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Lattice Boltzmann equations (LBE) are a useful tool for simulating the incompressible Navier–
Stokes equations. However, LBE actually simulate a compressible but usually isothermal fluid at
some small but finite Mach number. There has been recent interest in using LBE at larger, but still
subsonic, Mach numbers, for which the viscous terms in the resulting momentum equation depart
appreciably from those in the compressible Navier–Stokes equations. In particular, the isothermal
constraint implies a nonzero “bulk” viscosity in addition to the usual shear viscosity. This difficulty
arises at the level of the isothermal continuum Boltzmann equation prior to discretization. A
remedy is proposed, and tested in numerical experiments with decaying sound waves. Conversely,
an enhanced bulk viscosity is found useful for identifying or suppressing artifacts in under-resolved
simulations of supposedly incompressible shear flows.
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I. INTRODUCTION

Methods based on lattice Boltzmann equations (LBE)
are a promising alternative to conventional numerical
methods for simulating fluid flows [1]. Lattice Boltz-
mann methods are straightforward to implement and
have proved especially effective at simulating flows in
complicated geometries, and for exploiting parallel com-
puter architectures. They are most commonly used to
simulate incompressible flows through solving the com-
pressible, isothermal Navier–Stokes equations at small
Mach numbers. The Mach number Ma = u/cs is the ra-
tio of the fluid speed u to the sound speed cs. When the
Mach number is small, temperature and density fluctua-
tions are O(Ma2) so the flow is approximately isothermal
and incompressible.

The most common lattice Boltzmann scheme, which
expands the exact Maxwell–Boltzmann equilibrium dis-
tribution to second order in Mach number and uses
a Bhatnagar–Gross–Krook (BGK) approximation [2] to
the collision term, contains a spurious term of O(Ma3) [3]
that limits its application to small Mach number flows.
The spurious term may be eliminated by expanding the
equilibrium distribution to higher order in Ma and us-
ing a more complicated lattice [4, 5]. However, the vis-
cous stresses still differ by O(Ma2) from what is nor-
mally meant by the “Navier–Stokes equations” because
the bulk viscosity is nonzero. In particular, the viscous
stresses differ by O(Ma2) from those calculated from the
Boltzmann equation for a dilute monatomic gas. This
difference is particularly relevant to recent efforts that
have extended lattice Boltzmann schemes to finite, but
still subsonic, Mach numbers [4, 5, 6].

In this paper we propose a modified lattice Boltzmann
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scheme that allows the bulk viscosity to be adjusted, and
to be set equal to zero if desired. This allows an accu-
rate simulation of compressible flows, though still with
an isothermal equation of state. An ability to adjust the
bulk viscosity should also be a useful addition to non-
isothermal lattice Boltzmann schemes, or for simulating
materials other than dilute monatomic gases. Sterling
& Chen [6] have already proposed a modified equilib-
rium distribution that included an adjustable effect re-
sembling bulk viscosity. However, their deviatoric stress
contained terms proportional to ∇ρ. Their scheme thus
approximates continuum equations that differ from the
compressible Navier-Stokes equations, though they do co-
incide in the small Mach number limit.

The compressible Navier–Stokes equations may be
written in the form

∂tρ +∇· (ρu) = 0, (1a)
∂t(ρu) +∇· (pI + ρuu) = ∇·σ′, (1b)

where ρ, u and p are the density, velocity, and ther-
modynamic pressure respectively. Viscous effects appear
via the deviatoric stress σ′, sometimes denoted by τ [7],
which is conventionally placed on the right hand side of
(1b). In general, the pressure p is a function of the tem-
perature θ, representing internal energy, as well as den-
sity, so the two equations above must be supplemented
by an evolution equation for the temperature [8],

(∂t + u · ∇)θ +
2
3
θ∇·u = −∇·q. (2)

We have written θ = kT , with k being Boltzmann’s con-
stant and T the conventional temperature. The heat flux
q is normally taken to be q = −K∇θ, where the thermal
conductivity K may depend on both ρ and θ.

On the assumptions that the deviatoric stress is lin-
early and isotropically related to the local velocity gra-
dient tensor ∇u, and vanishes for rigid rotations, the
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deviatoric stress must take the generic form [7, 9, 10]

σ′αβ = µ(∂αuβ + ∂βuα − 2
3
δαβ∇·u) + µ′δαβ∇·u. (3)

We follow Chen & Doolen [1] in using Greek indices for
vector components, reserving Roman indices for labelling
discrete lattice vectors. Here µ and µ′ are the first, or
shear, and second, or bulk, dynamic viscosity coefficients
respectively. These coefficients are material properties,
and in general will be functions of the local density and
temperature, but it is worth emphasising that (3) de-
pends on the gradient of the velocity u, and not on the
gradient of the momentum ρu. Fluids for which the de-
viatoric stress takes this form are often called Newtonian
fluids. In particular, the fluid simulated by Sterling &
Chen’s [6] lattice Boltzmann scheme is not a Newtonian
fluid for this reason.

The topic of bulk viscosity is complicated by differ-
ent authors attaching different meanings to terms like
“pressure” and “bulk viscosity” [11]. We follow the con-
ventions of Landau & Lifshitz [9], since their terminol-
ogy is compatible with that normally used in the lattice
Boltzmann literature. They rewrite the Navier–Stokes
momentum equation (1b) in conservative form as

∂t(ρu) +∇·Π = 0, (4)

where the tensor Π = pI+ ρuu−σ′ is the total momen-
tum flux. The total stress σ = −pI + σ′ includes an ad-
ditional isotropic contribution from the thermodynamic
pressure p. The deviatoric stress is not necessarily trace-
less with these definitions, Trσ′ 6= 0 in general, since the
normal stress may differ from the thermodynamic pres-
sure.

According to Landau & Lifshitz [9], the word “pres-
sure” means the thermodynamic pressure, given by p =
θρ for a perfect gas. The “bulk viscosity” or “second vis-
cosity coefficient” multiplies any isotropic term in the de-
viatoric stress in addition to the traceless term present in
an ideal monatomic gas. This differs from the convention
used by Batchelor [12] and Lamb [13], whose “pressure”
is the mechanical pressure, meaning minus one third the
trace of the stress tensor, so the µ′ term in (3) is ab-
sorbed into the “pressure.” Also Cercignani [14] and
Tritton [7] use the term “bulk viscosity” for the combina-
tion µ′ − (2/3)µ that multiplies ∇·u in (3). Thus dilute
monatomic gases (µ′ = 0) have negative bulk viscosity in
this terminology.

To complicate matter further, expressions of the form

∂βσ′αβ = ∂β [µ∂βuα + (µ′ + µ/3)∂αuβ ] (5)

sometimes appear in the literature, with the combination
µ′ + µ/3 labeled the “bulk viscosity” [5]. This is only a
correct rearrangement of (3) when the combined coeffi-
cient µ′−2µ/3 is spatially uniform, i.e. ∇(µ′−2µ/3) = 0.
This holds for the particular case of an isothermal fluid
using the BGK approximation with collision time τ ∝
ρ−1, as in §V below, but does not hold in general. In the

general case, use of (5) instead of (3) implies a spurious
generation of angular momentum via spatial gradients in
the viscosity coefficients.

Equations (1a-b,2), with particular values for µ, µ′

and K may be systematically derived from the contin-
uum Boltzmann equation that describes a dilute gas of
monatomic particles undergoing binary collisions [8, 14,
15]. This derivation employs a multiple scales expansion,
the Chapman–Enskog expansion, which seeks solutions
that are slowly varying on the length and timescales as-
sociated with particle collisions. However, the Navier–
Stokes equations with more general forms of µ, µ′ and
K are often justified empirically for a much wider range
of materials than dilute monatomic gases, such as liquids
[7, 9, 10, 12, 13].

In particular, µ′ = 0 for a dilute monatomic gas, which
is one justification for writing (3) in the form given, where
the term proportional to the first viscosity µ has no trace.
Thus a nonzero µ′ implies a deviation in material proper-
ties from those of a dilute monatomic gas. Physically, a
material with µ′ = 0 is characterised by a lack of viscous
dissipation under purely isotropic expansion or contrac-
tion. We note that µ′ ≥ 0 is required for mechanical sta-
bility. A nonzero value for µ′, along with modified values
for µ and K, has been derived by Choh [16, 17] from the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy which models non-dilute gases [8, 14, 17].

Lattice Boltzmann equations are usually used to sim-
ulate the incompressible Navier–Stokes equations, which
follow from the compressible Navier–Stokes equations in
the limit of small Mach number, Ma = |u|/cs → 0, where
cs is the sound speed. If we rewrite the continuity equa-
tion (1a) to resemble the temperature equation,

(∂t + u · ∇)ρ + ρ∇·u = 0. (6)

the terms proportional to ∇·u in (6) and (2) are both
O(Ma2). Thus an initial state with constant values ρ0

and θ0 will be preserved to an accuracy of O(Ma2), i.e.
ρ(x, t) = ρ0 + O(Ma2) and θ(x, t) = θ0 + O(Ma2). Most
lattice Boltzmann formulations in fact assume that the
temperature is exactly constant, θ(x, t) = θ0, and adopt
the isothermal equation of state p = c2

sρ, with constant
sound speed cs [1, 3]. Here cs is the isothermal or Newto-
nian sound speed, c2

s = dp/dρ at constant temperature,
rather than at constant entropy [13]. However, we show
below that the isothermal assumption θ = θ0 changes the
form of the deviatoric stress, as well as the equation of
state as intended. While this change is itself O(Ma2), it
becomes relevant when lattice Boltzmann equations are
used to simulate flows in the finite Mach number regime.
Moreover, it appears to be significant in under-resolved
lattice Boltzmann simulations of supposedly incompress-
ible flows.
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II. THE CONTINUUM BOLTZMANN
EQUATION

We consider the continuum Boltzmann BGK equation
[8, 14, 15, 17],

∂tf + ξ · ∇f = −1
τ

(f − f (0)), (7)

where f(x, ξ, t) is the single-particle distribution func-
tion, and ξ the microscopic particle velocity. The origi-
nal continuum Boltzmann equation employed an integral
operator on the right hand side which models binary col-
lisions in a dilute monatomic gas. We have replaced this
term by the Bhatnagar–Gross–Krook (BGK) approxima-
tion [2], in which f relaxes towards an equilibrium distri-
bution f (0) with a single relaxation time τ . The Maxwell–
Boltzmann equilibrium distribution in 3 dimensions is

f (0) =
ρ

(2πθ)3/2
exp

(
− (ξ − u)2

2θ

)
, (8)

where ρ, u and θ are the macroscopic density, velocity
and temperature as above. We have scaled velocities so
that the isothermal sound speed cs = θ1/2. The three
macroscopic quantities are defined via moments of the
distribution function f ,

ρ =
∫

fdξ, ρu =
∫

ξfdξ, ρθ =
1
3

∫
|ξ − u|2fdξ, (9)

where the integrals with respect to ξ are taken over all
of R3. We observe that the equilibrium distribution f (0)

depends on the coordinates x and t only through the x
and t dependence of ρ, u and θ.

For given ρ, u and θ, the Maxwell–Boltzmann distri-
bution is the distribution that minimises the Boltzmann
entropy functional H =

∫
f ln(f)dξ. The simplified BGK

collision term on the right hand side of (7), like Boltz-
mann’s original binary collision term, drives the distri-
bution function f towards a local Maxwell–Boltzmann
equilibrium distribution f (0) while preserving the local
density, momentum and temperature (internal energy).
Thus the three moments (9) still hold if f is replaced
by f (0). These properties are all that are required to
reproduce the Navier–Stokes equations. The momentum
flux tensor Π, and the equilibrium momentum flux tensor
Π(0), are given by the complete second moment tensors
of f and f (0) respectively,

Π =
∫

ξξfdξ, Π(0) =
∫

ξξf (0)dξ = θρI+ ρuu. (10)

The second moment tensor is not conserved by either the
BGK or the Boltzmann binary collision term. In fact,
it is the difference σ′ = Π(0) − Π that gives rise to a
deviatoric stress, and thus to viscous dissipation.

A. Chapman-Enskog expansion

The Navier–Stokes equations may be derived from mo-
ments of the continuum Boltmann equation in the limit of

slow variations in space and time via a Chapman-Enskog
expansion [8, 15, 17]. The Chapman-Enskog expansion
introduces a small parameter ε into the collision time, so
that (7) becomes

∂tf + ξ · ∇f = − 1
ετ

(f − f (0)). (11)

Thus spatial and temporal derivatives appear at lower
order in ε than the collision term. The parameter ε may
be identified physically with the dimensionless mean free
path, or Knudsen number, but its purpose is to order the
terms in an expansion that avoids the moment closure
problem which plagues hydrodynamic turbulence. Only
moments of the known equilibrium distribution f (0) and
their derivatives in space and time are needed. In fact,
ε may be absorbed into the collision time τ and so set
equal to unity in the formulae below.

We pose a multiple scale expansion of both f and t,
but not x, in powers of ε,

f = f (0) + εf (1) + ε2f (2) + · · · , (12)
∂t = ∂t0 + ε∂t1 + · · · ,

where we may think of t0 and t1 as advective and diffu-
sive (viscous) timescales respectively. We impose the two
solvability conditions

∫
f (n)dξ =

∫
ξf (n)dξ = 0, for n = 1, 2, . . . . (13)

Thus the higher order terms f (1), f (2), . . . do not con-
tribute to the macroscopic density or momentum. These
constraints, which reflect local mass and momentum con-
servation under collisions, lead to evolution equations for
the macroscopic quantities.

Substituting the expansions (12) into the rescaled
Boltzmann equation (11), we obtain

(∂t0 + ξ · ∇) f (0) = −1
τ

f (1), (14a)

∂t1f
(0) + (∂t0 + ξ · ∇) f (1) = −1

τ
f (2), (14b)

at O(1) and O(ε). Taking the first two moments,
∫

(·)dξ
and

∫
(·)ξdξ, of (14a) we obtain

∂t0ρ +∇· (ρu) = 0, ∂t0(ρu) +∇·Π(0) = 0, (15)

where ρ, u and Π(0) are defined in (9) and (10). The right
hand sides vanish by virtue of the solvability conditions
(13). These two equations are equivalent to the Euler
equations for an inviscid fluid, namely equations (1a,b)
with σ′ = 0. Similarly, we obtain

∂t1ρ = 0, ∂t1(ρu) +∇·Π(1) = 0, (16)

at next order in ε, from the same two moments of (14b)
and the solvability conditions. Neglecting terms of O(ε2),
equations (15) and (16) combine to give

∂tρ+∇· (ρu) = 0, ∂t(ρu)+∇· (Π(0)+εΠ(1)) = 0, (17)
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which are equivalent to equations (1a) and (4). The devi-
atoric stress σ′ = −εΠ(1) to this order of approximation.

An equation for the first correction stress Π(1) follows
from the second moment

∫
(·)ξξdξ of (14a),

∂t0Π
(0) +∇·

(∫
ξξξf (0)dξ

)
= −1

τ
Π(1). (18)

The third moment of the equilibrium distribution f (0) is
given by
∫

ξαξβξγf (0)dξ =ρuαuβuγ

+ θρ (uαδβγ + uβδγα + uγδαβ) ,

(19)

and we can compute ∂t0Π
(0) from the leading order time

derivatives of ρ, u and θ,

∂t0Π
(0)
αβ =∂t0(θρδαβ + ρuαuβ) = ∂t0(θρ)δαβ

+ uα∂t0(ρuβ) + uβ∂t0(ρuα)− uαuβ∂t0ρ,
(20)

so (18) in fact gives an explicit expression for Π(1) in
terms of the instantaneous values of ρ, u, θ and their
spatial derivatives.

B. Consistent approach

In the consistent approach [8, 15], an evolution equa-
tion for the temperature θ is obtained by imposing a third
solvability condition,

∫
|ξ − u|2f (n)dξ = 0, for n = 1, 2, . . . . (21)

which reflects conservation of the internal energy ρθ un-
der collisions. From the trace of (18) we obtain an energy
equation in the form

∂t0

(
3
2
θρ+

1
2
ρu2

)
+∂γ

(
1
2
ρu2uγ +

5
2
ρθuγ

)
= − 1

2τ
Π(1)

αα.

(22)

The right hand side vanishes using the three solvability
conditions (13) and (21) together with the identity |ξ −
u|2 = ξ·ξ−2ξ·u+u·u. The kinetic energy term (1/2)ρu2

may be eliminated using the continuity and momentum
equations, leading to the internal energy equation

∂t0

(
3
2
ρθ

)
+∇·

(
3
2
ρθu

)
+ θρ∇·u = 0, (23)

which is equivalent to the temperature equation (2) with
K = 0, using the continuity equation (1a).

Using this new equation, along with (15), to eliminate
the time derivatives ∂t0 in (20), we obtain [8, 15]

Π(1)
αβ = −τθ

(
∂αuβ + ∂βuα − 2

3
δαβ∇·u

)
. (24)

Thus the deviatoric stress σ′ = −εΠ(1), is of the form
(3) with µ = ετθ and µ′ = 0. The absence of the second
viscous effect, or the fact that Trσ′ = 0, is a direct conse-
quence of internal energy conservation under collisions, as
expressed by the temperature solvability condition (21).

An equation for ∂t1θ, where thermal conduction ap-
pears, may be found from the |ξ − u|2 moment of (14b).
The additional term takes the expected form q = −K∇θ,
where K = (5/2)µ = (5/2)ρθτ for the BGK approxima-
tion.

C. Isothermal approximation

As discussed in the Introduction, most lattice Boltz-
mann formulations take the temperature to be exactly
constant, θ = θ0, rather than allowing it to vary by
O(Ma2) in response to a nonzero divergence ∇·u. Thus
the solvability condition (21) for the temperature, which
in fact represents conservation of energy under collisions,
is replaced by the constrain θ = θ0.

In this case the terms arising from ∂t0θ and ∇θ in the
earlier calculation are missing, so now (18) simplifies to
[3, 18, 19]

Π(1)
αβ = −τθρ(∂αuβ + ∂βuα). (25)

The deviatoric stress σ′ = −εΠ(1) is still of the form
(3) with first viscosity coefficient µ = ετρθ as before,
but now there is a nonzero second viscosity coefficient
µ′ = (2/3)µ.

By direct calculation, TrΠ(1) = −2τθρ∇·u, so the
analogue of (23) acquires a nonzero right hand side,

∂t0

(
3
2
ρθ

)
+∇·

(
3
2
ρθu

)
+ θρ∇·u = − 1

2τ
TrΠ(1), (26)

which exactly cancels the θρ∇·u forcing term. The in-
ternal energy equation is now exactly satisfied by θ be-
ing constant, since it then coincides with the continuity
equation (1a).

III. FROM CONTINUUM BOLTZMANN TO
LATTICE BOLTZMANN

Although lattice Boltzmann equations were first con-
structed as empirical extensions of the earlier lattice gas
automata (LGA) [20] to continuous distribution func-
tions [21, 22], they may also be derived systematically
by truncating the continuum Boltzmann equation in ve-
locity space [23, 24, 25, 26]. This derivation determines
several otherwise arbitrary constants in the construction
[18, 26]. A lattice Boltzmann equation with a Coriolis
force also arises naturally from the analogous derivation
in a rotating frame [19].

As lattice Boltzmann equations are normally used to
simulate fluids at low Mach numbers, it is usual to exploit
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the small Mach number to expand the exact equilibrium
distribution f (0) up to second order in the macroscopic
velocity u. Recall that we have scaled velocities so that
cs = θ1/2 is O(1) so |u| = O(Ma) ¿ 1. We replace the
exact Maxwell–Boltzmann distribution (8) by

f (0) = ρw(ξ)
(
1+

ξ · u
θ

+
(ξ · u)2

2θ2
− u2

2θ

)
+ O(u3), (27)

where w(ξ) is the weight function

w(ξ) = (2πθ)−3/2 exp
(−ξ2/2θ

)
. (28)

The ρuuu term in the exact third moment
∫

ξξξf (0)dξ

as calculated in (19) above disappears when f (0) is re-
placed by its truncated form (27). Thus the two devia-
toric stresses calculated above each acquire an extra term
−τ∇·(ρuuu) [3]. Since this extra term is O(Ma3) it only
becomes appreciable in the finite Mach number regime
[5].

With the expanded form (27) of the equilibrium dis-
tribution f (0), the integrals appearing in equations (9),
(10) and (19) are all of the form

∫
pn(ξ)w(ξ)dξ, 0 ≤ n ≤ 5, (29)

where pn(ξ) denotes a polynomial of degree n in the com-
ponents of ξ. He & Luo [23, 24] realised, in the context of
lattice Boltzmann equations, that these integrals may be
evaluated as sums using Gaussian quadrature formulae,

∫
pn(ξ)w(ξ)dξ =

N∑

i=0

wipn(ξi). (30)

The points ξi are known as quadrature points, and the
coefficients wi are the corresponding weights [27]. The
number N of quadrature points required depends on the
maximum degree n of the polynomial, and the dimension
D of the ξ space.

Only the values of the distribution function as evalu-
ated at the quadrature points ξi need be evolved in x and
t, since these values are sufficient to evaluate the required
moments using (30). Thus the continuum Boltzmann
equation (7) may be replaced by the lattice Boltzmann
equation,

∂tfi + ξi · ∇fi = −1
τ

(fi − f
(0)
i ), for i = 0, . . . , N, (31)

where fi(x, t) = wif(x, ξi, t)/w(ξi) (compare equations
(27) and (35)), and the macroscopic quantities of density,
momentum, and momentum flux are now given by

ρ =
N∑

i=0

fi, ρu =
N∑

i=0

ξifi, Π =
N∑

i=0

ξiξifi. (32)

A. Two dimensional, nine speed lattice Boltzmann
equation

The most common quadrature formula in two dimen-
sions (D = 2) uses nine quadrature points, leading to the
so-called nine speed lattice Boltzmann model [1, 3, 18]. If
we take the temperature θ = 1/3, the quadrature points
lie on an integer lattice,

ξi =





(0, 0), i=0,

(sin((i− 1)π/2), cos((i− 1)π/2)), i=1,2,3,4,√
2(sin((2i− 1)π/4), cos((2i− 1)π/4)), i=5,6,7,8.

(33)
The corresponding weight factors are

wi =





4/9, i=0,

1/9, i=1,2,3,4,

1/36, i=5,6,7,8,

(34)

and the discrete equilibrium distributions functions are

f
(0)
i = wiρ

(
1 + 3ξi · u +

9
2
(ξi · u)2 − 3

2
u2

)
. (35)

Although the results follow from the construction via
Gaussian quadratures, the required moments may be
evaluated directly with the aid of identities such as [18]

8∑

i=0

wiξi = 0,

8∑

i=0

wiξiξi =
1
3
I,

8∑

i=0

wiξiξiξi = 0. (36)

IV. FULLY DISCRETE LATTICE BOLTZMANN
EQUATION

To achieve a fully discrete lattice Boltzmann equation
we must approximate (31) in x and t. Integrating (31)
along a characteristic for a time interval ∆t, we obtain

fi(x + ξi∆t, t + ∆t)− fi(x, t) =

− 1
τ

∫ ∆t

0

fi(x + ξis, t + s)− f
(0)
i (x + ξis, t + s)ds.

(37)

The integral may be approximated by the trapezium rule
with second order accuracy, thus

fi(x + ξi∆t, t + ∆t)− fi(x, t) =

− ∆t

2τ

(
fi(x + ξi∆t, t + ∆t)− f

(0)
i (x + ξi∆t, t + ∆t)

+fi(x, t)− f
(0)
i (x, t)

)
+ O(∆t3). (38)

Unfortunately, f
(0)
i (x + ξi∆t, t + ∆t) is not known inde-

pendently of the set fi(x+ ξi∆t, t+∆t), so (38) appears
to yield a system of coupled nonlinear algebraic equations
for the fi at time t + ∆t. However, the system may be
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rendered fully explicit by a change of variables [19, 28].
Introducing a different set of distribution functions f i

defined by

f i(x, t) = fi(x, t) +
∆t

2τ

(
fi(x, t)− f

(0)
i (x, t)

)
, (39)

the above scheme (38) is algebraically equivalent to the
fully explicit scheme

f i(x + ξ∆t, t + ∆t)− f i(x, t) =

− ∆t

τ + ∆t/2

(
f i(x, t)− f (0)(x, t)

)
. (40)

The macroscopic density, momentum, and momentum
flux are readily reconstructed from moments of the f i,

ρ =
N∑

i=0

f i, ρu =
N∑

i=0

ξif i,

(
1 +

∆t

2τ

)
Π =

N∑

i=0

ξiξif i +
∆t

2τ
Π(0).

(41)

This formulation is equivalent to the usual construction
based on a Taylor expansion of the discrete equation
(40) which observes that second order accuracy may be
achieved with what looks like only a first order approx-
imation to (31), by replacing the relaxation time τ with
τ +∆t/2 [1]. However, the variables often denoted fi ap-
pearing in the discrete system are actually the f i in our
notation, so the non-equilibrium momentum flux Π(1) in
the fully discrete system (40) is given by

Π(1) =
Π−Π(0)

1 + ∆t/(2τ)
, (42)

rather than by Π−Π(0) as in the continuous system.

V. DENSITY DEPENDENT VISCOSITIES

If the Chapman–Enskog analysis of §II is applied to
the Boltzmann equation with Boltzmann’s original bi-
nary collision operator instead of the BGK approxima-
tion, we find that the dynamic viscosity µ is independent
of density, and a function of temperature only. This sur-
prising result, subsequently verified experimentally, was
one of the first successes of classical kinetic theory [17].
To reproduce this using the BGK approximation it is nec-
essary to make the collision timescale τ inversely propor-
tional to the local density, τ ∝ ρ−1, and thus a function
of position. The analysis of §IV is unchanged, apart from
τ being a function τ(x, t) instead of a constant.

VI. ADJUSTABLE BULK VISCOSITY

We modify the bulk viscosity coefficient in the isother-
mal lattice Boltzmann equation by redefining the equi-

librium distribution functions to be

f
(0)
i = ρwi

(
1 +

ξ · u
θ

+
(ξ · u)2

2θ2
− |u|2

2θ

)

+ wi

(
µ′

2µ
− 1

3

)
(|ξi|2 −Dθ)

2θ2
(TrΠ(1)). (43)

The number of spatial dimensions is D, which appears
via Tr I = D. These f

(0)
i are functions of {f1, . . . , fN}

through u and ρ as before, and now also through TrΠ(1)

as calculated in (46) below. The 1, ξ, and ξξξ moments
of (43) are unchanged, while the ξξ moment becomes

Π(0) = θρI + ρuu +
(

µ′

2µ
− 1

3

)
(TrΠ(1))I. (44)

Since TrΠ(1) = −2θρτ∇·u from (25), the combined mo-
mentum flux tensor becomes

Π = Π(0) + Π(1) = θρI + ρuu− σ′, (45)

where σ′ is the full deviatoric stress as in (3). The ratio
µ′/µ appearing in (43) may be an arbitrary function of
the local density ρ.

As TrΠ(0) itself depends on TrΠ(1) via (44), the trace
of equation (42) rearranges to give

[
1+

∆t

2τ
+D

(
µ′

2µ
− 1

3

)]
TrΠ(1) =TrΠ−Dθρ−ρu2, (46)

which is the expression we used in conjunction with (43)
to compute f

(0)
i in terms of f i. We note that in three

dimensions with no bulk viscosity, D = 3 and µ′ = 0,
the coefficient on the left hand side of (46) is saved from
vanishing by the ∆t/(2τ) term. Thus it is possible to
simulate flows with Trσ′ = 0 using this scheme.

This alteration to the equilibrium stress Π(0) also
changes the pertubation stress Π(1), because equation
(18) for Π(1) contains the term −τ∂t0Π

(0). However,
the new term in Π(0) is only O(τ), one order smaller
than the other terms, so the new term in Π(1) is O(τ2).
This new term is also one order smaller than the other
terms in Π(1), and is thus comparable with the so-called
Burnett terms involving f

(2)
i that arise at higher order in

the Chapman–Enskog expansion of the continuum Boltz-
mann equation [14, 15]. Since we aim to recover the
Navier–Stokes equations with modified bulk viscosity by
truncating the Chapman–Enskog expansion at O(τ), it
is consistent to neglect both Π(2) and the new τ2∂t0∇·u
term in Π(1). We show in §VII below that deviations
from the intended Navier–Stokes behaviour at finite τ
are no worse than for the unmodified lattice Boltzmann
equation.

VII. NUMERICAL EXPERIMENTS

We performed numerical experiments to measure the
bulk viscosity of the two dimensional nine speed lattice
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Boltzmann model with the modified equilibrium distri-
bution appearing in (43). We also investigated the effect
of varying bulk viscosity on a nominally incompressible
but under-resolved simulation of a Kelvin–Helmholtz in-
stability. Both sets of experiments were performed using
periodic boundary conditions.

A. Sound waves

We measured the bulk viscosity from the rate of decay
of sound waves in numerical experiments. For flows of
the form ρ = ρ0 + ρ′(x, t) and u = u′(x, t)x̂, with ρ′ and
u′ both small, the linearised form of the Navier–Stokes
equations (1a,b) that govern sound waves may be reduced
to [13]

∂ttu = c2
s∂xxu +

(
4
3
ν + ν′

)
∂xxtu, (47)

where ν = µ/ρ0 and ν′ = µ′/ρ0 are the kinematic shear
and bulk viscosities respectively. This equation has so-
lutions of the form u(x, t) ∝ exp(ikx + σt) provided σ
satisfies the dispersion relation [13]

σ=−
(

2
3
ν+

1
2
ν′

)
k2 ± ikcs

[
1−

(
4
3
ν+ν′

)2
k2

c2
s

]1/2

. (48)

For small amplitude waves the nonlinear terms present in
the lattice Boltzmann simulation are negligible, includ-
ing the O(Ma3) nonlinear correction ∇·(ρuuu) to the
deviatoric stress. This was verified by observing that the
numerical solutions decayed exponentially as predicted
by the linear theory. Sound waves in a hexagonal six
speed lattice Boltzmann scheme were studied previously
in [29], but with an emphasis on nonlinear steepening at
finite amplitude.

Viscous dissipation of sound waves depends upon the
combination ν̃ = (4/3)ν + ν′ of the shear and bulk vis-
cosities, which we refer to as the effective viscosity. In
Fig. 1 we plot the ratio ν̃m/ν̃ of the measured effective
viscosity ν̃m to its intended value ν̃, for varying ν̃ and
several fixed ratios ν′/ν of bulk to shear viscosities. The
measured values were computed from the decay of the en-
ergy E(t) = u2 + c2

sρ
′2 by a least squares fit of a straight

line to the logarithm ln E(t). The energy in fact decays
in an oscillatory fashion, because viscous dissipation is
proportional to the oscillatory instantaneous fluid veloc-
ity, but a simple straight line fit proved adequate. The
initial conditions were u = 0 and ρ = 1 + 10−6 sin(2πx),
using 64 lattice points. Simulations with larger values of
ν̃ used 128 bit arithmetic, with approximately 33 signifi-
cant digits, so more oscillations could be followed before
the sound wave decayed to the level of numerical round-
ing error.

The independent variable in Fig. 1 is the Knudsen
number Kn = Ma/Re = τ/

√
3. Introducing dimension-

less variables in which the simulation domain is of length
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FIG. 1: Ratio of measured to intended effective viscosity
(4/3)ν +ν′ for sound waves, plotted against Knudsen number
Kn = Ma/Re = τ/

√
3. The unmodified 9 speed lattice Boltz-

mann scheme is equivalent to ν′ = (2/3)ν (uppermost solid
line).

1, it is convenient to choose the time unit so that a typical
fluid velocity is of magnitude 1. The sound speed is then
1/Ma, and the particle speeds are

√
3/Ma or

√
6/Ma.

The Reynolds number is defined as Re = 1/ν̃, using the
effective viscosity and unit length and velocity scales, so
Ma/Re = ν̃/cs.

The measured effective viscosities are close to their in-
tended values, indicated by ν̃m/ν̃ ≈ 1 in Fig. 1, for vari-
ous values of the ratio ν′/ν provided the Knudsen number
is not too large, in the sense that Ma/Re < 0.03 for a 1%
error, and Ma/Re < 0.01 for a 0.1% error. The curve
ν′ = (2/3)ν corresponds to the unmodified nine speed
lattice Boltzmann scheme, so the deviations introduced
by the modified bulk viscosity at finite Knudsen number
are no worse than those already present.

The curves in Fig. 1 are all parabolic for small τ . Since
we have divided by τ in computing the ratio of the mea-
sured to intended decay rate, this implies that the devi-
ations in the measured decay rate are due to the super-
Burnett corrections at O(τ3) in the Chapman–Enskog
expansion [15]. This is confirmed analytically in the ap-
pendix. The Burnett correction at O(τ2), the first cor-
rection beyond Navier–Stokes, is dispersive and so only
alters the frequency, not the decay rate. This correction
has been found by Qian & Zhou [30] for the unmodified 9
speed lattice Boltzmann scheme. It differs from the Bur-
nett correction to the continuum Boltzmann equation be-
cause the ξ4 moment of the truncated equilibrium (27)
differs from the ξ4 of the original Maxwell–Boltzmann
equilibrium (8).

For the purposes of simulating nearly incompressible
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flows, the lattice Boltzmann scheme may be made accu-
rate for arbitrarily large ν̃, corresponding to arbitrarily
small Reynolds numbers, by making the Mach number
sufficiently small. This is equivalent to taking sufficiently
small timesteps, by comparison with the timescale set
by the fluid velocity and the lattice spacing, but not by
comparison with the timescale of evolving sound waves.
Demonstrating correct viscous dissipation of sound waves
is thus quite a strenuous test because the lattice Boltz-
mann scheme is intended to simulate motions that evolve
on timescales much longer than the periods of sound
waves.

B. Doubly periodic shear layers

Minion & Brown [31] studied the performance of var-
ious numerical schemes in under-resolved simulations of
the 2D incompressible Navier–Stokes equations. Their
initial conditions corresponded to a perturbed shear
layer,

ux =

{
tanh(k(y − 1/4)), y ≤ 1/2,

tanh(k(3/4− y)), y > 1/2,

uy = δ sin(2π(x + 1/4)),

(49)

in the doubly periodic domain 0 ≤ x, y ≤ 1. The param-
eter k controls the width of the shear layers, and δ the
magnitude of the initial perturbation. The shear layer is
expected to roll up due to a Kelvin–Helmholtz instabil-
ity excited by the O(δ) perturbation in uy. With k = 80,
δ = 0.05, and a Reynolds number Re = ν−1 = 10000, the
thinning shear layer between the two rolling up vortices
becomes under-resolved on a 128 × 128 grid. Minion &
Brown [31] found that conventional numerical schemes
using centred differences became unstable for this under-
resolved flow, whereas the “robust” or “upwind” schemes
that actively suppress grid-scale oscillations all produced
two spurious secondary vortices at the thinnest points of
the two shear layers.

Fig. 2 shows that two spurious vortices are generated
by the 9 speed lattice Boltzmann equation with unmod-
ified bulk viscosity. The vorticity ω = ∂xuy − ∂yux was
computed from the velocities ux and uy at grid points by
spectrally accurate differentiation. The shear layers be-
come under-resolved at t = 0.6, see top of Fig. 3, due to
stretching as the two large vorticies roll up. This stretch-
ing is associated with a nonzero numerical divergence,
∇·u 6= 0, at the two halfway points where the spurious
vortices form, as shown in the lower half of Fig. 3. The
numerical divergence is due to a lack of spatial resolution,
and not to an insufficiently small Mach number, since
it was almost unchanged by reducing the Mach number
from 0.04 to 0.01. Moreover, the divergence computed
from TrΠ(1) was almost indistinguishable from that com-
puted by spectrally differentiating ux and uy.

Fig. 4 shows that removing the bulk viscosity, µ′ = 0,
increases the strength of the spurious vortices compared
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y

FIG. 2: Contours of vorticity at t = 1 from the unmodified
9 speed lattice Boltzmann equation on a 128× 128 grid with
Ma = 0.04 and Re = 10000. Compare Fig. 8 in [31]. The
contour interval is ∆ω = 6.

with the unmodified lattice Boltzmann equation. Con-
versely, enhancing the bulk viscosity to µ′ = 10µ suc-
cessfully prevents the formation of spurious vortices as
shown in Fig. 5. Increasing the bulk viscosity further
to µ′ = 100µ produced no further visible changes. This
is all consistent with the spurious vortices being caused
by an apparent divergence in the thin shear layers when
they become too narrow to be resolved by the grid. The
enhanced bulk viscosity acts to smooth out the flow at
just those points where there is an apparent divergence,
but leaves the rest of the flow almost unaffected.

In a well-resolved 256 × 256 simulations the vorticity
was independent of the bulk viscosity, with a fractional
variation of 10−6 for 0 ≤ µ′/µ ≤ 100, and showed the ex-
pected second order convergence in Mach number based
on simulations with Ma = 0.01, 0.02, and 0.04. Although
there was still some discrepancy in the two main vortices
between the 128 × 128 simulations with enhanced bulk
viscosity and the 256 × 256 simulations, most likely due
to a slight shift in position of the vortex filaments, the
discrepancy in the stretched shear layers was almost en-
tirely eliminated.

VIII. CONCLUSION

The usual derivation of lattice Boltzmann equations
involves replacing the temperature evolution equation in
the Chapman–Enskog expansion by an isothermal as-
sumption. This introduces a bulk viscosity µ′ = 2µ/3
into the deviatoric stress that is not present with a con-



9

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

FIG. 3: Numerical vorticity (a) and divergence ∇·u (b) at
t = 0.6 with parameters as in Fig. 2. The divergence was
computed both spectrally from u, and from TrΠ(1) using
(25). The peak divergence is 6% of the peak vorticity, and
does not diminish as the Mach number is reduced from 0.04
to 0.01. Compare with Fig. 7 in [31]. The contour intervals
are 6 and 0.5 respectively.

sistent treatment of the temperature. However the bulk
viscosity’s contribution to the deviatoric stress is read-
ily adjusted, or removed altogether, by adding a term
proportional to the local fluid divergence to the discrete
equilibrium distribution. This divergence is available at
each lattice point from the non-equilibrium parts of the
distribution functions. Numerical experiments confirm
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FIG. 4: Vorticity contours at t = 1. Stronger spurious vortices
form in the absence of bulk viscosity, µ′ = 0. The contour
interval is ∆ω = 6.

that sound waves experience the correct dissipation due
to the intended bulk and shear viscosities. Deviations
from the intended behaviour due to a finite mean free
path, i.e. a finite Knudsen number, are no worse than
in the unmodified lattice Boltzmann equation. An en-
hanced bulk viscosity of the order of 10 ≤ µ′/µ ≤ 100
succeeded in suppressing spurious vortices created by
an under-resolved nominally incompressible flow at high
Reynolds number. This same modification could presum-
ably be applied to other lattice Boltzmann schemes, such
as the 17 speed scheme in [5]. Sensitivity to varying bulk
viscosity may be a useful aid to identifying spurious fea-
tures in under-resolved simulations of the kind found by
Minion & Brown [31].
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APPENDIX A: ANALYTICAL TREATMENT OF
DECAYING SOUND WAVES

The viscous decay of sound waves may also be for-
mulated as a linear eigenvalue problem of the kind con-
sidered in [32]. This resembles previous treatments of
sound waves using the linearised continuum Boltzmann
equation [14, 17]. We assume a distribution function of
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FIG. 5: Vorticity contours at t = 1. An enhanced bulk vis-
cosity, µ′ = 10µ, prevents the excessive thinning that leads
to the formation of spurious vortices. An even larger bulk
viscosity, µ′ = 100µ, produced indistinguishable results. The
contour interval is ∆ω = 6.

the form

f i(x, t) = F
(0)
i + hie

ikx+σt, (A1)

where F
(0)
i is the equilibrium distribution for a rest state

with density ρ0, and the hi are small unknown constants.
This describes a small amplitude sound wave with com-
plex frequency σ and wavenumber k propagating in the
x-direction. The linearised fully discrete lattice Boltz-
mann equation, (40) with f

(0)
i given by (43), then reduces

to an eigenvalue problem of the form

hie
ikci∆x+σ∆t = hi − γ

(
hi − (f (0)

i − F
(0)
i )

)
, (A2)

for σ and the eigenvector hi. The constant γ = ∆t/(τ +
∆t/2). The term f

(0)
i −F

(0)
i is a function of {h0, . . . , h8}

because f
(0)
i depends on ρ = ρ0+

∑
hj and ρu =

∑
ξjhj .

This function may be taken to be linear when the hi are
sufficiently small.

The resulting 9 × 9 matrix eigenvalue problem is not
analytically tractable, but a numerical evaluation of the
eigenvalues gives excellent agreement with the measured
decay rate of sound waves in the time dependent sys-
tem, as shown in Fig. 6. This analysis also confirms that
the deviations from the intended viscosity seen in Fig. 1
are functions of τ only, and thus of the combined pa-
rameter Ma/Re. The parabolic behaviour of the relative
decay rate for small τ , as shown in Fig. 1, may be cap-
tured through a perturbation expansion of the eigenval-
ues, which may be found exactly for τ = 0, carried up to

O(τ3). These results are shown as dotted lines in Fig. 6.
As usual, the higher order effects leading to the Burnett
and super-Burnett equations improve the agreement for
small τ , at least in a periodic domain where the question
of boundary conditions for the higher order differential
operators is straightforward, but do not provide a useful
description for τ = O(1) [15, 32].

In the purely one dimensional case, using the three
speeds ξi = {−1, 0, 1} and weights wi = {1/6, 2/3, 1/6}
respectively, the resulting eigenvalue problem for the
modified system (40) is identical to that for the unmodi-
fied system with the same effective viscosity (4/3)ν + ν′.
The matrix is

1
3




(3− γ)Ω γΩ/2 −γΩ
2γ 3− γ 2γ

−γ/Ω γ/(2Ω) (3− γ)/Ω


 , (A3)

where Ω = exp (2πi/M) for a lattice with M points, and
γ = ∆t/(τ+∆t/2) as in (A2). Thus the finite τ behaviour
of the three speed one dimensional scheme with variable
bulk viscosity is precisely the same as for the unmodified
scheme with the same effective viscosity.
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FIG. 6: Ratio of measured to intended effective viscosity
(4/3)ν +ν′ for sound waves, plotted against Knudsen number
Kn = Ma/Re = τ/

√
3. Solid lines are from numerical exper-

iments with decaying sound waves, as in Fig. 1, and the cir-
cles are from the eigenvalue formulation in the appendix. The
dashed lines are the O(τ3) behaviour from a small τ approx-
imation to the eigenvalues. The unmodified 9 speed lattice
Boltzmann scheme is equivalent to ν′ = (2/3)ν (uppermost
curve).
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