gives

|h(e2πi j+δ
m )| ≤ 1− c5

min
(
j
m

+ δ, 1− ( j
m

+ δ)
)

log2 n
≤ 1− c′n−µ log2 n

for j ∈ {J1, . . . , J2 − 1}, we see

(23)
∣∣∣p(h(e2πi j+δ

m )
)
− p̃
(
h(e2πi j+δ

m )
)∣∣∣ ≤ ne−c

′ log2 n ≤ e−c log2 n.

Lemma 5 implies

(24)

J2−1∏
j=J1

|p̃(h(e2πi j+δ
m ))| ≤ eCn

µ log5 n.

The estimates (23) and (24) combine to give

(25)

J2−1∏
j=J1

|p(h(e2πi j+δ
m ))| ≤ eC

′nµ log5 n.

Combining (21), (22), and (25), the proof is complete. �

Proposition 7.1. For any q ∈ Qn, it holds that

max
w∈Ẽa

|q(w)| ≥ exp(−Cnµ log5 n)

and
max
w∈Ga

|q(w)| ≥ exp(−Cnµ log5 n).

Proof. Let g(z) =
∏m−1

j=0 q(h(e2πi j
m z)). For z = e2πiθ, with, without loss of generality, θ ∈

[0, 1
m

), we have by Lemma 4 and Corollary 7.1

|g(z)| ≤
(

max
w∈Ga

|q(w)|
)2 ∏

j 6∈{0,m−1}

|q(h(e2πi( j
m

+θ)))| ≤
(

max
w∈Ga

|q(w)|
)2

exp(Cnµ log5 n).
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Thus, (maxw∈Ga |q(w)|)2 exp(Cnµ log5 n) ≥ maxz∈∂D |g(z)| ≥ |g(0)| = 1, where the last in-
equality used the maximum modulus principle (clearly g is analytic). The same proof applies

to Ẽa in place of Ga. �

7.1. Proof of Theorem 4.

The following lemma was proven5 in [6] (see Corollary 5.3):

Lemma 6. For every n ≥ 1, p ∈ Pµn , and a > 0, we have
(
maxz∈Ẽa |p(z)|

)2 ≤ 64
39a

maxx∈[1−a,1] |p(x)|.

Proof of Theorem 4. Using Proposition 7.1 and Lemma 6, we obtain

max
x∈[1−n−2µ,1]

|p(x)| = max
x∈[1−a,1]

|p(x)|

≥ 39a

64
exp(−Cnµ log5 n)

≥ exp(−C ′nµ log5 n).

This completes the proof of Theorem 4. �

7.2. Proof of Theorem 5.

The following lemma was proven in [5] (see Lemma 4.3).

Lemma 7. Suppose g is an analytic function in the open region bounded by I0 and Ia, and
suppose g is continuous on the closed region between I0 and Ia. Then,

max
z∈Ia/2

|g(z)| ≤
(

max
z∈I0
|g(z)|

)1/2(
max
z∈Ia
|g(z)|

)1/2

.

Proof of Theorem 5. Take f ∈ Pµn , and let g(z) = (z − α)(z − β)f(z). A straightforward
geometric argument yields

|g(z)| ≤ |(z − α)(z − β)|
1− |z|

≤ 2

sin(a)
≤ 3n2µ

for z ∈ I0. Letting L = ||g||Ia , Lemma 7 then gives

max
z∈Ia/2

|g(z)| ≤ (3Ln2µ)1/2.

Since we then have
max

z∈Ia/2∪Ia
|g(z)| ≤ max(L, (3Ln2µ)1/2),

the maximum modulus principle implies

max
z∈Ga
|g(z)| ≤ max(L, (3Ln2µ)1/2).

By Proposition 7.1, we conclude

exp(−Cnµ log5 n) ≤ max
(
L, (3Ln2µ)1/2

)
.

5They state Lemma 6 for p ∈ S; they define S to be the set of all analytic functions f on the (open) unit
disk such that |f(z)| ≤ 1

1−|z| for each z ∈ D. It is clear Pµn ⊆ S for each n.
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Thus,

||f ||Ia ≥
1

4
||g||Ia =

L

4
≥ exp(−C ′nµ log5 n),

as desired. �

8. Appendix: Proof of Lemma 3

We thank Fedor Nazarov for a simpler proof of Lemma 3, which we include below.

Claim 8.1. Let F be a compact family of (uniformly) bounded Lipschitz functions on [0, 1]

such that
∫ 1/2

0
f <

∫ 1

1/2
f for every f ∈ F . Then there exists R, ε > 0 so that if m > M and

m∗ ∈ ((1
2
− ε)m, (1

2
+ ε)m), it holds for all f ∈ F that

(26)
m∗∑
j=1

1

log2(j + 3)
f

(
j

m

)
<

m∑
j=m∗+1

1

log2(j + 3)
f

(
j

m

)
.

Proof. By compactness, there exists ε > 0 so that for all γ ∈ (1
2
− ε, 1

2
+ ε) and all f ∈ F , we

have

(27)

∫ γ

0

f <

∫ 1

γ

f − ε.

Quickly note that

1

m

m∑
j=1

[
1

log2(j + 3)
− 1

log2(m+ 3)

] ∣∣∣∣f ( j

m

)∣∣∣∣ ≤ C
1

m


m

log3(m+3)∑
j=1

1 +
m∑

j= m
log3(m+3)

log log(m+ 3)

log3(m+ 3)


≤ C

log log(m+ 3)

log3(m+ 3)

= o(
1

log2(m+ 3)
)

as m→∞. As (26) is equivalent to

log2(m+ 3)

m

m∗∑
j=1

1

log2(j + 3)
f

(
j

m

)
<

log2(m+ 3)

m

m∑
j=m∗+1

1

log2(j + 3)
f

(
j

m

)
,

by the above quick note it suffices to prove

1

m

m∗∑
j=1

f(
j

m
) <

1

m

m∑
j=m∗+1

f(
j

m
)− ε

2
,

say (for m large enough and m∗ ∈ ((1
2
− ε)m, (1

2
+ ε),m)). But the LHS becomes arbitrarily

close to
∫ m∗/m

0
f( j

m
), and the RHS becomes arbitrarily close to

∫ 1

m∗/m
f( j

m
)− ε

2
, so we’re done

by (27). �

Let f(x) = 1
2
− 1

2

(
sin(x/2)
x/2

)2

for x ∈ (0, 1] and f(0) = 0. Letfc(x) = c−4f(cx) for c > 0

and f0(x) = x4

24
. We will apply Claim 8.1 to the family F := {fc(x) : c ∈ [0, C]}, for a

suitable absolute C > 0. An easy computation shows that F is a compact family of bounded
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Lipschitz functions. The condition that
∫ 1/2

0
fc <

∫ 1

1/2
fc for every c ∈ [0, C] is equivalent to∫ a

0
f(x)dx <

∫ 2a

a
f(x) for all a > 0, which is equivalent to∫ b

0

(
sinx

x

)2

dx >

∫ 2b

b

(
sinx

x

)2

dx

for all b > 0, which is easily verified.

Proof of Lemma 3. The proof of Lemma 4 shows that h̃(eit) ∈ D if t ∈ [−π, π] \ [− 1
100
, 1

100
],

say, so assume |t| ≤ 1
100

. First note that∣∣∣Im[h̃(eit)]
∣∣∣ = λ̃a

r∑
j=1

εjdj sin(jt)

≤ λ̃a

r∑
j=1

djj|t|

≤ 2|t|.
Also,

Re[h̃(eit)] = λ̃a

r∑
j=1

εjdj cos(jt)

≥ λ̃a

r∑
j=1

εjdj

(
1− j2t2

2

)

= 1− 1

2
t2λ̃a

r∑
j=1

εjj
2dj

≥ 1− 1

2
t2λ̃a(21)

> 0.

Finally,

Re[h̃(eit)] = λ̃a

[
r∗∑
j=1

1

log2(j + 3)

(
1

j2
− t2

2

)
−

r∑
j=r∗+1

1

log2(j + 3)

(
1

j2
− t2

2

)]

+λ̃ar
4t6

[
r∗∑
j=1

1

log2(j + 3)
ftr(

j

r
)−

r∑
j=r∗+1

1

log2(j + 3)
ftr(

j

r
)

]
,

where we used
cosx− 1 + x2

2

x2
=

1

2
− 1

2

(
sin(x/2)

x/2

)2

,

is by Claim 8.1 at most

λ̃a

[
r∗∑
j=1

1

log2(j + 3)

(
1

j2
− t2

2

)
−

r∑
j=r∗+1

1

log2(j + 3)

(
1

j2
− t2

2

)]
,
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which is at most 1− 10t2 by our choice of r∗. Combining everything, we see∣∣∣h̃(eit)
∣∣∣2 =

(
Re[h̃(eit)]

)2

+
(

Im[h̃(eit)]
)2

≤ (1− 10t2)2 + 4t2

≤ 1− 6t2

≤ 1,

as desired. �
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