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Abstract

We give a short proof that any k-uniform hypergraph H on n vertices with bounded degree
∆ has Ramsey number at most c(∆, k)n, for an appropriate constant c(∆, k). This result was
recently proved by several authors, but those proofs are all based on applications of the hypergraph
regularity method. Here we give a much simpler, self-contained proof which uses new techniques
developed recently by the authors together with an argument of Kostochka and Rödl. Moreover,
our method demonstrates that, for k ≥ 4,

c(∆, k) ≤ 22
...2

c∆

,

where the tower is of height k and the constant c depends on k. It significantly improves on the
Ackermann-type upper bound that arises from the regularity proofs, and we present a construction
which shows that, at least in certain cases, this bound is not far from best possible. Our methods
also allow us to prove quite sharp results on the Ramsey number of hypergraphs with at most m
edges.

1 Introduction

For a graph H, the Ramsey number r(H) is the least positive integer N such that, in every two-
colouring of the edges of complete graph KN on N vertices, there is a monochromatic copy of H.
Ramsey’s theorem states that r(H) exists for every graph H. A classical result of Erdős and Szekeres,
which is a quantitative version of Ramsey’s theorem, implies that r(Kk) ≤ 22k for every positive
integer k. Erdős showed using probabilistic arguments that r(Kk) > 2k/2 for k > 2. Over the last
sixty years, there have been several improvements on these bounds (see, e.g., [4]). However, despite
efforts by various researchers, the constant factors in the above exponents remain the same.

Determining or estimating Ramsey numbers is one of the central problem in combinatorics, see the
book Ramsey theory [17] for details. Besides the complete graph, the next most classical topic in this
area concerns the Ramsey numbers of sparse graphs, i.e., graphs with certain upper bound constraints
on the degrees of the vertices. The study of these Ramsey numbers was initiated by Burr and Erdős
in 1975, and this topic has since placed a central role in graph Ramsey theory. Burr and Erdős
conjectured, and it was proved by Chvátal, Rödl, Szemerédi and Trotter [3], that for every graph G

on n vertices and maximum degree ∆,

r(G) ≤ c(∆)n.
∗St John’s College, Cambridge, United Kingdom. E-mail: D.Conlon@dpmms.cam.ac.uk
†Department of Mathematics, Princeton, Princeton, NJ. Email: jacobfox@math.princeton.edu. Research supported

by an NSF Graduate Research Fellowship and a Princeton Centennial Fellowship.
‡Department of Mathematics, UCLA, Los Angeles, CA 90095 and Institute for Advanced Study, Princeton, NJ.

Email: bsudakov@math.ucla.edu. Research supported in part by NSF CAREER award DMS-0546523, NSF grants

DMS-0355497 and DMS-0635607, by a USA-Israeli BSF grant, and by the State of New Jersey.

1



Their proof of this theorem is a classic application of Szemerédi’s beautiful regularity lemma. However,
the use of this lemma makes the upper bound on c(∆) grow as a tower of 2s with height proportional
to ∆. Eaton [8] used a variant of the regularity lemma to obtain the upper bound c(∆) ≤ 22c∆ for
some fixed c. A novel approach of Graham, Rödl, Rucinski [15] that did not use any form of the
regularity lemma gives the upper bound c(∆) ≤ 2c∆ log2 ∆ for some fixed c. In the other direction, in
[16] they proved that there is a positive constant c such that, for every ∆ ≥ 2 and n ≥ ∆ + 1, there is
a bipartite graph G with n vertices and maximum degree at most ∆ satisfying r(G) ≥ 2c∆n. Recently,
the authors [5], [12] closed the gap for bipartite graphs by showing that, for every bipartite graph G

with n vertices and maximum degree ∆, r(G) ≤ 2c∆n for some fixed c.

A hypergraph H = (V,E) consists of a vertex set V and an edge set E, which is a collection of subsets
of V . A hypergraph is k-uniform if each edge has exactly k vertices. The Ramsey number r(H) of a
k-uniform hypergraph H is the smallest number N such that, in any 2-colouring of the edges of the
complete k-uniform hypergraph K

(k)
N , there is guaranteed to be a monochromatic copy of H. The

existence of these numbers was proven by Ramsey [24], but no proper consideration of the values of
these numbers was made until the fifties, when Erdős and Rado [11]. To understand the growth of
Ramsey numbers for hypergraphs, it is useful to introduce the tower function ti(x), which is defined
by t1(x) = x and ti+1(x) = 2ti(x), i.e.,

ti+1(x) = 22...2x

,

where the number of 2s in the tower is i. Erdős and Rado showed that for H being the complete
k-uniform hypergraph K(k)

l , r(H) ≤ tk(cl), where the constant c depends on k. In the other direction,
Erdős and Hajnal (see [17]) proved that for H = K

(k)
l , r(H) ≥ tk−1(cl2), where the constant c depends

on k.

One can naturally try to extend the sparse graph Ramsey results to hypergraphs. Kostochka and Rödl
[20] showed that for every ε > 0, the Ramsey number of any k-uniform hypergraph H with n vertices
and maximum degree ∆ satisfies

r(H) ≤ c(∆, k, ε)n1+ε,

where c(∆, k, ε) only depends on ∆, k, and ε. Since the first proof of the sparse graph Ramsey theorem
used Szemerédi’s regularity lemma, it was therefore natural to expect that, given the recent advances
in developing a hypergraph regularity method [14, 25, 23], linear bounds might as well be provable for
hypergraphs. Such a program was indeed recently pursued by several authors (Cooley, Fountoulakis,
Kühn, and Osthus [6, 7]; Nagle, Olsen, Rödl, and Schacht [22]; Ishigami [18]), with the result that we
now have the following theorem:

Theorem 1 Let ∆ and k be positive integers. Then there exists a constant c(∆, k) such that the
Ramsey number of any k-uniform hypergraph H with n vertices and maximum degree ∆ satisfies

r(H) ≤ c(∆, k)n.

In this paper we will give a short proof of this theorem, which is much simpler and avoids all use of
the regularity lemma, building instead on techniques developed recently by Conlon [5] and by Fox and
Sudakov [12] in order to study embeddings of sparse bipartite graphs in dense graphs.
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The first main result of this paper is an extension of this work from graphs to hypergraphs. An l-
uniform hypergraph is l-partite if there is a partition of the vertex set into l parts such that each edge
has exactly one vertex in each part. We prove the following Turán-type result for l-uniform l-partite
hypergraphs:

Theorem 2 There exists a constant c = c(l) such that if F is an l-uniform l-partite hypergraph
with n vertices and maximum degree ∆ and G is an l-uniform l-partite hypergraph with parts of size
N ≥ (ε/2)−c∆

l−1

n and at least εN l edges, then G contains a copy of F .

Then, in section 3, we will prove Theorem 1 by applying an argument of Kostochka and Rödl which
shows that the Ramsey problem for general hypergraphs may be reduced to an application of the
Turán theorem in the l-uniform l-partite case. This argument combined with our Theorem 2 shows
that, for k ≥ 4 and k-uniform hypergraph H with n vertices and maximum degree ∆,

r(H) ≤ tk(c∆)n,

where the constant c depends on k. For k = 3, the proof shows that r(H) ≤ t3(c∆ log ∆)n. This
is clearly much better than the Ackermann-type upper bound that arises from the regularity proofs.
The tower-type upper bound cannot be avoided as demonstrated by the lower bound of Erdős and
Hajnal for the Ramsey number of the complete k-uniform hypergraph on n vertices. This hypergraph
has maximum degree ∆ =

(
n−1
k−1

)
and Ramsey number at least tk−1(c∆

2
k−1 )n, where the constant c

depends on k.

For k-uniform hypergraphs H1, . . . , Hq, the multicolour Ramsey number r(H1, . . . , Hq) is the minimum
N such that, in any q-colouring of the edges of the complete k-uniform hypergraph K(k)

N with colours
1, . . . , q, there is a monochromatic copy of Hi in colour i for some i, 1 ≤ i ≤ q. The proof of Theorem
1 presented here extends in a straightforward manner to the multicolour generalisation, which states
that for all positive integers ∆, k, and q, there exists a constant c(∆, k, q) such that, if H1, . . . , Hq are
k-uniform hypergraphs each with n vertices and maximum degree ∆, then r(H1, . . . , Hq) ≤ c(∆, k, q)n.
The proof demonstrates that may take c(∆, k, q) ≤ tk(c∆) for k ≥ 4 and c(∆, 3, q) ≤ t3(c∆ log ∆),
where the constant c depends on k and q. In the other direction, in Section 4 we construct, for each
sufficiently large ∆, a 3-uniform hypergraph H with maximum degree at most ∆ for which the 4-colour
Ramsey number of H satisfies r(H,H,H,H) ≥ t3(c∆)n, where n is the number of vertices of H. This
example shows that our upper bound for hypergraph Ramsey numbers is probably close to being best
possible.

The same example also shows that there is a 3-uniform hypergraph H with m edges for which the
4-colour Ramsey number of H is at least t3(c

√
m). On the other hand, one can easily deduce from

the proof of Theorem 1 that for any k-uniform hypegraph H with m edges, we have that the q-colour
Ramsey number of H satisfies r(H, · · · ,H) ≤ t3(c

√
m logm) for k = 3, and r(H, · · · ,H) ≤ tk(c

√
m)

for k ≥ 4, where c depends on k and q.

2 A Turán theorem for l-uniform l-partite hypergraphs

The following is a generalisation to hypergraphs of a lemma which has appeared increasingly in the
literature on Ramsey theory, whose proof uses a probabilistic argument known as dependent random
choice. Early versions of this technique were developed in the papers [13], [19], [26]. Later, variants

3



were discovered and applied to various Ramsey and density-type problems (see, e.g., [21, 1, 27, 20, 12,
5]). We define the weight w(S) of a set S of edges in a hypergraph to be the size of the union of these
edges.

Lemma 1 Suppose s,∆ are positive integers, ε, β > 0, and Gr = (V1, · · · , Vr;E) is an r-uniform
r-partite hypergraph with |V1| = |V2| = · · · = |Vr| = N and at least εN r edges. Then there exists an
(r−1)-uniform (r−1)-partite hypergraph Gr−1 on the vertex sets V2, · · · , Vr which has at least εs

2 N
r−1

edges and such that for each nonnegative integer w ≤ (r− 1)∆, there are at most 4r∆ε−sβswr∆rwNw

dangerous sets of edges of Gr−1 with weight w, where a set S of edges of Gr−1 is dangerous if |S| ≤ ∆
and the number of vertices v ∈ V1 such that for every edge e ∈ S, e+ v ∈ Gr is less than βN .

Proof: Let C be the complete (r−1)-uniform (r−1)-partite hypergraph on the vertex sets V2, · · · , Vr.
For any edge e in C, let d(e) be the degree of e in Gr, i.e., the number of vertices in V1 such that
e+ v ∈ Gr. Let T be a set of s random vertices of V1, chosen uniformly with repetitions. Let A be the
set of edges in C which are common neighbours of the vertices of T , i.e., an edge e of C is in A if e+ v

is an edge of Gr for all v ∈ T . Let X denote the cardinality of A. We will show that with positive
probability, the set A will be the edge set of a hypergraph Gr−1 on vertex sets V2, . . . , Vr with the
desired properties. By linearity of expectation and by convexity of f(z) = zs,

E[X] =
∑
e∈C
P[e ∈ I] =

∑
e∈C

(
d(e)
N

)s

≥
N r−1

(P
e∈C d(e)

Nr−1

)s
N s

≥ N r−1(εN)s

N s
= εsN r−1.

Note that X ≤ N r−1 since C has N r−1 edges. Letting p denote the probability that X ≥ E[X]/2, we
have

E[X] ≤ (1− p)E[X]/2 + pN r−1 ≤ E[X]/2 + pN r−1.

So the probability p that X ≥ E[X]/2 ≥ εsN r−1/2 satisfies p ≥ E[X]
2Nr−1 ≥ εs/2.

The number of subsets S of V2 ∪ . . . ∪ Vr of size w is
(

(r−1)N
w

)
. For a given w-set S, the number of

collections {e1, . . . , et} of size t with |ei| = r − 1, and ei ⊂ S for 1 ≤ i ≤ t is
(( w
r−1)
t

)
. Hence, summing

over all nonnegative t ≤ ∆, the number of sets of edges of C with weight w and size at most ∆ is at
most

∆∑
t=0

(( w
r−1

)
t

)(
(r − 1)N

w

)
≤ wr∆(rN)w = wr∆rwNw,

Let Yw denote the random variable counting the number of dangerous sets S of edges of Gr−1 with
weight w. We next give an upper bound on E[Yw]. For a given set S of edges of C, the probability
that S is a subset of edges of Gr−1 is

(
|N(S)|
N

)s
, where N(S) denotes the set of vertices v ∈ V1 with

v+ e an edge of Gr for all e ∈ S. So if S satisfies N(S) < βN , then the probability that S is a subset
of edges of Gr−1 is less than βs. By linearity of expectation, we have E[Yw] < βswr∆rwNw.

Let α = 4r∆ε−s. Since Yw is a nonnegative random variable, Markov’s inequality implies that
P (Yw ≥ αE[Yw]) ≤ 1

α . Hence, the probability that there is a nonnegative integer w ≤ (r − 1)∆
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with Yw ≥ αβswr∆rwNw is at most r∆/α = εs/4. Since the probability that X ≥ εs

2 N
r−1 is at least

εs/2, we can satisfy the conditions of the lemma with probability at least εs/4. 2

By simply iterating the previous lemma l − 1 times, we obtain the following corollary.

Corollary 1 Suppose s,∆ are positive integers, ε, β > 0, and Gl = (V1, · · · , Vl;El) is an l-uniform
l-partite hypergraph with |V1| = |V2| = · · · = |Vl| = N and at least εN l edges. Let δl = ε and
δr−1 = δsr/2 for 2 ≤ r ≤ l. Then, for 1 ≤ r ≤ l − 1, there are r-uniform r-partite hypergraphs
Gr = (Vl−r+1, . . . , Vl, Er) with the following properties:

1. Gr has at least δrN r edges for 1 ≤ r ≤ l, and

2. for 2 ≤ r ≤ l and each nonnegative integer w ≤ (r− 1)∆, there are at most 4r∆δ−sr βswr∆rwNw

dangerous sets of Gr−1 with weight w, where a set S of edges of Gr−1 is dangerous if |S| ≤ ∆
and the number of vertices v ∈ Vl−r+1 such that for every edge e ∈ S, e + v ∈ Gr is less than
βN .

This is all the preparation we need before proving our main contribution, Theorem 2. For the proof,
we will use Corollary 1 and then show how to embed F into G. The latter part is closely related to
the many embedding results proven by Fox and Sudakov in [12]. We will actually prove the following
more precise version of Theorem 2:

Theorem 3 Let l ≥ 3, F be an l-uniform l-partite hypergraph, on vertex sets W1, · · · ,Wl, with at most
n vertices and maximum degree ∆. Let Gl be an l-uniform l-partite graph, on vertex sets V1, · · · , Vl
with |V1| = · · · = |Vl| = N , with at least εN l edges. Then, provided that N ≥ (ε/2)−(2l∆)l−1

n, Gl
contains a copy of F .

Proof: We apply Corollary 1 with s = 2l∆, δl = ε, δi−1 = δsi /2 for 2 ≤ i ≤ l, and β = 2 (ε/2)(2l∆)l−1

to get hypergraphs Gl−1, . . . , G1. It is easy to check by induction on i that δl−i = 2−(si−1)/(s−1)εs
i
, so

δ1 = 2−(sl−1−1)/(s−1)εs
l−1 ≥ 2 (ε/2)(2l∆)l−1

= β

and δ1N ≥ βN ≥ 2n.

We now construct an l∆-unform bad hypergraph B with vertex set V1 ∪ . . . ∪ Vl where each edge of B
has exactly ∆ vertices in each Vi. A set T ⊂ V1 ∪ . . .∪ Vl which contains exactly ∆ vertices in each Vi
is an edge of B if and only if there is a dangerous set S of edges of Gr for some r, 1 ≤ r ≤ l− 1, such
that the union of the edges of S is a subset of T . In other words, an edge of B is just an extension
of the union of the edges of a dangerous set. For a particular dangerous set S of edges with weight w
in some Gr, the number of edges of B that are extensions of the union of the edges in S is at most
N l∆−w since there are at most N ways to pick each of the l∆ − w remaining vertices that make up
an edge. Summing over all r and w, and using the fact that l ≥ 3 and δs2 = 2δ1 ≥ 2β, the number of
edges of B is at most

l∑
r=2

(l−1)∆∑
w=0

4r∆δ−sr βswr∆rwN l∆ ≤ l2∆ · 2l∆βs−1(l∆)l∆ll∆N l∆ = 2l3∆2(l2∆)l∆βl∆−1βl∆N l∆

≤ 21+3(l∆)2
βl∆−1βl∆N l∆ ≤ 21+3(l∆)2

2(1−(2l∆)l−1)(l∆−1)βl∆N l∆

≤ 2−4(l∆)2
βl∆N l∆ ≤

(
β

4l∆

)l∆(N
l∆

)
.
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Call a set U ⊂ V1 ∪ . . . ∪ Vl with at most ∆ vertices in each Vi bad if there are at least(
β

4l∆

)l∆−|U |( N

l∆− |U |

)
edges of B that contain U ; otherwise call U good. Note that the above calculation on the number of
edges of B demonstrates that the empty set is good. We next prove the following important claim.

Claim 1 If S is a dangerous set of edges in Gr for some r, 1 ≤ r ≤ l − 1, and U is a good set, then
the union of the edges in S is not a subset of U .

Proof: Suppose for contradiction that the union of the edges in S is a subset of U . The number of
extensions of U to a set which contains exactly ∆ vertices in each Vi is

l∏
i=1

(
N − |Vi ∩ U |
∆− |Vi ∩ U |

)
since we can pick for each i any ∆ − |Vi ∩ U | vertices of Vi \ U to extend U . By definition, all
of these sets are edges in B. Using the simple fact that if x1, . . . , xl are nonnegative integers then∏l
i=1 xi! ≤ (

∑l
i=1 xi)!, it is straightforward to check that

l∏
i=1

(
N − |Vi ∩ U |
∆− |Vi ∩ U |

)
≥ (N/2)l∆−|U |

l∏
i=1

(∆− |Vi ∩ U |)!−1 ≥
(

1
2

)l∆−|U |( N

l∆− |U |

)

≥
(

β

4l∆

)l∆−|U |( N

l∆− |U |

)
,

which contradicts U being good. 2

Given a good set U with |Vi ∩ U | < ∆ and v ∈ Vi \ U , we say v is bad with respect to U if U ∪ {v} is
bad. Let BU denote the set of vertices that are bad with respect to U . We will show that for U good
we have |BU | ≤ βN

4l∆ . Indeed, suppose |BU | > βN
4l∆ . Then the number of edges of B containing U is at

least

|BU |
l∆− |U |

(
β

4l∆

)l∆−|U |−1( N

l∆− |U | − 1

)
>

(
β

4l∆

)l∆−|U |( N

l∆− |U |

)
,

contradicting the fact that U is good.

Fix a labeling {v1, · · · , vn} of the vertices of F such that all vertices in Wi+1 precede all those in Wi

for all i = 1, · · · , l − 1. For each i, let Li = {v1, · · · , vi}. For each vertex vh, the trace neighbourhood
N(vh) is the set of vertices vm with m < h that are in an edge of F with vm. Note that N(vh) contains
at most ∆ vertices in each Wr since F has maximum degree ∆. We will find an embedding f of the
vertices of F such that f(Wr) ⊂ Vr for 1 ≤ r ≤ l and for each i ≤ lN ,

1. f(N(v) ∩ Li) is good for each vertex v of F , and

2. f(e ∩ Li) is an edge of Gr for each edge e of F , where r = |e ∩ Li|.
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The proof will be complete once we find such an embedding f since, for each edge e of F , f(e∩Ln) =
f(e) is an edge of Gl, so f provides an embedding of F in Gl. The embedding will be constructed one
vertex at a time, in increasing order of subscript, so the proof will be by induction on i. As noted
earlier, the empty set is good, so our base case i = 0 is satisfied.

Suppose then that at step i, we have found an embedding f of v1, . . . , vi such that

1. for each vertex v of F , f(N(v) ∩ Li) is good, and

2. for each edge e of F , f(e ∩ Li) is an edge of Gr, where r = |e ∩ Li|.

Let j be such that vi+1 ∈ Wj . Let e1, . . . , ed denote the edges of F that contain vi+1 and e′1, . . . , e
′
d

denote the truncations of e1, . . . , ed by deleting all j vertices from each et that are in some Wh with
h ≤ j. Each e′t consists of one vertex from each Wh with h > j. Also, d ≤ ∆ since F has maximum
degree ∆.

Since F has maximum degree ∆, there are less than l∆ vertices v for which vi+1 ∈ N(v). For each
such v, f(N(v) ∩ Li) is good, so there are at most β

4l∆N vertices w in Vj for which f(N(v) ∩ Li) ∪ w
is bad. Adding over all such v, we conclude that there are at most β

4N bad vertices in all associated
with vi+1.

Suppose we are still embedding vertices of Wl in Vl. Since the edge set of G1 is just a subset of Vl
whose size by Corollary 1 is at least δ1N = βN , then we can choose any of these at least βN vertices
other than f(v1), . . . , f(vi) for f(vi+1) to satisfy the second of the two desired properties for f(vi+1).
We see that there are at least βN − i − β

4N > 3βN
4 − n > 0 vertices to choose from for f(vi+1) to

satisfy both of the desired properties.

If, now, we have chosen all of the vertices in Wl, · · · ,Wj+1 and we are trying to embed vertex vi+1

in Wj (we may have already embedded other vertices in Wj), we can do so. To see this, by the
induction hypothesis, f(N(vi+1) ∩ Li) = f(N(vi+1)) =

⋃d
t=1 f(e′t) is good. By Claim 1, this implies

that the set {f(e′1), . . . , f(e′d)} of edges of Gl−j is not bad, i.e., there are at least βN vertices v ∈ Vj
such that f(e′t) ∪ v is an edge of Gl−j+1 for 1 ≤ t ≤ d. Therefore, since there are at most β

4N bad
vertices associated with vi+1 and we have already chosen f(v1), . . . , f(vi), we have at least 3

4βN − i >
3
4βN − n > 0 choices for f(vi+1), which completes the proof. 2

3 The Ramsey theorem

We are now ready to prove Theorem 1 in the following form:

Theorem 4 Let ∆ and k ≥ 3 be positive integers. Then the Ramsey number of any k-uniform
hypergraph H with n vertices and maximum degree ∆ satisfies

r(H) ≤ rk(k∆)(2k∆2)k∆
n,

where rk(l) = r(K(k)
l ).

Proof: We use the argument of Kostochka and Rödl [20] together with Theorem 3. Let l = (k −
1)∆ + 1. Suppose we have a red-blue colouring of the complete k-uniform hypergraph on N vertices.
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Let G be the hypergraph consisting of all the red edges and let rk(l) be the Ramsey number of the
hypergraph K(k)

l . Then, in each subset of the vertices of size rk(l), there is at least one monochromatic
K

(k)
l . Counting over all such sets and dividing out by possible multiple counts we see that we have at

least (
N
rk(l)

)(
N−l
rk(l)−l

) ≥ N l

rk(l)l

monochromatic K(k)
l . Therefore, either G or its complement G contains at least N l/2rk(l)l cliques

K
(k)
l . We will suppose that it is G.

Now we pass instead to considering the l-uniform hypergraph G(l), the edges of which are exactly those
l-tuples which form complete K(k)

l in G. This hypergraph has at least N l/2rk(l)l edges. Partition its
vertex set randomly into l parts V1, · · · , Vl of equal size N/l. The total number of partitions is N !

(N/l)!l

and, for any given edge e, there are l! (N−l)!
(N/l−1)!l

partitions such that each vertex of this edge is in a
different part of the partition. Therefore, the expected number of edges with one vertex in each set of
the random partition is at least

e(G(l))
(
l!

(N − l)!
(N/l − 1)!l

/
N !

(N/l)!l

)
≥ N l

2rk(l)l
· l! (N − l)!

(N/l − 1)!l
(N/l)!l

N !
≥ N l

2rk(l)l
l!
ll

=
l!

2rk(l)l

(
N

l

)l
.

Now choose such a partition and let Ĝ(l) be the l-uniform l-partite subhypergraph of G(l) consisting
of those edges of G(l) which have one edge in each partite set. Note that Ĝ(l) has N/l vertices in each
part and at least ε

(
N
l

)l edges, where ε = l!
2rk(l)l

.

Now we extend hypergraph H to an l-uniform l-partite hypergraph H(l). We first note that the vertices
of H can be partitioned into l subsets A1, . . . , Al such that each edge of H has at most one vertex in
each part. This is equivalent to saying that the graph H ′ with the same vertex set as H and with two
edges adjacent if they lie in an edge of H has chromatic number at most l. Since H ′ has maximum
degree at most (k − 1)∆, it has chromatic number at most (k − 1)∆ + 1 = l. For each edge e of H,
we add one auxiliary vertex to each Ai which is disjoint from e (in total l − k vertices). Note that
the maximum degree of H(l) remains ∆. The total number of auxiliary vertices added is at most
∆n
k · (l − k) < ∆(∆ − 1)n since there are l − k auxiliary vertices for each edge and the total number

of edges of H is at most ∆n
k . Hence, H(l) has less than ∆2n vertices.

Applying Theorem 3 with F = H(l), Gl = Ĝ(l), and ε = l!
2rk(l)l

we see that, provided

N

l
≥ (ε/2)−(2l∆)l−1

·∆2n,

Ĝ(l) contains a copy of H(l). But now, by the construction of H(l), this implies that every edge in H

is contained inside an edge of Ĝ(l). But Ĝ(l) was chosen in such a way that every k-tuple within any
edge of Ĝ(l) is an edge in G. Therefore G contains a copy of H, so we are done. 2

As mentioned in the introduction, the proof of Theorem 1 presented here extends in a straightforward
manner to the following multicolour generalisation.

Theorem 5 For all positive integers ∆, k, and q, there exists a constant c(∆, k, q) such that, if
H1, . . . , Hq are k-uniform hypergraphs each with n vertices and maximum degree ∆, then

r(H1, . . . , Hq) ≤ c(∆, k, q)n.
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The only difference in the proof is in Theorem 4, where we replace rk(l) by rk(l; q), the q-colour
Ramsey number for the complete k-uniform hypergraph on l vertices. Erdős and Rado [11] showed that
rk(l; q) ≤ tk(cl), where the constant c depends on k and q. We therefore may take c(∆, k, q) ≤ tk(c∆)
for k ≥ 4 and c(∆, 3, q) ≤ t3(c∆ log ∆), where the constant c depends on k and q.

Remark: The strong chromatic number of a hypergraph H is the minimum number of colors required
to colour the vertices of H so that each edge of H has no repeated colour. The proof of Theorem 4
demonstrates that if H is a k-uniform hypergraph with n vertices, maximum degree ∆, and strong
chromatic number l, then the q-colour Ramsey number of H satisfies

r(H, · · · ,H) ≤ rk(l; q)(2l∆)l .

Indeed, in the proof of Theorem 4, we only used the fact that the vertices of H can be partitioned
into l parts such that every edge has at most one vertex in each part.

4 Lower bound construction

The following theorem demonstrates that our upper bound for hypergraph Ramsey numbers proved
in the previous section is in some cases close to best possible.

Theorem 6 There is c > 0 such that for each sufficiently large ∆, there is a 3-uniform hypergraph
H with maximum degree at most ∆ for which the 4-colour Ramsey number of H satisfies

r(H,H,H,H) ≥ 22c∆n,

where n is the number of vertices of H.

Proof: Our proof uses the same 4-edge-colouring of the complete 3-uniform hypergraph that was
constructed by Erdős and Hajnal (see, e.g., [17]). Not only does this colouring have no large monochro-
matic complete 3-uniform hypergraph, but we show it also does not have any monochromatic copies
of a much sparser 3-uniform hypergraph H.

Let n ≥ 4 be even, m = d2n/4e, and suppose the edges of the complete graph Km are coloured red or
blue in such a way that neither colour contains a monochromatic copy of the graph Kn/2. Such an
edge-colouring exists by the lower bound of Erdős (see [17]) on the Ramsey number of the complete
graph.

Let V = {v1, · · · , vn} be a set of vertices and let H be the 3-uniform hypergraph on V whose edge set
is given by {vi, vi+1, vj} for all 1 ≤ i, j ≤ n. (Note that when i = n, we consider i + 1 to be equal to
1.) It is straightforward to check that every vertex in H has degree ∆ ≤ 3n.

We are going to define a 4-colouring of the complete 3-uniform hypergraph on the set

T = {(γ1, · · · , γm) : γi = 0 or 1}

in such a way that there is no monochromatic copy of H. Note that then we will be done, since T has
size 2m ≥ 22n/4 while H has maximum degree ∆ ≤ 3n.

To define our colouring, we need some definitions:

9



If ε = (γ1, · · · , γm), ε′ = (γ′1, · · · , γ′m) and ε 6= ε′, define

δ(ε, ε′) = max{i : γi 6= γ′i},

that is, δ(ε, ε′) is the largest coordinate at which they differ. We can now define an ordering on T by

ε < ε′ if γi = 0, γ′i = 1,

ε′ < ε if γi = 1, γ′i = 0.

Another way of looking at this ordering is to assign to each ε the number b(ε) =
∑m

i=1 γi2
i−1. The

ordering then says simply that ε < ε′ iff b(ε) < b(ε′).

It is important to note the following two properties of the function δ:

(a) if ε1 < ε2 < ε3, then δ(ε1, ε2) 6= δ(ε2, ε3);

(b) if ε1 < ε2 < · · · < εr, then δ(ε1, εr) = max1≤i≤r−1 δ(εi, εi+1).

Now we are ready to define our colouring of the complete 3-uniform hypergraph τ on vertex set T . To
begin, suppose that {ε1, ε2, ε3} with ε1 < ε2 < ε3 is an edge in τ . Write δ1 = δ(ε1, ε2), δ2 = δ(ε2, ε3).
Then we colour as follows:

C1, if {δ1, δ2} is red and δ1 < δ2;

C2, if {δ1, δ2} is red and δ1 > δ2;

C3, if {δ1, δ2} is blue and δ1 < δ2;

C4, if {δ1, δ2} is blue and δ1 > δ2.

Now, let S = {ε1, · · · , εn}< be an ordered n-tuple within τ and suppose that there is a copy of
H on S which is coloured by C1. Suppose that the natural cycle {v1, · · · , vn} associated with H

occurs as {επ(1), · · · , επ(n)} where π is a permutation of 1, · · · , n. For each i, 1 ≤ i ≤ n, let φ(i) =
max(π(i), π(i+ 1)) and ψ(i) = min(π(i), π(i+ 1)).

We claim that δφ(i)−1 = δ(εφ(i)−1, εφ(i)) must be larger than δj = δ(εj , εj+1) for all j < φ(i)− 1. First
consider the triple {εψ(i), εφ(i)−1, εφ(i)}<, which is an edge of the copy of H on S. The colouring C1

implies that

δφ(i)−1 = δ(εφ(i)−1, εφ(i)) > δ(εψ(i), εφ(i)−1) = max
ψ(i)≤j<φ(i)−1

δj .

This proves the claim for ψ(i) ≤ j < φ(i)− 1. Next consider the triple {εj , εψ(i), εφ(i)}< with j < ψ(i),
which is also an edge of the copy of H on S. The colouring C1 implies that

δj ≤ δ(εj , εψ(i)) < δ(εψ(i), εφ(i)) = δφ(i)−1.

This proves the claim in the remaining cases 1 ≤ j < φ(i)− 1.

Consider the set {φ(2i−1)}n/2i=1, which contains n/2 distinct elements since φ(i) = max(π(2i−1), π(2i))
and these pairs are disjoint. Let j1, . . . , jn/2 be a permutation of the odd numbers up to n−1 such that
φ(j1) < . . . < φ(jn/2). By the claim in the previous paragraph, we have δφ(j1)−1 < · · · < δφ(jn/2)−1.
Consider, for each r < s with r, s ∈ {1, · · · , n/2}, the triple {εψ(jr), εφ(jr), εφ(js)}<, which is an edge of
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the copy of H on S. Since ψ(jr) < φ(jr) < φ(js), by property (b) of function δ and the claim above,
δ(εψ(jr), εφ(jr)) = δφ(jr)−1 and δ(εφ(jr), εφ(js)) = δφ(js)−1. Therefore, by the definition of C1 we must
have that {δφ(jr)−1, δφ(js)−1} is red. Hence we get a clique of size n/2 in our original colouring. But
this cannot happen so we have a contradiction. All other cases follow similarly, so we’re done. 2

This result is closely related to another interesting question: what is the maximum of r(H) over all
k-uniform hypergraphs with m edges (we assume here that the hypergraphs we consider do not have
isolated vertices)? For graphs, this question was posed by Erdős and Graham [10] who conjectured
that the Ramsey number of a complete graph is at least the Ramsey number of every graph with the
same number of edges. As noted by Erdős [9], this conjecture implies that there is a constant c such
that for all graphs G, r(G) ≤ 2c

√
e(G). The best result in this direction, proven by Alon, Krivelevich

and Sudakov [1], is that r(G) ≤ 2c
√
e(G) log e(G). For hypergraphs, one can naturally ask a question

similar to the Erdős-Graham conjecture, i.e, is there a constant c = c(k) such that for every k-uniform
hypergraph H, r(H) ≤ tk(c k

√
e(H))? The proof of Theorem 6 has the following corollary:

Corollary 2 There is a positive constant c such that for each positive integer m, there is a 3-
uniform hypergraph H with at most m edges such that the 4-colour Ramsey number of H satisfies
r(H,H,H,H) ≥ 22c

√
m

.

Indeed the 3-uniform hypergraph H constructed in the proof of Theorem 6 has n vertices and less
than n2 edges, while r(H,H,H,H) ≥ t3(n/4) ≥ t3(

√
e(H)/4). This corollary demonstrates that the

multicolour version of the hypergraph analogue of the Erdős-Graham conjecture is false.

In the other direction, we prove the following theorem:

Theorem 7 The q-colour Ramsey number of any k-uniform hypergraph H with m edges satisfies

r(H, · · · ,H) ≤ tk(c
√
m)

for k ≥ 4, and

r(H, · · · ,H) ≤ t3(c
√
m logm)

for k = 3, where constant c depends only on k and q.

Theorem 7 follows immediately from the remark after the proof of Theorem 4, the fact that the
maximum degree of H is clearly at most m, and the following lemma.

Lemma 2 Every k-uniform hypergraph H with m edges has strong chromatic number at most k
√
m.

Proof: Let H ′ be the graph on the same vertex set as H with two vertices adjacent if they lie in an
edge of H. The strong chromatic number of H is clearly equal to the chromatic number of H ′. The
number e(H ′) of edges of H ′ is at most

(
k
2

)
m ≤

(
k
√
m

2

)
since each edge of H gives rise to at most

(
k
2

)
edges of H ′. To finish the proof, note that the chromatic number χ of any graph with t edges satisfies(
χ
2

)
≤ t because in an optimal colouring there should be an edge between any two colour classes. 2
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5 Conclusion

Throughout this paper we have aimed for simplicity in the exposition. Accordingly, in proving Theorem
2, we have cut some corners to make the proof as pithy as possible. The resulting constant, c = (2k)k−1,
is doubtless far from best possible, but we believe that this loss is outweighed by the resulting brevity
of exposition.

As we noted in the introduction, our Theorem 4 implies that, for k ≥ 4, there exists a constant
c = c(k) such that, for any graph H on n vertices with maximum degree ∆, r(H) ≤ tk(c∆)n, where
the constant c depends only on k. For k = 3, however, it only implies that

r(H) ≤ 22c∆ log ∆
n, (1)

which could perhaps be improved a little. It is worth noting also that for k = 2, the best known
bound, proved by Graham, Rödl and Ruciński [15] using a very different method is

r(H) ≤ 2c∆ log2 ∆n. (2)

In light of the situation for higher k as well as the lower bound constructions for k = 2, 3, the following
is a natural question:

Problem 1 Can the log factors in the highest exponent of the upper bounds (1) and (2) be removed?

This problem is certainly difficult in the k = 2 case, but maybe a different extension of the methods
of [12] or an appropriate generalisation of the work of Graham, Rödl and Ruciński could resolve the
k = 3 case.

It also seems likely to us that the lower bound for this problem is essentially the same as the upper
bound. So we have the following open problem:

Problem 2 Is it true that for all k and ∆ and sufficiently large n, there exists a k-uniform hypergraph
H with maximum degree ∆ and n vertices such that r(H) ≥ tk(c∆)n, where c > 0 only depends on k?
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[10] P. Erdős, R.L. Graham: On partition theorems for finite graphs, Infinite and Finite Sets (Colloq.,
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