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Abstract

The Ramsey number rk(s, n) is the minimum N such that every red-blue coloring of the k-tuples
of an N -element set contains a red set of size s or a blue set of size n, where a set is called red
(blue) if all k-tuples from this set are red (blue). In this paper we obtain new estimates for several
basic hypergraph Ramsey problems. We give a new upper bound for rk(s, n) for k ≥ 3 and s fixed.
In particular, we show that

r3(s, n) ≤ 2ns−2 log n,

which improves by a factor of ns−2/polylogn the exponent of the previous upper bound of Erdős
and Rado from 1952. We also obtain a new lower bound for these numbers, showing that there is
a constant c > 0 such that

r3(s, n) ≥ 2c sn log( n
s +1)

for all 4 ≤ s ≤ n. For constant s, it gives the first superexponential lower bound for r3(s, n),
answering an open question posed by Erdős and Hajnal in 1972. Next, we consider the 3-color
Ramsey number r3(n, n, n), which is the minimum N such that every 3-coloring of the triples of an
N -element set contains a monochromatic set of size n. Improving another old result of Erdős and
Hajnal, we show that

r3(n, n, n) ≥ 2nc log n

.

Finally, we make some progress on related hypergraph Ramsey-type problems.

1 Introduction

Ramsey theory refers to a large body of deep results in mathematics whose underlying philosophy
is captured succinctly by the statement that “Every large system contains a large well organized
subsystem.”1 This is an area in which a great variety of techniques from many branches of mathematics
are used and whose results are important not only to combinatorics but also to logic, analysis, number
theory, and geometry. Since the publication of the seminal paper of Ramsey in 1930, this subject
experienced tremendous growth, and is currently among the most active areas in combinatorics.

The Ramsey number r(s, n) is the least integer N such that every red-blue coloring of the edges of
the complete graph KN on N vertices contains a red Ks (i.e., a complete subgraph all of whose edges
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are colored red) or a blue Kn. Ramsey’s theorem states that r(s, n) exists for all s and n. Determining
or estimating Ramsey numbers is one of the central problems in combinatorics, see the book Ramsey
theory [20] for details. A classical result of Erdős and Szekeres [17], which is a quantitative version
of Ramsey’s theorem, implies that r(n, n) ≤ 22n for every positive integer n. Erdős [8] showed using
probabilistic arguments that r(n, n) > 2n/2 for n > 2. Over the last sixty years, there have been
several improvements on these bounds (see, e.g., [6]). However, despite efforts by various researchers,
the constant factors in the above exponents remain the same.

Off-diagonal Ramsey numbers, i.e., r(s, n) with s 6= n, have also been intensely studied. For
example, after several successive improvements, it is known (see [1], [21], [28]) that there are constants
c1, . . . , c4 such that

c1
n2

log n
≤ r(3, n) ≤ c2

n2

log n
,

and for fixed s > 3,

c3

(
n

log n

)(s+1)/2

≤ r(s, n) ≤ c4
ns−1

logs−2 n
, (1)

(For s = 4, Bohman [3] recently improved the lower bound by a factor of log1/2 n.) All logarithms in
this paper are base e unless otherwise stated.

Although already for graph Ramsey numbers there are significant gaps between the lower and
upper bounds, our knowledge of hypergraph Ramsey numbers is even weaker. The Ramsey number
rk(s, n) is the minimum N such that every red-blue coloring of the unordered k-tuples of an N -element
set contains a red set of size s or a blue set of size n, where a set is called red (blue) if all k-tuples
from this set are red (blue). Erdős, Hajnal, and Rado [15] showed that there are positive constants c
and c′ such that

2cn
2
< r3(n, n) < 22c′n

.

They also conjectured that r3(n, n) > 22cn
for some constant c > 0 and Erdős offered a $500 reward

for a proof. Similarly, for k ≥ 4, there is a difference of one exponential between the known upper and
lower bounds for rk(n, n), i.e.,

tk−1(cn2) ≤ rk(n, n) ≤ tk(c′n),

where the tower function tk(x) is defined by t1(x) = x and ti+1(x) = 2ti(x).
The study of 3-uniform hypergraphs is particularly important for our understanding of hypergraph

Ramsey numbers. This is because of an ingenious construction called the stepping-up lemma due to
Erdős and Hajnal (see, e.g., Chapter 4.7 in [20]). Their method allows one to construct lower bound
colorings for uniformity k+ 1 from colorings for uniformity k, effectively gaining an extra exponential
each time it is applied. Unfortunately, the smallest k for which it works is k = 3. Therefore, proving
that r3(n, n) has doubly exponential growth will allow one to close the gap between the upper and
lower bounds for rk(n, n) for all uniformities k. There is some evidence that the growth rate of r3(n, n)
is closer to the upper bound, namely, that with four colors instead of two this is known to be true.
Erdős and Hajnal (see, e.g., [20]) constructed a 4-coloring of the triples of a set of size 22cn

which does
not contain a monochromatic subset of size n. This is sharp up to the constant c. It also shows that
the number of colors matters a lot in this problem and leads to the question of what happens in the
intermediate case when we use three colors. The 3-color Ramsey number r3(n, n, n) is the minimum
N such that every 3-coloring of the triples of an N -element set contains a monochromatic set of size
n. In this case, Erdős and Hajnal have made some improvement on the lower bound 2cn

2
(see [14] and
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[5]), showing that r3(n, n, n) ≥ 2cn
2 log2 n. Here, we substantially improve this bound, extending the

above mentioned stepping-up lemma of these two authors to show

Theorem 1.1 There is a constant c > 0 such that

r3(n, n, n) ≥ 2n
c log n

. (2)

For off-diagonal Ramsey numbers, a classical argument of Erdős and Rado [16] from 1952 demon-
strates that

rk(s, n) ≤ 2(rk−1(s−1,n−1)

k−1
). (3)

Together with the upper bound in (1) it gives for fixed s that r3(s, n) ≤ 2(r2(s−1,n−1)
2 ) ≤ 2c

n2s−4

log2s−6 n . Our
next result improves the exponent of this upper bound by a factor of ns−2/polylogn.

Theorem 1.2 For fixed s ≥ 4 and sufficiently large n,

log r3(s, n) ≤
( (s− 3)

(s− 2)!
+ o(1)

)
ns−2 log n. (4)

Clearly, a similar improvement for off-diagonal Ramsey numbers of higher uniformity follows from this
result together with (3).

Erdős and Hajnal [13] showed that log r3(4, n) > cn using the following simple construction. They
consider a random tournament on [N ] = {1, . . . , N} and color the triples from [N ] red if they form a
cyclic triangle and blue otherwise. Since it is well known and easy to show that every tournament on
four vertices contains at most two cyclic triangles and a random tournament on N vertices with high
probability does not contain a transitive subtournament of size c′ logN , the resulting coloring neither
has a red set of size 4 nor a blue set of size c′ logN . In the same paper from 1972, they suggested that
log r3(4,n)

n →∞. Here we prove the following new lower bound which implies this conjecture.

Theorem 1.3 There is a constant c > 0 such that

log r3(s, n) ≥ c sn log
(n
s

+ 1
)

for all 4 ≤ s ≤ n.

Combining this result together with the stepping-up lemma of Erdős and Hajnal (see [20]), one can
also obtain analogous improvements of lower bounds for off-diagonal Ramsey numbers for complete
k-uniform hypergraphs with k ≥ 4.

In view of our unsatisfactory knowledge of the growth rate of hypergraph Ramsey numbers, Erdős
and Hajnal [13] started the investigation of the following more general problem. Fix positive integers
k, s, and t. What is the smallest N such that every red-blue coloring of the k-tuples of an N -element
set has either a red set of size n or has a set of size s which contains at least t blue k-tuples? Note
that when t =

(
s
k

)
the answer to this question is simply rk(n, s).

Let
(
X
k

)
denote the collection of all k-element subsets of the set X. Define fk(N, s, t) to be the

largest n for which every red-blue coloring of
([N ]
k

)
has a red n-element set or a set of size s which

contains at least t blue k-tuples. Erdős and Hajnal [13] in 1972 conjectured that as t increases from
1 to

(
s
k

)
, fk(N, s, t) grows first like a power of N , then at a well-defined value t = h

(k)
1 (s), fk(N, s, t)
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grows like a power of logN , i.e., fk(N, s, h
(k)
1 (s)−1) > N c1 but fk(N, s, h

(k)
1 (s)) < (logN)c2 . Then, as

t increases further, at h(k)
2 (s) the function fk(N, s, t) grows like a power of log logN etc. and finally

fk (N, s, t) grows like a power of log(k−2)N for h(k)
k−2(s) ≤ t ≤

(
s
k

)
. Here log(i)N is the i-fold iterated

logarithm of N , which is defined by log(1)N = logN and log(j+1)N = log(log(j)N).
This problem of Erdős and Hajnal is still widely open. In [13] they started a careful investigation

of h(3)
1 (s) and made several conjectures which would determine this function. We make progress on

their conjectures, computing h(3)
1 (s) for infinitely many values of s. We also approximate h(3)

1 (s) for
all s.

Theorem 1.4 If s is a power of 3, then

h
(3)
1 (s) =

1
4

(
s+ 1

3

)
+ 1.

Moreover, for all s,

h
(3)
1 (s) =

s3

24
+O(s log s).

More precisely, we show that when s is a power of 3, then there is a red-blue coloring of the triples
of an N -element set such that no subset of size s contains 1

4

(
s+1
3

)
+ 1 red triples, and the largest blue

subset has size O(logN). On the other hand, every red-blue coloring of the triples of an N -element
set has a subset of size s which contains 1

4

(
s+1
3

)
red triples or has a blue subset of size N cs . Our

methods can be used to determine h(3)
1 (s) for many other values of s, including 24 of the first 100

positive integers.
In the next section, we prove Theorem 1.2. Our lower bound on r3(s, n) appears in Section 3 and,

in Section 4, we prove Theorem 1.1. In Section 5, we prove Theorem 1.4. Finally, in the last section of
the paper, we make several additional remarks on related hypergraph Ramsey problems. Throughout
the paper, we systematically omit floor and ceiling signs whenever they are not crucial for the sake of
clarity of presentation. We also do not make any serious attempt to optimize absolute constants in
our statements and proofs.

2 An Upper Bound for r3(s, n)

In this section we prove the upper bound (4) on off-diagonal hypergraph Ramsey numbers.
First we briefly discuss a classical approach to this problem by Erdős-Rado and indicate where it

can be improved. Let N = 2(r(s−1,n−1)
2 ). To prove log2 r3(s, n) ≤

(
r(s−1,n−1)

2

)
, given a red-blue coloring

χ of the triples from [N ], Erdős and Rado greedily construct a set of vertices {v1, . . . , vr(s−1,n−1)+1}
such that for any given pair 1 ≤ i < j ≤ r(s − 1, n − 1), all triples {vi, vj , vk} with k > j are of
the same color, which we denote by χ′(vi, vj). By definition of the Ramsey number, there is either
a red clique of size s − 1 or a blue clique of size n − 1 in coloring χ′, and this clique together with
vr(s−1,n−1)+1 forms a red set of size s or a blue set of size n in coloring χ. The greedy construction of
the set {v1, . . . , vr(s−1,n−1)+1} is as follows. First, pick an arbitrary vertex v1 and set S1 = S \ {v1}.
After having picked {v1, . . . , vi} we also have a subset Si such that for any pair a, b with 1 ≤ a < b ≤ i,
all triples {va, vb, w} with w ∈ Si are the same color. Let vi+1 be an arbitrary vertex in Si and set
Si,0 = Si \ {vi+1}. Suppose we already constructed Si,j ⊂ Si,0 such that, for every h ≤ j and w ∈ Si,j ,

4



all triples {vh, vi+1, w} have the same color. If the number of edges {vj+1, vi+1, w} with w ∈ Si,j that
are red is at least |Si,j |/2, then we let

Si,j+1 = {w : {vj+1, vi+1, w} is red and w ∈ Si,j}

and set χ′(i+ 1, j + 1) = red, otherwise we let

Si,j+1 = {w : {vj+1, vi+1, w} is blue and w ∈ Si,j}

and set χ′(i + 1, j + 1) = blue. Finally, we let Si+1 = Si,i. Notice that {v1, . . . , vi+1} and Si+1 have
the desired properties to continue the greedy algorithm. Also, for each edge vi+1vj+1 that we color by
χ′, the set Si,j is at most halved. So we lose a factor of at most two for each of the

(
r(s−1,n−1)

2

)
edges

colored by χ′.2

There are two ways we are able to improve on the Erdős-Rado approach. Our first improvement
comes from utilizing the fact that we do not need to ensure that for every pair i < j, all edges
{vi, vj , vk} with k > j are of the same color. That is, the coloring χ′ will not necessarily color every
pair. Furthermore, the number of edges we color by χ′ will be much smaller than the best known
estimate for

(
r(s−1,n−1)

2

)
, and this is how we will be able to get a smaller upper bound on r3(s, n). This

idea is nicely captured using the vertex on-line Ramsey number which we next define. Consider the
following game, played by two players, builder and painter: at step i+ 1 a new vertex vi+1 is revealed;
then, for every existing vertex vj , j = 1, · · · , i, builder decides, in order, whether to draw the edge
vjvi+1; if he does expose such an edge, painter has to color it either red or blue immediately. The
vertex on-line Ramsey number r̃(k, l) is then defined as the minimum number of edges that builder
has to draw in order to force painter to create a red Kk or a blue Kl. In Lemma 2.2, we provide an
upper bound on r̃(s − 1, n − 1) which is much smaller than the best known estimate on

(
r(s−1,n−1)

2

)
.

Since we are losing a factor of at most two for every exposed edge, this immediately improves on the
Erdős-Rado bound for r3(s, n).

A further improvement can be made by using the observation that there will not be many pairs
i < j for which all triples {vi, vj , vk} with k > j are red. That is, we will be able to show that there are
not many red edges in the coloring χ′ we construct. Let 0 < α � 1/2. Suppose we have {v1, . . . , vi}
and a set S and, for a given j < i, we want to find a subset S′ ⊂ S such that all triples {vj , vi, w} with
w ∈ S′ have the same color. Let Sred denote the set of w ∈ S for which the triple {vj , vi, w} is red. We
pick S′ = Sred if |Sred| ≥ α|S| and otherwise we pick S′ = S \ Sred. While the size of S decreases now
by a much larger factor for each red edge in χ′, there are not many red edges in χ′. On the other hand,
we lose very little, specifically a factor (1 − α), for each blue edge in χ′. By picking α appropriately,
we gain significantly over taking α = 1/2 for our upper bound on off-diagonal hypergraph Ramsey
numbers.

Before we proceed with the proof of our upper bound on r3(s, n), we want to discuss some other
Ramsey-type numbers related to our vertex on-line Ramsey game. One variant of Ramsey numbers
which was extensively studied in the literature (e.g., [18]) is the size Ramsey number r̂(G1, G2), which
is the minimum number of edges of a graph whose every red-blue edge-coloring contains a red G1 or a
blue G2. Clearly, r̃(k, `) ≤ r̂(Kk,Kl) since builder can choose to pick the edges of a graph which gives
the size Ramsey number for (Kk,Kl). Unfortunately, it is not difficult to show that r̂(Kk,Kl) =

(
r(k,l)

2

)
and therefore we cannot obtain any improvement using these numbers. Another on-line Ramsey game

2We also lose one element from Si when we pick vi+1, but this loss is rather insubstantial.
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which is quite close to ours was studied in [24]. In this game, there are two players, builder and painter,
who move on the originally empty graph with an unbounded number of vertices. At each step, builder
draws a new edge and painter has to color it either red or blue immediately. The edge on-line Ramsey
number r̄(k, l) is then defined as the minimum number of edges that builder has to draw in order to
force painter to create a red Kk or a blue Kl. A randomized version of the edge on-line Ramsey game
was studied in [19]. The authors of [24] proved an upper bound for r̄(k, l) which is similar to our
upcoming Lemma 2.2. A careful reading of their paper shows that builder first exposes edges from
the first vertex to all future vertices, and so on. Thus, this builder strategy cannot be implemented
when proving upper bounds for hypergraph Ramsey numbers. Moreover, it is not clear how to use
the edge on-line Ramsey game to get an improvement on hypergraph Ramsey numbers. Lemma 2.2
is therefore essential for our proof giving new upper bounds for hypergraph Ramsey numbers.

Using the ideas discussed above, we next prove an upper bound on r3(s, n) which involves some
parameters of the vertex on-line Ramsey game.

Theorem 2.1 Suppose in the vertex on-line Ramsey game that builder has a strategy which ensures
a red Ks−1 or a blue Kn−1 using at most v vertices, r red edges, and in total m edges. Then, for any
0 < α ≤ 1/2, the Ramsey number r3(s, n) satisfies

r3(s, n) ≤ (v + 1)α−r(1− α)r−m. (5)

Proof. Let N = (v + 1)α−r(1 − α)r−m and consider a red-blue coloring χ of the triples of the set
[N ]. We wish to show that the coloring χ must contain a red set of size s or a blue set of size n.

We greedily construct a set of vertices {v1, · · · , vh} and a graph Γ on these vertices with at most v
vertices, at most r red edges, and at most m total edges across them such that for any edge e = vivj ,
i < j in Γ, the color of any 3-edge {vi, vj , vk} with k > j is the same, say χ′(e). Moreover, this graph
will contain either a red Ks−1 or a blue Kn−1, which one can easily see will define a red set of size s
or a blue set of size n.

We begin the construction of this set of vertices by first choosing a vertex v1 ∈ [N ] and setting
S1 = [N ] \ {v1}. Given a set of vertices {v1, · · · , va}, we have a set Sa such that for each edge e = vivj
of Γ with i, j ≤ a, the color of the 3-edge {vi, vj , w} is the same for every w in Sa.

Now let va+1 be a vertex in Sa. We play the vertex on-line Ramsey game, so that builder chooses
the edges to be drawn according to his strategy. Painter then colors these edges. For the first edge e1
chosen, painter looks at all triples containing this edge and a vertex from Sa \ {va+1}. The 2-edge is
colored red in χ′ if there are more than α(|Sa| − 1) such triples that are red and blue otherwise. This
defines a new subset Sa,1, which are all vertices in Sa \ {va+1} such that together with edge e1 form
a triple of color χ′(e1). For the next drawn edge e2 we color it red if there are more than α|Sa,1| red
triples containing it and a vertex from Sa,1 and blue otherwise. This will define an Sa,2 and so forth.
After we have added all edges from va+1, the remaining set will be Sa+1. Let ma be the number of
edges e = viva with i < a in Γ and ra be the number of such edges that are red.

We now show by induction that

|Sa| ≥ (v + 1− a)α−r+
Pa

i=1 ri(1− α)r−m+
Pa

i=1mi−ri .

For the base case a = 1, we have

|S1| = N − 1 = (v + 1)α−r(1− α)r−m − 1 ≥ vα−r(1− α)r−m.
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Suppose we have proved the desired inequality for a. When we draw a vertex va+1, the size of our set
Sa decreases by 1. Each time we draw an edge from va+1, the size of our set S goes down by a factor
α or 1− α. Therefore,

|Sa+1| ≥ αra+1(1− α)ma+1−ra+1(|Sa| − 1) ≥ αra+1(1− α)ma+1−ra+1 |Sa| − 1

≥ (v + 1− a)α−r+
Pa+1

i=1 ri(1− α)r−m+
Pa+1

i=1 mi−ri − 1

≥ ((v + 1)− (a+ 1))α−r+
Pa+1

i=1 ri(1− α)r−m+
Pa+1

i=1 mi−ri .

By our assumption on the vertex on-line Ramsey game, when the constructed graph Γ contains
either a red Ks−1 or a blue Kn−1, this graph will have a ≤ v vertices, at most r red edges, and at
most m total edges. Therefore at this time we have

|Sa| ≥ (v + 1− a)α−r+
Pa

i=1 ri(1− α)r−m+
Pa

i=1mi−ri ≥ 1,

i.e., Sa is not empty. Thus a vertex from Sa together with the red Ks−1 or blue Kn−1 in edge-coloring
χ′ of Γ make either a red set of size s or a blue set of size n in coloring χ, completing the proof. 2

Lemma 2.2 In the vertex on-line Ramsey game, builder has a strategy which ensures a red Ks or a
blue Kn using at most

(
s+n−2
s−1

)
vertices, (s− 2)

(
s+n−2
s−1

)
+ 1 red edges, and (s+ n− 4)

(
s+n−2
s−1

)
+ 1 total

edges. In particular,

r̃(s, n) ≤ (s+ n− 4)
(
s+ n− 2
s− 1

)
+ 1.

Proof. We are going to define a set of vertices labeled by strings and the associated set of edges to be
drawn during the game as follows. The first vertex exposed will be labeled as w∅. Every other vertex
which we expose during the game will be connected by an edge to w∅. Recall that immediately after
the edge is exposed it is colored by painter. The first vertex which is connected to w∅ by a red (blue)
edge is labeled wR (wB). Successively, we connect vertex v to wR or wB if and only if this vertex is
already connected to w∅ by a red or respectively blue edge.

More generally, if we have defined wa1a2···ap with each ai = R or B and v is the first exposed vertex
which is connected to wa1···aj in color aj+1 for each j = 0, · · · , p, we label v as wa1···ap+1 . (When j = 0,
wa1···aj = w∅.) The only successively chosen vertices which we join to wa1···ap+1 by an edge will be
those vertices v which are also joined to wa1···aj in color aj+1 for each j = 0, · · · , p. Builder stops
adding vertices and edges once painter has completed a red Ks or a blue Kn.

Suppose now that we have exposed
(
s+n−2
s−1

)
=
(
s+n−3
s−2

)
+
(
s+n−3
s−1

)
vertices in total. Since w∅ is

connected to all vertices, its degree is
(
s+n−2
s−1

)
− 1. Thus w∅ is connected either to

(
s+n−3
s−2

)
vertices in

red or
(
s+n−3
s−1

)
vertices in blue. If the former holds we look at the neighbors of wR, which are all vertices

which are labeled by a string with first letter R. Otherwise we look at neighbors of wB. Suppose now
that we are looking at the neighbors of wa1···ap , where r of the ai are red and b of them are blue. Then,
by our construction, wa1···ap will have been joined to

(
s+n−r−b−2
s−r−1

)
− 1 vertices. Now, either wa1···ap

is joined to
(
s+n−r−b−3
s−r−2

)
vertices in red or

(
s+n−r−b−3
s−r−1

)
vertices in blue. In the first case we look at

wa1···apR and its neighbors and in the second case at wa1···apB and its neighbors. Clearly in this process
we will reach a string which has either s−1 reds or n−1 blues. If s−1 of the ai, say aj1+1, · · · , ajs−1+1,
are R, then we know that the collection of vertices wa1···aj1

, · · · , wa1···ajs−1
, wa1···ajs−1+1 forms a red
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clique of size s. Similarly, if n − 1 of the ai are B, then we have a blue clique of size n. Therefore,
using our strategy, builder wins after using at most

(
s+n−2
s−1

)
vertices.

All that remains to do is to estimate how many edges builder draws. Look on the vertices in the
order they were exposed. Clearly, for every vertex we can only look on the edges connecting it to
preceeding vertices. Notice that a vertex wa1···ap is adjacent to at most p vertices which were exposed
before it. Moreover, the number of red edges connecting wa1···ap to vertices before it is at most the
number of ai which are R. Since all but the last vertex are labeled by strings of length at most s+n−4,
we have at most (s + n − 4)

(
s+n−2
s−1

)
+ 1 total edges. Similarly, all but the last vertex have at most

s− 2 symbols R in their string, which shows that the number of edges colored red during the game is
at most (s− 2)

(
s+n−2
s−1

)
+ 1. 2

The following result implies (4).

Corollary 2.3 The Ramsey number r3(s, n) with 4 ≤ s ≤ n satisfies

r3(s, n) ≤ 2
(s−3)
(s−2)!

(s+n)s−2 log2(64n/s)
. (6)

Proof. By Lemma 2.2, in the vertex on-line Ramsey game builder has a strategy which ensures
a red Ks−1 or a blue Kn−1 using at most v =

(
s+n−4
s−2

)
vertices, r = (s − 3)

(
s+n−4
s−2

)
+ 1 red edges,

and m = (s + n − 6)
(
s+n−4
s−2

)
+ 1 total edges. To minimize the function α−r(1 − α)r−m, one should

take α = r/m. Note that (m − r)/r ≤ (n − 3)/(s − 3) ≤ n/s, v < r ≤ (m + 1)/2 ≤ 2m/3 and
r ≤ (s−3)

(s−2)!(s+ n)s−2. Hence, the Ramsey number r3(s, n) satisfies

r3(s, n) ≤ (v + 1)
(m
r

)r (
1− r

m

)r−m
= (v + 1)

(
m− r
r

)r (m− r
m

)−m
≤ (v + 1)

(n
s

)r (m− r
m

)−m
= (v + 1)

(n
s

)r (
1 +

r

m− r

)m
≤ (v + 1)

(n
s

)r (
1 +

3r
m

)m
≤ r

(n
s

)r
e3r = r

(
e3n

s

)r
<

(
64n
s

)r
≤ 2

(s−3)
(s−2)!

(s+n)s−2 log2(64n/s)
. 2

Also, taking α = 1/2 in Theorem 2.1, it is worth noting that in the diagonal case our results easily
imply the following theorem, which improves upon the bound r3(k, k) ≤ 224k

due to Erdős and Rado.

Theorem 2.4
log2 log2 r3(k, k) ≤ (2 + o(1))k.

Our methods can also be used to study Ramsey numbers of non-complete hypergraphs. To illustrate
this, we will obtain a lower bound on f3(N, 4, 3), slightly improving a result of Erdős and Hajnal. Let
K

(3)
t denote the complete 3-uniform hypergraph with t vertices, and K

(3)
t \ e denote the 3-uniform

hypergraph with t vertices formed by removing one triple. For k-uniform hypergraphs H and G, the
Ramsey number r(H,G) is the minimum N such that every red-blue coloring of

([N ]
k

)
contains a red

copy of H or a blue copy of G. Note that an upper bound on f3(N, 4, 3) is equivalent to a lower bound
on the Ramsey number r

(
K

(3)
4 \ e,K(3)

n

)
because they are inverse functions of each other. Erdős and

Hajnal [13] proved the following bounds:

1
2

log2N

log2 log2N
≤ f3(N, 4, 3) ≤ (2 log2N) + 1.
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The upper bound follows from the same coloring (discussed in the introduction) based on tournaments
which gives a lower bound on r3(4, n). We will use our approach to improve the lower bound by an
asymptotic factor of 2.

Proposition 2.5 We have r
(
K

(3)
4 \ e,K(3)

n

)
≤ (2en)n.

Sketch of proof. We apply the exact same proof technique as we did for Theorem 2.1 except
that we will expose all edges. We have a coloring of the complete 3-uniform hypergraph with N =
r(K(3)

4 \ e,K(3)
n )− 1 vertices which neither contains a red K

(3)
4 \ e nor a blue set of size n. Note that

the coloring χ′ of the edges of the complete graph with vertex set V = {v1, . . . , vh−1} we get in the
proof does not contain a pair of monochromatic red edges vjvi and vjvk with 1 ≤ j < i < k < h or
1 ≤ i < j < k < h, otherwise vi, vj , vk, vh are the vertices of a red K(3)

4 \ e. Therefore, the red graph in
the coloring χ′ is just a disjoint union of stars. Let m be the number of edges in the red graph. Note
that a disjoint union of stars with m edges has an independent set of size m and forms a bipartite
graph. Therefore the red graph has an independent set of size at least max{m, (h − 1)/2}. Such an
independent set in the red graph is a clique in the blue graph in the coloring χ′, and together with vh
make a blue complete 3-uniform hypergraph in the coloring χ. This gives us the inequalities m+1 < n

and (h − 1)/2 + 1 < n. With hindsight, we pick α = 1/(2n). By the same proof as for Theorem 2.1,
this implies that

r(K(3)
4 \ e, n) = N + 1 ≤ 1 + (1 + h)α−m(1− α)m−(h−1

2 ) ≤ (2n)
(
2n
)n−2

(
1− 1

2n

)−h2/2

≤ (2en)n,

where we use that 3 ≤ h ≤ 2n− 2,m ≤ n− 2 and that (1− 1/x)1−x ≤ e for x > 1. 2

Theorem 1.3 shows that log r3(4, n) > cn log n for an absolute constant c. It would be also nice
to give a similar lower bound (if it is true) for r

(
K

(3)
4 \ e,K(3)

n

)
since then we would know that

log r
(
K

(3)
4 \ e,K(3)

n

)
has order n log n.

3 A lower bound construction

The purpose of this section is to prove Theorem 1.3 which gives a new lower bound on r3(s, n). To
do this, we need to recall an estimate for graph Ramsey numbers. As we already mentioned in (1),
for sufficiently large n and fixed s, r(s, n) > c (n/ log n)(s+1)/2 > n3/2. Also, for all 3 ≤ s ≤ n and
n sufficiently large, one can easily show that r(s, n) > (n+s

s )s/3. (This is actually not the best lower
bound for r(s, n) but it is enough for our purposes.) Indeed, if s = 3, this bound is trivial. For
s ≥ 4, consider a random red-blue edge-coloring of the complete graph on N = (n+s

s )s/3 vertices in
which each edge is red with probability p =

(
s

n+s

)0.9. It is easy to check that the expected number of

monochromatic red s-cliques and blue n-cliques in this coloring is
(
N
s

)
p(

s
2) +

(
N
n

)
(1− p)(

n
2) < 1. These

estimates together with the next theorem clearly imply Theorem 1.3.

Theorem 3.1 For all sufficiently large n and 4 ≤ s ≤ n,

r3(s, n) >
(
r(s− 1, n/4)− 1

)n/24
.
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Proof. Let ` = n/4, r = r(s− 1, `)− 1 and N = rn/24. Note that, since r(s− 1, `) > `3/2 for s ≥ 4,
` − 1 < r2/3. Let χ1 :

(
[r]
2

)
→ {red, blue} be a red-blue edge-coloring of the complete graph on [r]

with no red clique of size s − 1 and no blue clique of size `. Consider a coloring χ2 :
(
[N ]
2

)
→ [r]

picked uniformly at random from all r-colorings of
(
[N ]
2

)
, i.e., each edge has probability 1

r of being a
particular color independent of all other edges. Using the auxiliary colorings χ1 and χ2, we define
the red-blue coloring χ :

(
[N ]
3

)
→ {red, blue} where the color of a triple {a, b, c} with a < b < c is

χ1

(
χ2(a, b), χ2(a, c)

)
if χ2(a, b) 6= χ2(a, c) and is blue if χ2(a, b) = χ2(a, c). We next show that in

coloring χ there is no red set of size s and with positive probability no blue set of size n, which implies
the theorem.

First, suppose that the coloring χ contains a red set {u1, . . . , us} of size s with u1 < . . . < us.
Then all the colors χ2(u1, uj) with 2 ≤ j ≤ s are distinct and form a red clique of size s− 1 in χ1, a
contradiction.

Next, we estimate the expected number of blue cliques of size n in coloring χ. Let {v1, . . . , vn}
with v1 < . . . < vn be a set of n vertices. Fix for now 1 ≤ i ≤ n. If all triples {vi, vj , vk} with i < j < k

are blue, then the distinct colors among the colors χ2(vi, vj) for i < j ≤ n must form a blue clique in
coloring χ1. Therefore the number of distinct colors χ2(vi, vj) with i < j ≤ n is less than `. Every
such subset of distinct colors is contained in at least one of the

(
r
`−1

)
subsets of [r] of size `− 1. If we

fix a set of `− 1 colors, the probability that each of the colors χ2(vi, vj) with i < j ≤ n is one of these
` − 1 colors is

(
`−1
r

)n−i
. Therefore the expected number of blue cliques of size n in coloring χ is at

most

(
N

n

) n∏
i=1

(
r

`− 1

)(
`− 1
r

)n−i
≤ Nn

(
r

`− 1

)n(`− 1
r

)(n
2)
≤ Nn

(
er

`− 1

)(`−1)n(`− 1
r

)(n
2)

=

(
Ne`−1

(
`− 1
r

)n−1
2
−(`−1)

)n
<

(
Ne`−1

(
r−1/3

)n−1
2
−(`−1)

)n
<

(
N2
(
r−1/3

)n/4)n
= 1,

where we use that `− 1 < r2/3, ` = n/4, and N = rn/24 = r`/6 > e`. Hence, there is a coloring χ with
no red set of size s and no blue set of size n. 2

An additional feature of our new lower bound on r3(s, n) is that it increases continuously with
growth of s and for s = n coincides with the bound r3(n, n) ≥ 2cn

2
, which was given by Erdős, Hajnal,

and Rado [15]. For example, for n1/2 � s � n, the previously best known bound for r3(s, n) was
essentially r3(s, n) ≥ r3(s, s) ≥ 2cs

2
.

4 Bounding r3(n, n, n)

We now prove the lower bound, r3(n, n, n) ≥ 2n
c log n

, mentioned in the introduction. Though our
method follows the stepping-up tradition of Erdős and Hajnal, it is curious to note that their own
best lower bound on the problem, r3(n, n, n) ≥ 2cn

2 log2 n, is not proven in this manner. In Erdős and
Hajnal’s proof that r3(n, n, n, n) > 22cn

, they use the stepping up lemma starting from a 2-coloring
of a complete graph with r(n − 1, n − 1) − 1 vertices not containing a monochromatic clique of size
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n− 1 to obtain a 4-coloring of the triples of a set of size 2r(n−1,n−1)−1 without a monochromatic set of
size n. Our proof that r3(n, n, n) > 2n

c log n
is also based on the stepping-up lemma, using essentially

the following idea. We start with a 2-coloring of the complete graph on r(log2 n, n − 1) − 1 vertices
which contains neither a monochromatic red clique of size log2 n nor a monochromatic blue clique of
size n − 1. Then we obtain a 4-coloring of the triples of a set of size 2r(log2 n,n−1)−1 ≥ 2n

c log n
as in

the Erdős-Hajnal proof. Next we combine two of the four color classes to obtain a 3-coloring of the
triples. Finally, we carefully analyze this 3-coloring to show that it does not contain a monochromatic
set of size n.

Theorem 4.1
r3(n, n, n) > 2r(log2 n,n−1)−1.

Proof. Let G be a graph on m = r(log2 n, n− 1)− 1 vertices which contains neither a clique of size
n−1 nor an independent set of size log2 n and let Ḡ be the complement of G. We are going to consider
the complete 3-uniform hypergraph H on the set

T = {(γ1, · · · , γm) : γi = 0 or 1}.

If ε = (γ1, · · · , γm), ε′ = (γ′1, · · · , γ′m) and ε 6= ε′, define

δ(ε, ε′) = max{i : γi 6= γ′i},

that is, δ(ε, ε′) is the largest coordinate at which they differ. Given this, we can define an ordering on
T , saying that

ε < ε′ if γi = 0, γ′i = 1,

ε′ < ε if γi = 1, γ′i = 0,

where i = δ(ε, ε′). Equivalently, associate to any ε the number b(ε) =
∑m

i=1 γi2
i−1. The ordering then

says simply that ε < ε′ iff b(ε) < b(ε′).
We will further need the following two properties of the function δ which one can easily prove.

(a) If ε1 < ε2 < ε3, then δ(ε1, ε2) 6= δ(ε2, ε3) and
(b) if ε1 < ε2 < · · · < εp, then δ(ε1, εp) = max1≤i≤p−1 δ(εi, εi+1).

In particular, these properties imply that there is a unique index i which achieves the maximum
of δ(εi, εi+1). Indeed, suppose that there are indices i < i′ such that

` = δ(εi, εi+1) = δ(εi′ , εi′+1) = max
1≤j≤p−1

δ(εj , εj+1).

Then, by property (b) we also have that ` = δ(εi, εi′) = δ(εi′ , εi′+1). This contradicts property (a)
since εi < εi′ < εi′+1.

We are now ready to color the complete 3-uniform hypergraph H on the set T . If ε1 < ε2 < ε3, let
δ1 = δ(ε1, ε2) and δ2 = δ(ε2, ε3). Note that, by property (a) above, δ1 and δ2 are not equal. Color the
edge {ε1, ε2, ε3} as follows:

C1, if (δ1, δ2) ∈ e(G) and δ1 < δ2;

11



C2, if (δ1, δ2) ∈ e(G) and δ1 > δ2;
C3, if (δ1, δ2) 6∈ e(G), i.e., it is an edge in Ḡ.

Suppose that C1 contains a clique {ε1, · · · , εn}< of size n. For 1 ≤ i ≤ n − 1, let δi = δ(εi, εi+1).
Note that the δi form a monotonically increasing sequence, that is δ1 < δ2 < · · · < δn−1. Also, note
that since, for any 1 ≤ i < j ≤ n − 1, {εi, εi+1, εj+1} ∈ C1, we have, by property (b) above, that
δ(εi+1, εj+1) = δj , and thus {δi, δj} ∈ e(G). Therefore, the set {δ1, · · · , δn−1} must form a clique of
size n− 1 in G. But we have chosen G so as not to contain such a clique, so we have a contradiction.
A similar argument shows that C2 also cannot contain a clique of size n.

For C3, assume again that we have a monochromatic clique {ε1, · · · , εn}< of size n, and, for
1 ≤ i ≤ n− 1, let δi = δ(εi, εi+1). Not only can we no longer guarantee that these δi form a monotonic
sequence, but we can no longer guarantee that they are distinct. Suppose that there are d distinct
values of δ, given by {∆1, · · · ,∆d}, where ∆1 > · · · > ∆d. We will consider the subgraph of Ḡ induced
by these vertices. Note that, by definition of the coloring C3, the vertices ∆i and ∆j are adjacent in
Ḡ if there exists εr < εs < εt with ∆i = δ(εr, εs) and ∆j = δ(εs, εt). We show that this set necessarily
has a complete subgraph on log2 n vertices, contradicting our assumptions on Ḡ.

Since ∆1 is the largest of the ∆j , there is a unique index i1 such that ∆1 = δi1 . Note that ∆1 is
adjacent in Ḡ to all ∆j , j > 1. Indeed, every such ∆j is of the form δ(εi′ , εi′+1) for some index i′ 6= i1.
Suppose that i1 < i′ (the other case is similar). Then εi1 < εi′ < εi′+1. By property (b) and the
maximality of ∆1, we have that ∆1 = δ(εi1 , εi1+1) = δ(εi1 , εi′), and therefore it is connected to ∆j in
Ḡ. Now, there are (n− 2)/2 = n/2− 1 values of j greater than i1 or less than i1. Let V1 be the larger
of these two intervals.

Suppose, inductively, that one has been given an interval Vj−1 in [n− 1]. Look at the set {δa|a ∈
Vj−1}. One of these δ, say δij , will be the largest and as we explain above, will be connected to
every other δa with a ∈ Vj−1. There are at least (|Vj−1| − 1)/2 indices in {a ∈ Vj−1|a < ij} or
{a ∈ Vj−1|a > ij}. Let Vj be the larger of these two intervals, so in particular |Vj | ≥ (|Vj−1| − 1)/2.
By induction, it is easy to show that |Vj | ≥ n

2j − 1. Therefore, for j ≤ log2 n − 1, |Vj | ≥ 1 and,
hence, the set δi1 , · · · , δilog2 n

forms a clique in Ḡ, as required. This contradicts the fact that G has no
independent set of this size and completes the proof. 2

As discussed in the beginning of Section 3, the probabilistic method demonstrates that, for s ≤ n,
r(s, n) ≥

(
n+s
s

)c′s. Substituting this bound with s = log2 n into Theorem 4.1 implies the desired result
r3(n, n, n) ≥ 2n

c log n
.

5 A hypergraph problem of Erdős and Hajnal

In this section we prove Theorem 1.4, which determines the function h(3)
1 (s) for infinitely many values

of s. We also find a small interval containing h(3)
1 (s) for all values of s. More precisely, for each s, we

find a small interval of values for which the growth rate of f3(N, s, t) changes from a power of N to
a power of logN . Recall that f3(N, s, t) is the largest integer n for which every red-blue coloring of(
[N ]
3

)
has a red n-element set or a set of size s with at least t blue triples. Also recall that h(3)

1 (s) is the
least t for which f3(N, s, t) stops growing like a power of N and starts growing like a power of logN ,
i.e., f3(N, s, h(3)

1 (s) − 1) > N c1 but f3(N, s, h(3)
1 (s)) < (logN)c2 . In the course of this section, it will

be necessary to define a number of auxiliary functions. In particular, we sandwich h
(3)
1 (s) between
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two functions of s which are more easily computable and always close. Moreover, sometimes these
functions are equal which then allows us to determine h(3)

1 (s). We begin by defining a function which
gives a natural lower bound for h(3)

1 (s).
Consider the minimal family F of 3-uniform hypergraphs defined as follows. The empty hyper-

graphs on 1 and 2 vertices and an edge are elements of F . If H,G ∈ F and v is a vertex of H, then the
following 3-uniform hypergraphH(G, v) is in F as well. The vertex set ofH(G, v) is (V (H)\{v})∪V (G)
and its edges consist of the edges of G, the edges of H not containing v, and all triples {a, b, c} with
a, b ∈ H and c ∈ G for which {a, b, v} is an edge of H. Let g(3)

1 (s) be the maximum number of edges
in an element of F with s vertices. Erdős and Hajnal showed that for every hypergraph H ∈ F on s

vertices, every red-blue coloring of the triples of a set of size N has a red copy of H or a blue set of
size N εs . Therefore, by the definition of h(3)

1 , we see that h(3)
1 (s) > g

(3)
1 (s). Erdős and Hajnal further

conjectured that this bound is tight.

Conjecture 5.1 For all positive integers s, h(3)
1 (s) = g

(3)
1 (s) + 1.

It was shown by Erdős and Hajnal that the function g(3)
1 (s) may be defined recursively as follows. Put

g
(3)
1 (1) = g

(3)
1 (2) = 0. Assume that g(3)

1 (m) has already been defined for all m < s. Then

g
(3)
1 (s) = max

a+b+c=s
g
(3)
1 (a) + g

(3)
1 (b) + g

(3)
1 (c) + abc.

It is not difficult to see that the maximum is obtained when a, b, and c are as nearly equal as possible.
We shall need this observation in the proof of Proposition 5.3.

To get an upper bound for h(3)
1 (s), we must look at another function, defined as follows. Consider

an edge-coloring χ of the complete graph on [N ] with colors I, II, III picked uniformly at random.
From this coloring, we get a red-blue coloring C of the triples from [N ] as follows: if a < b < c has
(a, b) color I, (b, c) color II, and (a, c) color III, then color {a, b, c} red, otherwise color the triple blue.
With high probability, the largest blue set in the coloring C has size O(logN). Over all edge-colorings
of the complete graph on [s] with colors I, II, III, let F1(s) denote the maximum number of triples
(a, b, c) with 1 ≤ a < b < c ≤ s such that (a, b) is color I, (b, c) is color II, and (a, c) is color III. In the
coloring C, every set of size s has at most F1(s) red triples. Therefore, by definition, h(3)

1 ≤ F1(s) + 1.
Since also h(3)

1 (s) > g
(3)
1 (s), it implies that F1(s) ≥ g

(3)
1 (s). Erdős and Hajnal conjectured that these

two functions are actually equal, which would imply h
(3)
1 (s) = F1(s) + 1 = g

(3)
1 (s) + 1 and hence

Conjecture 5.1.

Conjecture 5.2 For all positive integers s, F1(s) = g
(3)
1 (s).

Erdős and Hajnal verified Conjectures 5.1 and 5.2 for s ≤ 9.
To attack these conjectures, we use a new function which was not considered in [13]. Let T (s)

be the maximum number of directed triangles in all tournaments on s vertices. It is an exercise
(see, e.g., [25]) to check that every tournament with n vertices of outdegrees d1, . . . , dn has exactly(
n
3

)
−
∑n

i=1

(
di
2

)
cyclic triangles. Maximizing appropriately, this yields the following formula for T (s):

T (s) =

{
(s+1)s(s−1)

24 if s is odd
(s+2)s(s−2)

24 if s is even.
(7)
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It appears that T (s) and F1(s) are closely related. Indeed, given an edge-coloring of the complete
graph on [s] with colors I, II, III, construct the following tournament on [s]. If (a, b) with a < b is
color I or II, then direct the edge from a to b and otherwise direct the edge from b to a. Note that
any triple (a, b, c) with a < b < c and (a, b) color I, (b, c) color II, and (a, c) color III makes a cyclic
triangle in our tournament. We therefore have F1(s) ≤ T (s). Let us summarize the inequalities we
have seen so far:

g
(3)
1 (s) ≤ h(3)

1 (s)− 1 ≤ F1(s) ≤ T (s). (8)

Let d(s) = T (s)− g(3)
1 (s). We have d(s) = 0 if and only if all the inequalities in (8) are equalities.

We call such a number s nice. Note that Conjectures 5.1 and 5.2 necessarily hold when s is nice.
Using this fact, we now prove the first part of Theorem 1.4, showing that whenever s is a power of 3
Conjectures 5.1 and 5.2 hold.

Proposition 5.3 If s is a power of 3, then

g
(3)
1 (s) = h

(3)
1 (s)− 1 = F1(s) = T (s) =

1
4

(
s+ 1

3

)
.

Proof. We easily see that s = 1 is nice. By induction, the proposition follows from checking that if
s is odd and nice, then so is 3s. Since, by definition, g(3)

1 (3s) = s3 + 3g(3)
1 (s), we indeed have

d(3s) = T (3s)− g(3)
1 (3s) =

1
4

(
3s+ 1

3

)
− 3g(3)

1 (s)− s3 =
3
4

(
s+ 1

3

)
− 3g(3)

1 (s) = 3d(s). 2

The computation in the proof of the proposition above shows that if s = 6x+3 with x a nonnegative
integer, then d(s) = 3d(2x+ 1). One can check the other cases of s (mod 6) rather easily.

Lemma 5.4 If x is a positive integer, then

d(6x− 2) = 2d(2x− 1) + d(2x),

d(6x− 1) = d(2x− 1) + 2d(2x) + x,

d(6x) = 3d(2x),

d(6x+ 1) = 2d(2x) + d(2x+ 1) + x,

d(6x+ 2) = d(2x) + 2d(2x+ 1),

d(6x+ 3) = 3d(2x+ 1).

Note that from this lemma, we can easily determine which values of s are nice. In particular, the nice
positive integers up to 100 are

1, 2, 3, 4, 6, 8, 9, 10, 12, 18, 24, 26, 27, 28, 30, 36, 54, 72, 78, 80, 81, 82, 84, 90.

Lemma 5.4 now allows us to prove the second part of Theorem 1.4.

Proposition 5.5 For all positive integers s,

h
(3)
1 (s) =

s3

24
+O(s log s).
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Proof. Let D(s) = d(s) − cs log s with c a sufficiently large constant. Using induction on s and
the recursive formula for d(s) depending on s (mod 6) in Lemma 5.4, we get that D(s) is negative
for s > 1. Indeed, assuming s = 6x + 1 with x a positive integer (the other five cases are handled
similarly), we get

D(s) = d(6x+ 1)− c(6x+ 1) log(6x+ 1) = 2d(2x) + d(2x+ 1) + x− c(6x+ 1) log(6x+ 1)

< 2d(2x) + d(2x+ 1)− c(6x+ 1) log(2x+ 1) < 2D(2x) +D(2x+ 1) < 0.

Since d(s) = T (s) − g(3)
1 (s), this implies that T (s) and g

(3)
1 (s) are always within cs log s of one

another. Using the formula for T (s), we therefore have that h(3)
1 (s) always lies in an interval of length

O(s log s) around s3/24. 2

In their attempt to determine h(3)
1 (s), Erdős and Hajnal consider yet another function. Consider a

coloring of the edges of the complete graph on s vertices labeled 1, . . . , s by two colors I and II which
maximizes the number of triangles (a, b, c) with 1 ≤ a < b < c ≤ s such that (a, b) and (b, c) has color
I, and (a, c) has color II. Denote this maximum by F2(s). Trivially, F2(s) ≥ F1(s). Erdős and Hajnal
thought that “perhaps F2(s) = F1(s)”. As we will show, this is indeed the case for some values of s,
but is not true in general. For example, it is false already for s = 5 and s = 7. Moreover, we precisely
determine F2(s) for all values of s.

Proposition 5.6 For all positive integers s, F2(s) = T (s).

Proof. We first show that T (s) ≥ F2(s). Indeed, from a two coloring with colors I and II of the edges
of the complete graph with vertices 1, . . . , s we get a tournament on s vertices as follows: if (a, b) with
a < b is color I, then orient the edge from a to b, otherwise (a, b) is color II and orient the edge from
b to a. Any triangle (a, b, c) with a < b < c with (a, b) and (b, c) color I and (a, c) color II is a cyclic
triangle in the tournament, and the inequality T (s) ≥ F2(s) follows.

We next show that actually T (s) = F2(s). Consider the two coloring of the edges of the complete
graph on s vertices where (a, b) is color II if and only if b − a is even. A simple calculation shows
that the number of triangles (a, b, c) with a < b < c with (a, b) and (b, c) color I and (a, c) color II in
this coloring is precisely the formula (7) for T (s). Assume s is even (the case s is odd can be treated
similarly). For fixed a and c with c − a even, the number of such triangles containing edge (a, c) is
b c−a2 c. Letting c = a+ 2i, we thus have

F2(s) ≥
s∑

a=1

∑
1≤i≤b s−a

2
c

i =
s∑

a=1

(
b s−a2 c+ 1

2

)
=

s/2∑
j=1

2
(
j

2

)
= 2
( s

2 + 1
3

)
= T (s),

and hence F2(s) = T (s). 2

6 Odds and ends

6.1 Polynomial versus Exponential Ramsey numbers

As we discussed in Section 2, the Ramsey number of K(3)
4 \ e versus K(3)

n is at least exponential in
n. The hypergraph K

(3)
4 \ e is a special case of the following construction. Given an arbitrary graph
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G, let HG be the 3-uniform hypergraph whose vertices are the vertices of G plus an auxiliary vertex
v. The edges of HG are all triples obtained by taking the union of an edge of G with vertex v. For
example, by taking G to be the triangle, we obtain K

(3)
4 \ e. It appears that the Ramsey numbers

r
(
HG,K

(3)
n

)
have a very different behavior depending on the bipartiteness of G.

Proposition 6.1 If G is a bipartite graph, then there is a constant c = c(G) such that r(HG,K
(3)
n ) ≤

nc. On the other hand, for non-bipartite G, r(HG,K
(3)
n ) ≥ 2c

′n for an absolute constant c′ > 0.

Proof. Let G be a bipartite graph with t vertices. The classical result of Kövari, Sós, and Turán [23]
states that a graph with N vertices and at least N2−1/t edges contains the complete bipartite graph
Kt,t with two parts of size t. Therefore, any 3-uniform hypergraph of order N which contains a vertex
of degree at least N2−1/t contains also a copy of HKt,t and hence also HG. Consider a red-blue edge-
coloring C of the complete 3-uniform hypergraph on N = (3n)2t vertices, and let m denote the number
of red edges in C. If m ≥ N3−1/t, then there is a vertex whose red degree is at least 3m/N ≥ N2−1/t,
which by the above remark gives a red copy of HG. Otherwise, m < N3−1/t and we can use a well
known Turán-type bound to find a large blue set in coloring C. Indeed, it is well known (see, e.g.,
Chapter 3, Exercise 3 in [2]) that a 3-uniform hypergraph with N vertices and m ≥ N edges has an
independent set (i.e., set with no edges) of size at least N3/2

3m1/2 . Thus, the hypergraph of red edges has
an independent set of size at least

N3/2

3m1/2
>

N3/2

3(N3−1/t)1/2
=

1
3
N1/(2t) = n,

which clearly is a blue set.
To prove the second part of this proposition, we use a construction of Erdős and Hajnal men-

tioned in the introduction. Suppose that G is not bipartite, so it contains an odd cycle with vertices
{v1, . . . , v2i+1} and edges {vj , vj+1} for 1 ≤ j ≤ 2i+ 1, where v2i+2 := v1. We start with a tournament
T on [N ] with N = 2c

′n which contains no transitive tournament of order n. As we already mentioned,
for sufficiently small c′, a random tournament has this property with high probability. Color the triples
from [N ] red if they form a cyclic triangle in T and blue otherwise. Clearly, this coloring does not
contain a blue set of size n. Suppose it contains a red copy of HG. This implies that T contains 2i+ 2
vertices v, u1, . . . , u2i+1 such that all the triples (v, uj , uj+1) form a cyclic triangle. Then, the edges
(v, uj) and (v, uj+1) have opposite orientation (one edge oriented towards v and the other oriented
from v). Coloring the vertices uj by 0 or 1 depending on the direction of edge (v, uj) gives a proper
2-coloring of an odd cycle, contradiction. 2

6.2 Discrepancy in hypergraphs

Despite the fact that Erdős [12] (see also the book [5]) believed r3(n, n) is closer to 22cn
, together with

Hajnal [14] they discovered the following interesting fact about hypergraphs which may indicate the
opposite. They proved that there are c, ε > 0 such that every 2-coloring of the triples of an N -set
contains a set of size s > c(logN)1/2 which contains at least (1/2 + ε)

(
s
3

)
3-sets in one color. That is,

the set of size s deviates from having density 1/2 in each color by at least some fixed positive constant.
Erdős further remarks that he would begin to doubt that r3(n, n) is double-exponential in n if one can
prove that in any 2-coloring of the triples of the N -set, contains some set of size s = c(η)(logN)ε for
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which at least (1−η)
(
s
3

)
triples have the same color. We prove the following result, which demonstrates

this if we allow ε to decrease with η.

Proposition 6.2 For η > 0 and all positive integers r and k, there is a constant β = β(r, k, η) > 0
such that every r-coloring of the k-tuples of an N -element set has a subset of size s > (logN)β which
contains more than (1− η)

(
s
k

)
k-sets in one color.

These results can be conveniently restated in terms of another function introduced by Erdős in [12].
Denote by F (k)(N,α) the largest integer for which it is possible to split the k-tuples of a N -element
set S into two classes so that for every X ⊂ S with |X| ≥ F (k)(N,α), each class contains more than
α
(|X|
k

)
k-tuples of X. Note that F (k)(N, 0) is essentially the inverse function of the usual Ramsey

function rk(n, n). It is easy to show that for 0 ≤ α < 1/2,

c(α) logN < F (2)(N,α) < c′(α) logN.

As Erdős points out, for k ≥ 3 the function F (k)(N,α) is not well understood. If α = 1/2 − ε for
sufficiently small ε > 0, then the result of Erdős and Hajnal from the previous paragraph (for general
k) demonstrates

ck(ε) (logN)1/(k−1) < F (k)(N,α) < c′k(ε) (logN)1/(k−1).

On the other hand, since F (k)(N, 0) is the inverse function of rk(n, n), then the old conjecture of Erdős,
Hajnal, and Rado would imply that

c1 log(k−1)N < F (k)(N, 0) < c2 log(k−1)N,

where we recall that log(t)N denotes the t times iterated logarithm function. Assuming the conjecture,
as α increases from 0 to 1/2, F (k)(N,α) increases from log(k−1)N to (logN)(1/(k−1). Erdős [5] asked
(and offered a $500 cash reward) if the change in F (k)(N,α) occurs continuously, or are there jumps?
He suspected the only jump occurs at α = 0. If α is bounded away from 0, Proposition 6.2 demonstrates
that F (k)(N,α) already grows as some power of logN . That is, for each α > 0 and k there are c, ε > 0
such that F (k)(N,α) > c(logN)ε.

We will deduce Proposition6.2 from a result about the r-color Ramsey number of a certain k-
uniform hypergraph with n vertices and edge density almost one. The Ramsey number r(H; r) of a
k-uniform hypergraph H is the minimum N such that every r-edge-coloring of the k-tuples of a N -
element set contains a monochromatic copy of H. The blow-up K

(k)
` (n) is the k-uniform hypergraph

whose vertex set consists of ` parts of size n and whose edges are all k-tuples that have their vertices
in some k different parts. Note that K(k)

` (n) has `n vertices and
(
`
k

)
nk ≥

(
1−

(
k
2

)
/`
) (

ln
k

)
edges. In

particular, as ` grows with k fixed, the edge density of K(k)
` (n) goes to 1. Therefore, Theorem 6.2 is

a corollary of the following result.

Proposition 6.3 For all positive integers r, k, `, there is a constant c = c(r, k, `) such that

r
(
K

(k)
` (n); r

)
≤ ecn`

.

Proof. Consider an r-coloring of
([N ]
k

)
with N = ecn

`−1
and c =

(
2r ·

(
t
`

))`−1, where t is the r-
color Ramsey number r(K(k)

` ; r). The proof uses a simple trick which appears in [11] and later in
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[22]. By definition, every vertex subset of size t contains a monochromatic set of size `. Since each
monochromatic set of size ` is contained in

(
N−`
t−`
)

subsets of size t, the number of monochromatic sets
of size ` is at least (

N

t

)
/

(
N − `
t− `

)
=
(
t

`

)−1(N
`

)
.

By the pigeonhole principle, there is a color 1 ≤ i ≤ r for which there are at least 1
r

(
t
`

)−1(N
`

)
monochro-

matic sets of size ` in color i. Define the `-uniform hypergraphG with vertex set [N ] whose edges consist
of the monochromatic sets of size ` in color i in our r-coloring. We have just shown that hypergraph
G with N vertices has at least 1

r

(
t
`

)−1(N
`

)
≥ εN`

`! edges with ε = 1
2r

(
t
`

)−1. A standard extremal lemma
for hypergraphs (see, e.g., [9], [26]) demonstrates that any `-uniform hypergraph with N vertices and
at least εN

`

`! edges with (lnN)−1/(`−1) ≤ ε ≤ `−3 contains a complete `-uniform `-partite hypergraph
with parts of size bε(lnN)1/(`−1)c. (An l-uniform hypergraph is l-partite if there is a partition of the
vertex set into l parts such that each edge has exactly one vertex in each part.) In particular, G
contains a complete `-uniform `-partite hypergraph with parts of size bε(lnN)1/(`−1)c = n, where we
use that ε = c−1/(`−1). The vertices of this complete `-uniform `-partite hypergraph with n vertices in
each part in G are the vertices of a monochromatic K(k)

` (n) in color i, completing the proof. 2

Finally we want to mention another problem of Erdős related to the growth of Ramsey numbers
of complete 3-uniform hypergraphs. Erdős [10] (see also [12] and [5]) asked the following problem.

Question 6.4 Suppose |S| = N and the triples from S are split into two classes. Does there exist a
pair of subsets A,B ⊂ S with |A| = |B| ≥ c(logN)1/2 such that all triples from A ∪B that hit both A
and B are in the same class?

Erdős showed that the answer is yes under the weaker assumption that only the triples with two
vertices in A and one vertex in B must be monochromatic. Although this question is still open we
would like to mention that the answer to it is no if the triples of S are split into four classes instead
of two. Indeed, in [7], we found a 3-uniform hypergraph Cn on n vertices which is much sparser than
the complete hypergraph K

(3)
n and whose four-color Ramsey number satisfies r(Cn; 4) > 22c1n

. Let
V = {v1, · · · , vn} be a set of vertices and let Cn be the 3-uniform hypergraph on V whose edge set is
given by {vi, vi+1, vj} for all 1 ≤ i, j ≤ n. (Note that when i = n, we consider i + 1 to be equal to
1.) When n is even, the vertices of Cn can be partitioned into two subsets A and B (with vi ∈ A if
and only if i is even) of size n/2 such that all edges of Cn hit both A and B. Thus, a four-coloring of
the triples of [N ] with N = 22c1n

and with no monochromatic copy of Cn also does not contain a pair
A,B ⊂ [N ] with |A| = |B| = 1

2c1
log logN such that all triples that hit both A and B are in the same

class.
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