Shallow water equations with a complete Coriolis force and topography
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This paper derives a set of two dimensional equations describing a thin inviscid fluid layer flowing over
topography in a frame rotating about an arbitrary axis. These equations retain various terms involving the
locally horizontal components of the angular velocity vector that are discarded in the usual shallow water
equations. The obliquely rotating shallow water equations are derived both by averaging the three dimensional
equations, and from an averaged Lagrangian describing columnar motion using Hamilton’s principle. They
share the same conservation properties as the usual shallow water equations, for the same energy and modified
forms of the momentum and potential vorticity. They may also be expressed in noncanonical Hamiltonian form
using the usual shallow water Hamiltonian and Poisson bracket. The conserved potential vorticity takes the
standard shallow water form, but with the vertical component of the rotation vector replaced by the component
locally normal to the surface midway between the upper and lower boundaries.
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. INTRODUCTION

The shallow water equations describe a thin layer of inviscid fluid with a free surface. They are widely used as a prototype to
study phenomena like wave-vortex interactions that occur in more complicated models of large scale atmosphere/ocean dynam-
ics, such as the meteorological primitive equations. The meteorological primitive equations are themselves a simplified version
of the full compressible gas dynamics equations in rotating spherical geometry. The main simplifications arise from the atmo-
sphere itself being shallow, or of small aspect ratio, and are together known as the traditional and hydrostatic approximations.
The traditional approximatidrinvolves the neglect of the locally horizontal components of the rotation vector, as well as various
so-called metric terms associated with spherical geometry. The hydrostatic approximation involves the neglect of all terms in the
vertical momentum equation except the pressure gradient and buoyancy force. Although both approximations are formally valid
in the small aspect ratio limit, recent work on “deep” atmospheres has relaxed these approximations in the hope of achieving
more accurate depictions of the real atmospRer&imilar developments have also taken place in oceanogfaphgoth cases
are driven partly by the ability of numerical models to resolve shorter and shorter horizontal scales, for which the validity of
approximations based on a small aspect ratio becomes increasingly questionable.

Most oceanic and atmospheric phenomena occur on lengthscales much larger than those directly affected by molecular viscos-
ity or diffusity, so it is common to use ideal fluid dynamics. Probably the most important qualitative property is the existence of
a materially conserved scalar called potential vorticity, because momentum and energy may be transported over large distances
by waves, while potential vorticity is tied to material fluid elements. When deriving approximate models it seems beneficial to
ensure that the approximate model satisfies some analogous conservation properties to the underlying equations. For instance
the shallow water equations also possess a potential vorticity conservation law. This may be accomplished most easily using
Lagrangian and Hamiltonian formulatiok's;'#in which conservation laws are related to symmetries by Noether’s theorem.
While energy and momentum conservation arise from the usual translation symmetries in space and time, potential vorticity
conservation arises from a more subtle particle relabeling symmetry (see Appendix A).

When rescaled for a vertical lengthscdle much smaller than the horizontal lengthscélethe three dimensional Euler
equations contain factors of the aspect ratie H/L < 1, as in Sec. lll below. The Coriolis terms involving the horizontal
components of the rotation vector appeaiCdt), while the vertical acceleration appearsaty?). These scalings justify
the traditional and hydrostatic approximationsdas» 0. Dropping all terms involving) gives the meteorological primitive
equations. White and Broml&yderived a set of “quasi-hydrostatic” equations that retain justXfi terms, giving a complete
treatment of the Coriolis force while still neglecting vertical acceleration.

In this paper we derive a shallow water analog of the quasi-hydrostatic equations to describe the vertically averaged behavior
of a fluid layer of small aspect ratio flowing over fixed topography in a frame rotating about an arbitrary axis. We thus extend
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FIG. 1: Geometry of the layer, and the true and apparent angular velocity vectors. To obtain the potential vorticity (1) one replaces the vertical
component of2 by the componenf2,, normal to the (dotted) surface = B(z,y) + %h(m,y,t) midway between the upper and lower
boundaries.

TABLE I: Correspondence between layer-averaged and three dimensional models

Hydrostatic primitive equations Shallow water with vertical rotation
Quasi-hydrostatic equatiofis Shallow water with oblique rotation
Tanguayet al. regional forecast mod#l Green—Naghdi with vertical rotation
Rotating Euler equations Green—Naghdi with oblique rotation

the traditional approximation shallow water equations by retaining vaids terms due to the horizontal components of the
rotation vector. We shall refer to these two models as the “traditional” and “obliquely rotating” shallow water equations.

We derive our obliquely rotating shallow water equations both by vertically averaging the three dimensional equations
(Sec. Ill), and from a variational principle using a vertically averaged Lagrangian (Sec. V). The resulting equations are hy-
perbolic for sufficiently small velocities, and share the same energy, momentum, and potential vorticity conservation properties
of the usual shallow water equations, albeit for modified forms of the momentum and potential vorticity. They may be formulated
as a Hamiltonian system using the modified momentum and potential vorticity, and the usual shallow water Hamiltonian and
Poisson bracket, just as Roulstone and Bfiskowed that the quasi-hydrostatic equations, with a suitably redefined momentum
and potential vorticity, share the Hamiltonian and Poisson bracket found by Holm and’lfonthe meteorological primitive

equations.
One of the key results of this paper is the derivation of the conserved potential vorticity
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whereh is the layer depth; = B(x, y) the lower boundary, and = (u,,u,) the horizontal velocity. This expression differs

from the usual shallow water potential vorticity by the extra tefin¥ (B+h/2) andhV-€2 involving the horizontal components

of Q. The horizontal divergence terhV-Q2 is included only for completeness, and will usually vanish. One then just replaces
the vertical componer§e.. of the rotation vector in the usual formula by the combinafionr- Q- V(B +h/2), the component of

the rotation vector that is locally normal to the surface midway between the upper and lower boundaries, as indicated in figure 1.
The quantity (1) may also be derived by averaging a suitable Ertel potential vorticity across the layer (see Sec. X).

Extended shallow water equations with nonlinear dispersive terms arising from(t#¢ vertical acceleration have been
obtained previously for nonrotating systems. They are usually called the Green—Nagdhi eddatitaigheir derivation using
Cosserat surfaces from energy conservation and invariance under rigid-body motions, but their one-dimensional version had been
derived previously using vertical averaging by Su and Garth€he derivation by averaging was extended to two horizontal
dimensions by Bazdenkat al 2° Miles and Salmoft obtained the Green—Nagdhi equations from Hamilton’s principle using the
assumption of columnar motion, and thus derived a potential vorticity conservation law from the particle-relabeling symmetry
in their Lagrangian (see Appendix A).

The Green—Naghdi dispersive terms may be included, along with the terms arising from oblique rotation, to obtain what
should be a more accurate system of equations for layers with a small but finite aspect ratio. This system may also be thought of
as the vertically-averaged analog of the unapproximated rotating Euler equations. In view of the many previous derivations of the
Green—Naghdi equation$;?°-23we concentrate on the obliquely rotating shallow water equations, and only briefly indicate
the necessary modifications for the Green—Naghdi version. Bazdenlkd previously considered an oblique rotation vector
in their rederivation of the Green—Naghdi equations by vertical averaging, but they omitted one term in the pressure gradient, the
topographic term proportional @ B(x, y) in (11) below. This omission caused their equations to violate energy and potential
vorticity conservation in the presence of topography.

We should emphasise that while the resulting obliquely rotating Green—Naghdi equations include the first corrections to
columnar motion from both oblique rotation and vertical acceleration, they are not a cor@gt&te approximation to the
original three dimensional equations unless the angular velocity vector is either small, or nearly vertical, so that the horizontal
Coriolis terms becomé(§2) instead ofO(5). However, Kasahafafound that omitting the vertical acceleration has a much
larger effect than omitting the horizontal Coriolis terms on the frequencies of normal modes in a realistic stratified atmosphere.
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In other words, thé)(52) effect is numerically larger than the(d) effect for realistic values of. This might be because neglect

of the vertical acceleration is a singular perturbation, in the sense that the quasi-hydrostatic or primitive equations omit the time
derivative of the vertical velocity. Similarly, the Green—Naghdi equations add higher derivatives multiplied by small coefficients
to the shallow water equations. In this sense, omission of the horizontal Coriolis terms is a regular perturbation in both cases.

Moreover, equations retaining the vertical acceleration but not the (asymptotically larger) horizontal part of the rotation vector
were adopted in a regional atmospherical model by Tanghay?* Layer-averaging these equations gives the Green—Naghdi
equations with vertical rotation. Thus by retaining the Green—Naghdi terms we may obtain layer-averaged analogs of two
addition equation sets: the full rotating Euler equations, and the Targgudymodel. Table | summarises the correspondence
between various sets of three dimensional and layer-averaged equations.

We only consider Cartesian geometry in this paper, so the various other geometrical approximations that form part of the
traditional approximation in spherical geometry do not arise. This Cartesian geometry is sometimes galleglane? where
f andF are twice the normal and tangential component&pin contrast to the usugl plane that rotates about a normal axis.

In Cartesian geometry it is natural to think of conserved linear momenta arising via Noether’s theorem from invariance of the
Lagrangian under spatial translatiofig€® However, the conserved zonal component of linear momentum is closely Félated

the conserved angular momentum one would find from rotational invariance of a Lagrangian in spherical geometry, and is thus
sometimes called “angular momentum” even in Cartesian georffletry.

The derivation of the obliquely rotating shallow water equations by averaging in Sec. Il p&rtyvary spatially, so our
equations may also be used o-glane analog wher¢ and F' vary with latitude. We exploit this freedom to study trapped
waves on an equatorigtplane in Sec. Xll. The variational derivation in Sec. V assumes a con@dnt simplicity, but the
calculations may easily be repeated for spatially varghgBy considering only an equatorigtplane we avoid various issues
involving approximation of the metric coefficients that arise in midlatitdg#anes’?”-?8The extension to spherical geometry is
likely to be most easily accomplished using the variational principle developed in Sec. V, after expressing the vertically-averaged
Lagrangian as an integral over a spherical surface.

. ORDERS OF MAGNITUDE

Working in spherical geometry, White and Bromteyntroduced the velocity scale
Uq = 2QH cos ¢ (2)

to represent the effects of the horizontal garios ¢ of the rotation vector at latitudé. Here H is the layer depth, antl, may
be understood as the change in zonal velogitipe to a fluid parcel rising by distanéewhile conserving its total zonal angular
momentum(u + Qr cos ¢)r cos ¢ per unit massy; being distance from the parcel to the planet’s center. Witk 15 ki being
a typical tropopause heiglit, ~ 2ms~! for a parcel at the equator rising from surface to tropopause. This is smaller than, but
not enormously smaller than, typical eddy velocitie@@fns~!, or typical baroclinic wave speeds 2 to 80 ms—!.2°

In oceanic applications, the shallow water equations usually arise as a reduced gravity or equivalent Garaproixima-
tion to the two layer equations, in which the lower layer is taken to be very deep and quiescent relative to the upfder layer.
The upper layer then evolves according to the shallow water equations, although in fact the free surface is approximately flat
(due to the much greater density difference between air and water than between water masses) and it is the internal interface
position that evolves according to the continuity equation. For baroclinic ocean waves the phase-spggd{ is typically in
the range.5 m s~ to 3 m s~ !, whereg’ = gAp/p is the reduced gravity, and the layer depths typically 500 m.

Our analyses of linear waves on @fF’ plane and an equatoriglplane both focus attention on the dimensionless parameter
0 given by

5:2(2—"{, 5cos¢:@. (©)
C C

We thus find tha0.02 < ¢ < 0.14, with slower waves corresponding to larger values.ddne may think ob as a reduced Lamb
parameter measuring non-traditional effects (the usual Lamb parafhBterbeing based on the planetary radfasnstead of
the layer depthd). Alternatively,é coincides with the aspect ratio based on a deformation raglius

s— 2 p-L

o (4)

This differs from the usual definition of a deformation radius based on the vertical comgeneat(2 sin ¢, of the rotation
vector, and so remains valid at the equator witesen ¢g = 0. As we show subsequently, the aspect ratio based on the equatorial
deformation radiug.q = +/c/20 is notthe correct scaling for non-traditional effects in waves on an equafdiidne.

Moreover, one might suppose from (3) that Rossby waves on an equdtgiahe, which have phase speeds much smaller
thanc, might be more sensitive to non-traditional effects. However, we find subsequently that this is not the case. The Rosshy
waves are in fact much less affected than the inertial-gravity waves. This perhaps counter-intuitive result agrees with Kasahara's
analysis of normal modes in a stratified atmosphere: that faster, shorter wavelength inertia-gravity waves are more sensitive to
non-traditional effects than longer and slower waves. Kasahara’s analysis ugddplane that does not support Rossby waves,
so there were no slow modes in the sense of modes that may be captured by a balanced model.



Ill. DERIVATION BY AVERAGING

Camassat al 3?33 derived their weakly nonlinear (or rigid lid) “great lake” version of the Green—Naghdi equations by verti-
cally averaging an approximate solution to the rescaled three dimensional Euler equations, found as an asymptotic expansion in
a small aspect ratio. We follow a fully nonlinear version of this approach that petitsdisplacements of the free surface,
like that used by Choi and Cama$$#o derive one dimensional equations describing internal waves in a two layer system,
and by Dellaf? to derive a magnetohydrodynamic analog of the Green—Naghdi equations.ailbiecaveraging procedures
were applied previously to the unscaled Euler equations by Su and G8rdndrBazdenkoet al?° to derive the one- and two
dimensional Green—Naghdi equations respectively.

The governing equations for a layer of incompressible fluid of unit density, between a rigid base B{z,y) and a free
surface at = h(z,y,t) + B(z,y), are

Oiuz + us - Vaus + 2Q3xu3 = —Vsp — gz, (53.)
Vsus = 0. (5b)

In this section a subscrigtis used to indicate a three-component veatoy, us = (uz, uy, u.), While unsubscripted vectors
like u = (us,u,) are taken to be purely horizontal. In this section we allow the rotation véZtaio vary horizontally, in
preparation for studying waves on an equatofigdlané!2°3%in Sec. XIlI.

Equations (5) are subject to the lower boundary conditiorithat u-VB onz = B(x, y). The kinematic free surface condi-
tionisOh = uz-nz onz = h(z,y,t)+ B(x,y), where the (unnormalised) normal vector = (—0,(h + B), —0,(h + B), 1)
points upwards out of the fluid. We work with the true presgutbat vanishes on the free surface, whereas Caneissld?
preferred the modified pressuse = p + gz that absorbs the gravitational term in (5a).

After introducing a typical horizontal lengthscdleand vertical lengthscald$, the important step in shallow water theory is
to scale the vertical coordinatewith a small parameter = H/L, the aspect ratio. The reader wishing for a fully dimensionless
treatment may také, to be the deformation radiuB, defined in (4), and then adopt the velocity scille= 2Q R4 giving
unit Rossby number. Otherwise, one should think of the the Rossby nuRaber U/(22L), and Burger numbeBu =
gH/(4Q2L?), as both remainin@(1) asé§ — 0.

The incompressibility conditioVs - us = 0 suggests scaling the vertical velocity to beO(¢), so we seus = (u, dw).
However, we leave the rotation vector unscalefgs= (2., €2, §2). Equations (5) then become

oru+u-Vu+wo,u+ 20.z2xu+ 200xzZw + Vp = 0, (6a)
52(8tw +u- Vw+ wo,w) + 20(uyQy — uzy) +0:p+9g = 0, (6b)
Vu+d,w = 0, (6¢c)

whereV, 2, andu denote the horizontal:(andy) components of the three dimensional objécts €23, andus respectively.
The vertical momentum equation (6b) becomes fugt+ g = 0 in thed — 0 limit. The pressure is thus purely hydrostatic,
leading to the usual (non-dispersive) shallow water equations with a purely vertical rotationt¥éttor.

To improve upon these shallow water equations we seek solutions of (6) as asymptotic expansions in the small agpect ratio

u:u(0)+5u(1)+..., p:p(o)_|_5p(1)_|_52p(2)_|_...7
w = w(0)+5w(1)+..._

The O(1) terms in (6b) imply thap(®) is the hydrostatic pressurg®) = g (h(z,y,t) + B(z,y) — z), with the property that
Vp(® = ¢gV(h + B) is independent of. The horizontal momentum equations are thus satisfied at leading order-by a
independent velocity(®) = u(® (z,y,t). The continuity equation (6¢), and the lower boundary conditioa u(®) - VB on
z = B(z,y), together determine the vertical velocity as

w® =V (u?B) - 2vV-u. (")
Having determinear(?) andw(?), the vertical momentum equation (6b) gives

d.pM) = [Zu;O)Qy — Zu?(/O)Qx], (8)
atO(¢). Since the term in square brackétss independent of, (8) integrates to give

PV = (2 = h(z,y,1) — Blz,y)) 209, — 2u) ], ©)

using the free surface conditipn= 0 on z = h(x,y,t) + B(z,y). Moreover,

Vpt) = (z — h — B)V[] = (V(h + B))[1, (10)



and

h+B 1
/ Vpdz = — V(L) - A(VB), (11)
B
Horizontal differentiation does not commute with théntegral (or with layer averaging) because the layer dépsimd lower
boundaryB are themselves functions ofandy.

In principle, theO(9) correctionsu*) andw) may now be computed from th@(J) terms in (6). However, it is simpler to
derive equations for the layer mean velodgitgiven by

h(z,y,t)+B(z,y)
u(z,y,t) = m /B(z’y) u(z,y, z,t)dz, (12)
where an overbar denotes a layer-averaged quantity? $iowed that
h(0:F +uz - V3F) = 0,(hF) + V-(huF), (13)

for generalF’, by integrating by parts in and using the kinematic boundary conditions fgrat the two material surfaces
z = B(z,y) andz = h(z,y,1) + B(z,y).
The layer-averaged continuity equation

Oih + V-(hi) = 0, (14)

is given by (13) withF" = 1, for which the left hand side vanishes. Equation (6a) may be integrated using (13) with, and
F = u, to give

h+B h+B
8t(hﬁ)+V-(hﬁ)+2922xhﬁ+25ﬂx2/ wdz+/ Vp dz = 0. (15)
B B

The layer-averaged Reynolds stress factorizegas= uu + O(42), because the cross terath)u(V) in the z-integration is
0(52)19,32_ On replaCingU by ’LU(O) from (7), andp byp(o) + 6p(1), (15) becomes
1
O¢(hu) + V-(huu) + 2hQ.2xU + ghV(h+ B) + 206 Q2xZ (hu~ VB - 2h2V-u> (16)
— SV (R (Qyu, — Q) — 28 W(VB)(Q,1, — Q) = 0(6%),

where, to close the system, the vertically integrated terms have been evaluatet usstepd ofu(®) by incurring a further
error of O(52). Since it is unnecessary to computg) explicitly, the structure ofa) in » need not be specified. However,
it would be natural to seeka(") involving a term proportional ta plus a second-independent term. Equation (16) may be
further simplified into

d(hu) + V-(huu) + 2h (2. — Q- VB) 2xu + ghV(h + B) — Qx2h*V-a — V (h*(Qyu, — Q7)) = 0, (17)

after discarding th€(52) terms and formally setting the expansion paraméterl.

TheO(6) terms in (16) would be absent without rotation, or with rotation about a vertical axis. Howewv@(sancorrection
p?) to the pressure still arises from tliE §2) acceleration term in the vertical momentum equation (6b) with given by (7)
as above. Averaging this correction leads to the Green—Naghdi equ#ti§rts,

8 + V-(hu) = 0, (18a)

—%v <h2D2 (h + 23)) — h(VB)D? (;h + B> , (18b)

oi(hu) + V-(huu) + ghV(h + B)

whereD = 9, + 1 - V is the Lagrangian or material time derivative. The dispersive terms on the right hand side of (18b) may
be added to the right hand side of the obliquely rotating shallow water momentum equation (17) too, and should improve the
accuracy of the approximation. However, the resulting equations are not a consistent treat@r) unless2, , = O(4).

In principle we should continue the expansion consistentl® (6?), but this would require the determination of the vertical
structure of theD(§) correctionu(") in order to evaluate the horizontal Coriolis termgx(5?), and also thea()u() Reynolds

stress a(42). This may not be possible within the confines of a set of three evolution equations for a single velocity vector
and a height field.



IV.  OBLIQUELY ROTATING SHALLOW WATER EQUATIONS

Dropping the overbar to write = u = (u,v) for simplicity, the acceleration, or primitive variable, form of equations (17)
may be written after some rearrangement as

Bpu+u- Vu— 2 <Q —Q-v (B + ;‘)) v+ 8, [g(h + B) + h(vQ, — qu)] —Q,V-(hu) = 0, (19a)

Ow+u-Vu+2 <QZ -Q-v (B + ;)) u+ 0y [g(h + B) + h(vQ, — qu)} +Q,V-(hu) = 0. (19b)

This particular form may be motivated using the noncanonical Hamiltonian (Sec. VIII B) or Euler—Ro{Sear. 1X) formu-

lations that yield evolution equations for the specific momentuyth instead of the fluid particle velocity. The usual Coriolis

term appears, but with the vertical compon@ntof the rotation vector replaced by the compon@pt— Q - V(B + h/2) that

is locally normal to the surface = B + h/2 midway between the upper and lower boundaries. The horizontal part of the
rotation vector also contributes to the pressure-like quaffity + B) + h(vQ2, — uf,)] above, which represents the up- and
down-welling driven by the extra term in the vertical momentum equation (6b). The last terms in (19a,b) arise from the extra
Coriolis term involving the vertical velocity in (6a). Equations (19) also yield the energy equation

% (;h|u|2 + %gh(h + 2B)> + V. (hu [|u|2 + g(h+ B) + h(vQ, — qu)D = 0. (20)

The energy density is completely unchanged by rotation, and may be derived by integrating the three dimensional energy density
%|u|2 + gz across the layer, but the energy flux acquires a contribution from the horizontal part of the rotation vector.

Using the continuity equation in the forW-(hu) = —h, to rewrite the last terms in each of (19a,b) and cross-differentiating
leads to a conservation latyq + u - V¢ = 0 for the potential vorticity given previously by (1),

1 h Ouy  Ouy
=i 2(2-av(meg))-nves G oS,

This definition of the potential vorticity differs from the usual shallow water form by extra terms involving the horizontal
components of the rotation vector. Two systematic derivations of the same potential vorticity conservation law are given below,
one from a particle relabeling symmetry in a variational formulation (Sec. V), and a second from the Casimir invariants of a
noncanonical Hamiltonian formulation (Sec. VIII).

Equations (19) may also be rewritten in matrix form as

h U h 0 h
9 + 08, — 2u, u—2hQ, hQ, | — (21)
ot U g + 2082, uldy u v e | 37 U
v 0 hQ, U v
v 0 h P h 0 0
+ 0 v —hQ, —lu]=22-Q-VB)| v | —g|0.,B
g+ 208, — 2uf)y —hQ, v+ 2hQ, v —u o,B

A conservation form for the left hand sides of (21) is derived in Sec. VIII below using the mormantah?Q2 x 2z instead ofu

andv. However, a conservation form is only necessary to find the speeds of finite amplitude shocks. Equation (21) suffices to
give the speeds of small amplitude discontinuities (weak shocks) propagatingrmiteetion as the eigenvalues of the matrix
multiplying thex-derivatives,

co=1u, cx=u+hQ,=* \/gh +h2(Q2 + Q2) + 2h(vQy — uQy). (22)

These eigenvalues are real, so the obliquely rotating shallow water equations are hyperbolic, Zevid€e|ju| < 1.
Physically, this constraint requires the hydrostatic component of the pressure to exceed the contribution from fluid up- and
down-welling driven by the horizontal componefis = (2, §2,) of the rotation vector. Since the latter is supposed to be a
small correction to the hydrostatic pressure, this constraint is not overly restrictive. The two-layer shallow water equations are
also only hyperbolic when the difference in velocity between the two layers is not too*farge.



V. DERIVATION FROM A VARIATIONAL PRINCIPLE

The same set of equations may be derived from a variational principle, Hamilton’s principle of least action, applied to an two
dimensional vertically-averaged Lagrangian. The exact Lagrangian for a three dimensional, incompressible fluid of unit density
in a frame rotating with angular velocif may be written a¥3”

2

Eg,D:/dadbdc1 a—x—kﬂxx
2|01

- % |xx|* — gz + p(a, 7) <(Z((Z’z’j)) - 1) . (23)

The integral is expressed over Lagrangian particle ladeis(a, b, ¢), and the particle positions = (z, y, z) should be treated
as functions ot and timer. The variabler is used to emphasise that partial time derivati®¢8+ are taken at fixed particle
labelsa, instead of at fixed spatial coordinatesThusd/dr = /0t + us - V3 in Eulerian variables, whene; = 0x/07 is the
Eulerian fluid velocity as seen in the rotating frame.

The first term% g—’; + Q><x|2 in the Lagrangian is the kinetic energy as seen in a nonrotating inertial frame. It arises from
applying the well-known relatici

9
or

0

inertial or

+Qx (24)

rotating

to the velocity vector inside the usual express:%o|r$3—’;|2 for kinetic energy in an inertial frame. Alternatively, one may think of

g—’; + Qxx as being the velocity with respect to an inertial frame. The second%e}riﬂ ><x\2 in (23) is used to subtract out the
contribution from the kinetic energy that gives rise to the centrifugal force, because in geophysical fluid dynamics the centrifugal
force is conventionally incorporated into the gravitational acceleratiappearing in the third term, the gravitational potential
energy. We shall neglect spatial variations in the combined@he variations due to the spatial dependence of the centrifugal
force are in fact smaller than the variations in the true gravitational acceleration with height due to the inverse square law.
the final term, the pressufda, ) appears as a Lagrange multiplier enforcing incompressibility, represented as the map from
to x(a) having unit scalar Jacobiad(z, y, z)/0(a, b, c) = 1.

According to Hamilton’s principle of least action, the equations of motion are those that render theSasstidionary,

58S =6 / drLap = 0. (25)

Taking variations separately with respectt@ndyp yields the three dimensional incompressible Euler equations with Coriolis
force and gravity,

Oyus +us - Vaug + 2Q2xus + Vzp = —gz, Vz-uz3=0, (26)

whereus; = 0x/907. The variationsdx and ép should vanish at the endpoints of theintegration, as in classical particle
mechanicg? to allow integrations by parts with respectitan the action. The variation§ enforce the constraings - us = 0.

A. Restriction to columnar motion

Two dimensional approximations including the shallow w&teand Green—Naghtli equations, both with purely vertical
rotation, have been derived from the above three dimensional Lagrangian by restricting the fluid to move in columns. In other
words, we approximate the horizontal particle positions by

Tr = x(a7 b7 T)’ y = y(a’ b7 T)7 (27)

with no dependence on the third Lagrangian labeThe incompressibility constraint enforced by the pressure then factorizes
into®?

Ox,y,2) _ O(w,y) 0z _
Dabc) ~ dab) de (28)

The labelsc may be assigned so that= 0 on the rigid bottomz = B(x,y), andc = 1 on the free surface = B(z,y) +
h(z,y,t). Thus (28) becomes

_ 9(a,b) _
z = e y)c + B(z,y) = h(z,y,t)c+ B(z,y). (29)
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These formulas allow theintegration in (23) to be completed. The incompressibility constraint is now automatically satisfied,
so the term multiplied by the pressurex, t) in (23) may be discarded. The remaining terms give the reduced two dimensional

Lagrangian
/dadb/ldclaj_( pad
foos (5:) +3 (52)
i) 3 (3) (5) 5 (7) )
—*9(h+23 <ay x) (h"'QB)(gf_Qy_ngx)a

which depends only on the horizontal positiat(a, b, 7) andy(a, b, 7) of the fluid columns. An integration by parts erhas

been used to simplify the final term involving the horizontal componen§2.ofs shown in the next section, this is equivalent

to replacing2 xx by some other vector fielR, given explicitly in (42) below, satisfying/ xR = 2€2 andz - R = 0. These
manipulations change the Lagrangian by an exact time derivative, and thus make no contribution to the action, or to the evolution
equations obtained from the action via Hamilton’s principle.

The terms in (30) that are quadratic in the time derivatives arise from the kinetic energy. In particular, the three terms that are
quadratic indh/dr anddB /9T arise from the vertical velocity’s contributiof(9z/97)? to the kinetic energy, oncehas been
rewritten in terms of, and B using (29). These three terms give rise to the nonlinear dispersive corrections in the Green—Naghdi
equations. Omitting these terms, on the grounds that the9 @ smaller than the contributions from the horizontal velocities,

leads to the simpler shallow water Lagrangian
1 /0y 2 dy oz
+ 2(87’) 8 (xﬁT_y(?T)

+ (h+23)(8x9 aym) Zg(h+2B). (31)

7 ox
EGN[LU(G/’ b> T)’ y(aa b> T)]

- (xx) — gz,

T

Esw[x(a’b7 T)ay(avba T)] = /dadb - (8,@)
or
or or 2

B. Free surface boundary condition

The other boundary condition, that the pressure should vanish on the free surfack(z,y,t) + B(z,y), has not yet
appeared explicitly. In fact it is implicit in the form of the Lagrangians (23) and (30). The three dimensional Lagrangian (23)
applies either to fluid of infinite extent, or to fluid in a bounded domain with boundary conditions that do no work on the fluid.
The latter includes both no flux rigid boundarias-(n = 0) and free surfaces with zero pressure boundary conditions. In
both cases the work done, being the force multiplied by the displacement, vanishes because either the force or the displacemen
vanishes. An imposed external pressure variation may be included via an additional surface integral representing the work done
by the external pressufé.Similarly, Lewis et al2° obtained a Hamiltonian for a fluid with surface tension and zero ambient
pressure by adding an extra surface integral to account for the pressure just inside the fluid being proportional to the curvature
of the free surface.

C. Equations of motion

The most direct route to the equations of motion is via Hamilton’s principle: the variations of the action integral with respect
to x must vanish. The Lagrangian density in (31) depends nat only explicitly, but also implicitly viaB(z, y) andh(z, y, t).
The expression in (29) faor,
d(a,b)
A(z,y)’

leads tooh = —hV-(dx), while §B = dx - VB since the topograph#(z, y) is assumed to be a prescribed functiorzand
y. This formula forsh leads to the useful resgtt

h(z,y,t) =

(32)

/ dadb Fh = — / dadb FhV-(6%) = / dadb%V(hQF) - 6%, (33)

that may be derived by transforming the left hand side into an integral with respketgointegrating by parts, and transforming
back to an integral with respectdadb. The extra factors of arise becauséadb = hdxdy from the definition of: as a Jacobian
in (32).



Taking variations of the action for the shallow water Lagrangian (31) using these formulas gives

0%x 0%y Jdy Oz oh OB
ox oy 1 9 1 Oz Jy
+ 2VB (anT Qm87> gVB + 3V <h < 59+ Q- Qﬂ”&))} 5x,

from which we may read off the obliquely rotating shallow water equations (19), on recalling.tkad; +u-V is a Lagrangian
time derivative following a fluid particle. The Green—Nagdhi analog may be writtén as

1_[.,0% (1, 1 10%h 2B
VI. CHANGING GAUGE IN THE CORIOLIS FORCE

More generally, the Coriolis force (but not the centrifugal force) may be included in Hamilton’s principle by replabing
u + R, whereR is any vector potential for the angular velocity satisfyNigcR = 2£2.%° This includesR = Q xx as a special
case whef2 is constant. The kinetic energy in the Lagrangian then becomes

1 1
5/dV|u+R|2‘—|m2:/dV§|u|2‘+u-R, (36)

where the second term leads to the Coriolis force. An equivalent expreg&ion occurs in the Lagrangian for a particle with
chargey in the magnetic field given bB = V x A in terms of a magnetic vector potenti&l?® The Lorentz forcg B x u exerted
on the particle is mathematically equivalent to the Coriolis force,ardR is equivalent to the canonical momentuim + g A
for a charged particle with mass.°

We may replac® by R’ = R + V for any scalar field» while still satisfyingV xR = VxR’ = 2Q. We call this a change
of gauge, by analogy with equivalent transformations of magnetic vector potentials Fsimalg appears within the integral

/ dVu-R, (37)
1%

a change of gauge froRR to R + V¢ in (36) changes the Lagrangian by

sz/qu~V<p:/ dS ¢u - n, (38)
v av

becausé/-u = 0. In most three dimensional calculations the fluid velocity is supposed to either decay at infinity, or to satisfy
no flux (u - n = 0) boundary conditions on rigid boundaries. In both cases the surface integral in (38) vanishes.

However, when applied to a fluid layer with a free surface, the surface integral in (38) turns into an integral over the free
surface,

oh

Eso:/ ngou-nz/dwdyip(m,y,h(%yyt))
oV

using the free surface condition thigt +u- Vh = u, onz = h(z,y, t). The surface integral over the bottom vanishes because
u - n = (, even with variable topography, and we assume eithenthat = 0 on horizontal boundaries, or that the flow decays
at infinity. Defining a second functiob(z, y, z) by

z 0]
B2 = [ ewu)d ) = 5 (40)
0 aZ
this contribution to the Lagrangian may be rewritten as
L,=[ dSypu-n= /dwdy 0®(z,y, h(z,y,1)) = %/dwdy ®(z,y, h(z,y,t)). (41)
v

Being a total time derivative, this term leaves the action unchanged, and thus the equations of motion obtained from Hamilton’s
principle unchanged. In other words, all choicesokatisfyingV xR = 2€2 lead to the same equations of motion. There is

no analog of the charge conservation law one deduces from requiring invariance under changes of gauge for magnetic vector
potentials.
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The manipulation leading to the two dimensional Lagrangian in (30) above is equivalent to choosing the vector potential
R = Oxx + V(22Q, — y2Q;) = (220, — yQ., 2Q, —22Q,,0). (42)

Adding the gradient oy = z2Q, — y2{2, removes the vertical componentBf. Since we seek a two dimensional reduced
system of equations it is natural to maRepurely horizontal too. However, it is still possible to make further changes of gauge
while keepingR purely horizontal using a potential, (x,y) that has no: dependence. We exploit this freedom in the next
section to find conserved components of momentum.

VIl. CANONICAL MOMENTA AND GAUGE TRANSFORMATIONS

The equations of motion may also be obtained from the Euler—Lagrange equations for Hamilton’s principle,

d (6L oL
dr <(5X7—> Coox 0 (43)
which are evolution equations for the canonical momenta
0L  Ox oL Oy
Dy = oz, or —yQ. + (h+2B)Qy,, p,= 5. or +z2Q, — (h+2B)Q,. (44)
The variational derivatives are defined by
oL = /dadb — - 0x+ ;E S 0Xr. (45)
Xr

This integral with respect tdadb corresponds to using mass-weightednner product to define the variational derivatives.
Moreover, we interpret (33) to mean that, for example,

0Lsw 10 5 0Lsw 0 Lsw
5z hoz (h 5h )+ 5z In (46)
10 9 1 Ox Jy 0B Jy 0B ([ 0x y
~ hox (h ( 29" 8TQy 8TQI>> e +QZ@T +28x (87'Qy GTQI ’

where|, means the variational derivative with respect toolding/ fixed, in other words while ignoring the implicit dependence
of h onz andy via (32).

Although canonical, the momenta (44) are not conserved, in the sense of Noether’s theorem, because the Lagrangian depend
explicitly onz andy through the2, term. Moreover, they are not invariant under the changes of gauge in the vector p&ential
discussed in the last section. However, the combinatign @ndp, in the general formula for the potential vorticity that arises

from the relabeling symmetry,
_ 1 (Opy, Ops
0= (-, @7

is invariant under gauge transformations. For more details see Appendix A. The canonical momenta may also be used to
construct the conserved energy or Hamiltonian through a Legendre transform of the Lagfangian.

We may choose a gauge fBrto eliminate one spatial coordinate from the Lagrangian (as in Ref. 41). Chaesirg—xy(2,
leads to the vector potential

R’ = Qxx + V(22Q, — y2Q,) + Vo = (229, — 2yQ,, —220,,0), (48)

which is still purely horizontal, but now has no expligitdependence. The corresponding Lagrangian also has no explicit
dependence, because the Coriolis contribution becomes

' or Or dy
Lcoriolis = [ dadbQ), | —2y— h+2B Q,— =0, . 49
01/a <y67>(+)<87"87) (49)
Noether’s theorem now applies for translation invariance, igiving a conservation law for the modified canonical momentum
oL aL
/

= —2yQ, + (h+2B)Q,. 50
Similarly, a different change of gauge removesgteependence from the Lagrangian. Restoring the factbraofsing from the
mass-weighted inner product, we find that the vector

M = h(u + 2Q2xx) + h(h + 2B)Qx2 (51)

is conserved, in the sense tk@aM + V-T = 0 for some momentum flux or stress tendarbut there is no choice dR

making both components &/~ canonical simultaneously. The last terms in (50) and (51) are Cartesian approximations to the
contributions to the total angular momentum that arise from the varying perpendicular distance between the free surface and the
effective rotation axis. This connection is discussed further in Sec. XII.
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VIIl.  NONCANONICAL HAMILTONIAN FORMULATION

Many of the advantages of the above variational formulation may be retained in a Hamiltonian formulation that avoids the
introduction of particle labels. Although the canonical coordinates for an ideal fluid involve particle labels, there is a well
developed theory of noncanonical Hamiltonian systems that may be formulated entirely in Eulerian vari&bEse key
elements in this theory are the Hamiltonian functioiednd a Poisson brackét -}. Together they determine the time evolution
of any functionalF via 9,7 = {F,H}. Poisson bracket must be bilinear, antisymmetric, and satisfy the Jacobi identity
{F{G,K}} +{G.{K,F}} + {K,{F,G}} = 0for all functionalsF, G, andK.

The Poisson bracket for shallow water systems may be written in terms of a momantumd layer deptth as the spatial

integral
_ OF O0F\ . (6G/om,
(7.6} _/dxdy <(5mi’ 6h) Ji <5g/5h ’ (52)
involving the Poisson tensor
b= m;0; + 0;m; ho; (53)
! d;h 0)’

where partial derivatives act on everything to their right. Variational derivatives are now defined using the Euclidean inner
product instead of the earlier mass-weighted inner product. The evolution eqdaftioa {F,} for all functionalsF then

corresponds 314
O [mg\ _ | [0H/om,
ot < h) =i ( §H/Sh ) ' %)

Assuming suitable boundary conditions, for instance solutions that decay to a rest state of uniform depth at infinity, (52) may
be integrated by parts to obtain the antisymmetric form

B §F _06G 686G _OF §F _06G 6G _OF
{f,g}—/dxdym-(ém-vém5m~v6m)+h<~v~v).

om oh  dm oh

The integrand in (55) is the inner product of the field varialleandh with a certain Lie bracket of the variational derivatives
of F andg. This special structure, called a Lie—Poisson structure, enables the Jacobi identity for the Poisson bracket to be
established easily using results due to Morridbithe particular Lie algebra whose bracket appears in (55) is the so-called
semidirect product Lie algebra for vector fielda)and densitiesk). It is therefore not surprising that the same bracket (albeit
with differentm and /) appears in both the shallow water and the Green—Naghdi equations; without rotation, with vertical
rotation, and (as we show below) with oblique rotation.

The shallow water Hamiltonian is the spatial integral of the energy density found in (20),

(59)

1
H=3 /dxdy hlul?* + gh(h + 2B), (56)

which does not involve the rotation vect@r The necessary momentum is given by the previous canonical momenta (44),
m = hp = h(u + Q,2xx) + h(h + 2B)QXZ. (57)

The factor ofh in m = hp is due to using an Euclidean inner product, instead of the earlier mass-weighted inner product, to
define variational derivatives. This momentum also arises from integnatirig across the layer for the special two dimensional
vector potential in (42).

We show below that the combination &f from (56) andm from (57) yields the obliquely rotating shallow water equations.
Retaining just the first term in (57im = h(u + Q.2 xx), gives the traditional shallow water equations with rotation about a
vertical axist>1” while takingm = hu gives the nonrotating shallow water equations. All three systems arise from the same
Hamiltonian and Poisson bracket. Further modifications to the Hamiltonian and momentum give the nonrotating Green—Naghdi
equations using the same Poisson bratket.
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A. Equations of motion

The variational derivatives of the Hamiltonian (56) expressed as a functionalasfdh are

SH SH oM

i’u/’

=g(h+ B) — 1(u2 +v%) + Q. (yu — 2v) + 2(h + B) (v, — ufly). (58)

dmyg Smy, AT 2

The continuity equation follows directly from (54), while the momentum part of (54) may be rewrittén as
oH oH oH oH oH
The first two terms are already in conservation form, while the final term simplifies to

oH Vm; + %Vh =V <;h(u2 +v?) + %gh(h + 23)) — h(g + 209, — 2uQ,)VB + hQ, (uxz). (60)

5mj

The gradient term on the right hand side of (60) is the gradient of the Hamiltonian (or energy) défmityhich = [ Hdzdy.
Equation (59) thus becomes

Oymg+0y <umm+;gh2+h2(v9m—u9y)> +0y(vmy) = Q hu—h(g+2vQ,; —2uld, )0, B, (61a)
1
Oymy~+ 0, (umy)+0, <vmy—|—zgh2—|—h2(vQ$—qu)> =—Q.hv—h(g+2vQ, —2uQ,)0, B, (61b)

which coincide with the obliquely rotating shallow water equations. The terms on the right hand side of (61) are those that break
translation invariance by involving andy, either directly in the2, Coriolis term or via the prescribed topograpByz, y).
When these are absent (61) takes the conservationdatmt V- T = 0 for a stress tensar, as required by Noether’s theorem.

A related form that may be useful for numerical implementations is

1
O (hu+h*Qy)+0, (hu2+29h2+h20§2w) +08y (huv+h*vQy) = 2(Q.—Q - VB)hv—ghd, B, (62a)
O (hv+h>Q,)+0, (huv—h*ufd,) +0, <h02+;gh2—h2u9y) = -2(0, -2 - VB)hu—ghd,B. (62b)

The only terms not in conservation form are those due to variable topogr&byand the vertical componef¥, of the rotation

vector. Since these terms are already present in the traditional shallow water equations it should be straightforward to modify
existing numerical algorithms to solve the obliquely rotating shallow water equations in the form (62). However, the stress tensor
in (62) is not symmetric, since the off-diagonal terms fane + h*vQ), andhuv — h?uf2,. Angular momentum about an axis
normal to thexy plane is not conserved by the obliquely rotating shallow water equations, because the horizontal projection
of the rotation vectof? defines a preferred direction in the plane. This would complicate a lattice Boltzmann formulation
analogous to Salmorf%formulation of the traditional shallow water equations.

B. Casimirs and potential vorticity conservation

In two dimensions, the evolution equations (54) imply the conservation equatichu - V¢ = 0 for a potential vorticityy
given by

q:%Q-VX (?) (63)

With m given by (57) above, this definition of the potential vorticity coincides with the one obtained previously from the particle
relabeling symmetry. In terms of the Poisson bracket (55), material conservatios afconsequence of the existence of the
so-called Casimir functionals

C= /dxdyhc(q). (64)

For any functionc(g), the corresponding Casimir functional satisfle5,C} = 0 for every functionalF. In particularC, =
{C, H} = 0, so the Casimir functionals provide an infinite family of conserved integrajs of
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The Ble of the potential vorticity may be further highlighted by making a change of variablesffidmv = m/h. Using
the variational chain rule

§H _ §H SH| _OH H

v "mt Ghlv ™ ohlm TV om (65)
andéH/ém = u, (54) transforms into
Oth +V-(hu) = 0, (66a)
oH
8,5V—11><VXV+V E = 0. (66b)
The quantity whose gradient appears in (66b) is the Bernoulli function,
oH 1
il = §|u|2—|—g(h—|—B)+h(va —ufdy), (67)

where the last term arises from the horizontal part of the rotation vector. Equation (66b) thus coincides with the form (19) given
previously, after rewriting: - Vu = —uxw + V(3|u|?) and eliminatingd, » using the continuity equation. Equation (66b) also
leads immediately to a Kelvin circulation theorem for the obliquely rotating shallow water equations,

d
% .dl = 68
i ¥ v-dl =0, (68)

for any closed curv€’ moving with the fluid velocityu. This is the integral form of the potential vorticity conservation law.
The cross products in (66b) may be simplified to give

2 lw] =2 0 Oy | | 0H/bvy | - (69)
h 0 0y 0 YH/Sh

This corresponds to rewriting the Poisson bracket (52) and Hamiltonian (56) in tewnarafh instead ofm andh. For the
traditional shallow water equationsmay be replaced by (as in Refs. 13,17) becauaeandv only differ by 2 xx. This cannot
be done in the obliquely rotating case due to the e¥tra2 B) term in the relation betweamandv = u+Qxx+(h+2B)Q2xZ.

IX. EULER-POINCAR E FORMULATION

The Euler—Poincér formulatior® returns to Hamilton’s variational principle for the action as the key component, instead
of the Hamiltonian and Poisson bracket introduced in the noncanonical Hamiltonian formulation above. However, the Euler—
Poincaé formulation retains the use of Eulerian variables, avoiding the particle labels introduced in the previous variational
principle, by minimising the action only with respect to a restricted class of variations. These variations are generated by a Lie
algebral-, -] according tddu = £ + [, u], where is an arbitrary vector field vanishing at the endpoints ofithetegration in
the action. In typical fluid applications, the Lie algebra is the same Lie algebra of vector fields whose bracket is contracted with
m in the first term in the Lie—Poisson bracket (55).

The Lagrangian coincides with the Lagrangian calculated previously, on recallinguifiat: hdxdy,

h+B
Esw+/dxdy/ dzu-R
B

L

= Lsw + /dxdy h(zuyQ, — yu,Qs) + h(h + 2B) (up Qy — uyQy), (70)
whereR is the vector potential with ne component given by (42), antkw is the nonrotating shallow water Lagrangi&n,
Low = = [ dedyh( + 2 h+ B)? 71

Changing gauge iR changes the Lagrangian by an exact time derivative, as shown in Sec. VI. The Euler-®oamsirained
variational principle then gives an equation equivalent to (66b),

3tv—u><V><V—|—V(u-v—6h> =0, wherev = 126 ™ (72)

andm andv coincide with those given previously, as in (57).
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X. CONNECTION WITH THREE DIMENSIONAL VORTICITY CONSERVATION

The conserved potential vorticitymay also be found by averaging a suitable three dimensional Ertel potential vorticity, as
found by Miles and Salmah for the Green—Naghdi equations. The Ertel potential vorticity is definéti?By*

1
Hg = ;(293 + V3><ll3) . V39, (73)

wherep is the fluid density, and any materially conserved scalar (satisfying + us - V36 = 0). If the fluid’s equation of state
is homentropic, so thaT px Vp = 0, the Ertel potential vorticity is also a materially conserved scalar.

The particle labels, b, ¢ introduced in Sec. V are materially conserved scalars by definition. For a fluid of unit density
moving in columns, as assumed in our earlier derivations, the particledabay be expressed in terms of Eulerian quantities
asc = h~!(z — B). Inserting this expression into (73) and layer-averaging, we obtain

7 / II3dz = q. (74)
B

Thus the conserved potential vorticifyof the layer-averaged equations coincides with the layer average of this particular Ertel
potential vorticity.

The same relation may be reached by a different route. Averaging the three dimensional vorticity equation for an incompress-
ible fluid, Camassa and Levermore derived the conservatiotf law

0y (hws - Vsl) + V- (huwg V3l —w (ug - Vsl — gath)) —0. (75)

Hereus is a solution of the three dimensional non-rotating Euler equations in the ddBfairy) < z < h(xz,y,t) + B(z,y),
andws = V3 Xxugs is the corresponding three dimensional vorticity. The horizontal components of these vectors are denoted by
u andw in our notation. The scalar fiellis given by
- B z,y
(= 2B

z
76
h(z,y,t) ’ (76)

which varies linearly betweefi = 0 at the lower boundary = B(z,y) and{ = 1 at the upper boundary = h(z,y,t) +
B(z,y).

Equation (75) is an exact result for solutions to the three dimensional Euler equations, and we may include the Coriolis force
by replacingws = V3xuz with wz = Vzxuz + 2Q3. However, in general the flux inside the divergence cannot be related
to other layer-averaged quantities. For the special case of approximately columnar motion in a shallow layer, we recall that
u(xs,t) = u(z,y,t) + O(5), andVxus = (0yu, — dyus)z + O(5). These estimates differ from some given previotisly
because the non-traditional part of the Coriolis force generates deviations from columnar@¢# dnstead of at(52) like
the vertical acceleration. Thus (75) becomes

01 (hws - VaC) + V-(huws - Val +0(8)) =0, (77)

while

1 h+B
w3 Vel =5 /B dz 3 (~(Vh = VB,1)- (293 4 (Opuy — Oyug)E + 0(5)) = ¢+ 0(5). (78)

In other words, while; is exactly materially conserved by our layer-averaged equations, in the underlying three dimensional
Euler equations, the averaged quaniity- Vs( is close tog, exactly conserved, and nearly materially conserved.

This close relation arises because the interpolating scalar(fislghrecisely the Lagrangian particle laketiefined by (29)
for a fluid moving in columns. Moreover, the quantity; - V3 is then exactly the same as the Ertel potential vorticity used by
Miles and Salmor} so equations (74) and (78) coincide for columnar motion (@ as0).

XI. LINEAR PLANE WAVES

As a first step towards investigating the properties of the obliquely rotating shallow water equations, we consider linear plane
waves superimposed on a state of rest. We recall the simplest case with no bottom topd@(apiy—= 0, no Green—Naghdi
dispersion, and choose Cartesian axes in whitheastwardy northward, and axis radially outwards,

Oh + 0y (hu) + 9, (hv) =0, (79a)
Ow + u-Vu—(2Q, — Q0 h)v + 0, (gh — hQyu) — Q,V-(hu) =0, (79b)
O + u-Vou+ (29, — Q,0,h)u+ 0y(gh — hQyu) = 0. (79c)
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FIG. 2: Frequencies of east/westward propagating waves at the equator for aspéctrati

We suppose these axes to be tangent to a sphere at the fixed laffusethat?, = 0, 0, = Q cos ¢g, andS2, = Q2 sin ¢y. We
ignore the variation of the true latitudewith they coordinate.

The dispersion relation for linear plane inertia-gravity waves, of the fotmt) = H + h'exp(i(kz + ly — wt)), in the
obliquely rotating shallow water equations may be written as

% = —chos o = \/sin2 ¢o + (K2 + L?) (1 + 3(52 cos? gb0>, (80)

where K = kRq and L = [Rq are dimensionless wavenumbers based on the deformation m&gdius ¢/(2€2) defined in

(4). The traditional shallow water dispersion relation is modified bydthes ¢, terms arising from the horizontal component
Q, = Qcos ¢ of the rotation vector. DefininK|* = K2+ L2, the Green—Naghdi version of the inertia-gravity wave dispersion
relation is

Sl <1 + 162|K|2> = —éKcos bo + \/(sinz do + |K|?) (1 + 1(52|K|2) + 152 cos do|K|? (1 + 152L2>. (81)
2Q) 3 2 3 4 3

Numerical experiment8 suggest that the Green—Naghdi version might be valid even Wher= K& ~ 1/3, for which the

0 cos ¢g terms in (81) are definitely significant.

Figures 2 to 5 show the dispersion relations for inertia-gravity waves under the traditional shallow water equations, the oblique
shallow water equations, the oblique Green—Naghdi equations, and finally the exact finite depth dispersion relation obtained in
Appendix B. The four figures show east/westward and northeast/southwestward propagating waves at the equator, and at latitude
45°. All four figures taked = 1/5, which is somewhat larger than the oceanic range < § < 0.14 estimated previously, but
helps to show the effects of oblique rotation in these figures. This value is not unreasonable for the solar tachocline, where the
deformation radius may be as small as four layer deffFs.

As in the traditional shallow water equations, there is also a third type of modewwith 0, corresponding to steady
geostrophic flow. In these modes the velocity perturbatidrendv’ are nondivergent, and related to the height perturbdtion

by
u —iL 4 o 1K h
VgH  2singg —iéLcosgg H  /gH 2sin¢g —iéLcos¢g H'
Again, thed L cos ¢ terms represent modifications to the traditional shallow water equations due to the horizontal component of
Q. They cause a phase shift between the velocity and height perturbations compared with the traditional shallow water equations,

as well as a reduction in the relative amplitude of the velocity perturbations. In particular, the streamfunction for the geostrophic
flow is no longer simply proportional to the local height, due to the wavenuthlopendence of the denominators in (82)

(82)
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FIG. 4: Frequencies of east/westward propagating waves at latitifder aspect ratid = 0.2.

Xll.  TRAPPED WAVES ON AN EQUATORIAL 3-PLANE

The analysis in the previous section applies precisely on the equator of a spherical planet. However, even baroclinic ocean
waves will typically extend far enough in latitude to be affected by the variation with latitude of the the vertical component
Q2 sin ¢ of the rotation vector. This variation may be included in a Cartesian model using an approximation called the equatorial
B-plane®--52 Our treatment follows chapter 11 of Gifl.

In the usual GFD axes, with eastwardy northward, and radially outwards, the rotation vect®r has componentQ, = 0,
Qy = Q = |QEarn|, while ., = 13y is proportional to the latitudg. This approximation captures the first order effects of
varying latitude, by linearising the earlier relatidng = € cos ¢ and(2, = {2sin ¢ for small¢. It may be usefully applied within
30° of the equatof® A horizontally varyingQ was explicitly permitted in our earlier derivation by averaging. Alternatively, the
equatorialg-plane equations may be derived from the variational principle in Sec. V using the vector pdiertigl2Qz —
18y%,0,0). This vector potential has ne dependence, so applying Noether’s theorem to the two dimensional vertically-
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FIG. 5: Frequencies of northeast/southwestward propagating waves at ldfitufte aspect ratid = 0.2.

averaged Lagrangian gives the conserved zonal momentum
1
my =h (u — iﬁyz +Q(h+ 23)) . (83)

The last term in this expression modifies the usual zonal momeéhfonthe traditional shallow water equations on an equatorial
G-plane. It represents the contribution due to variations in the perpendicular distance between the top of the fluid layer and the
rotation axis.

Linearising the obliquely rotating shallow water equations, with, y,t) = H + h’(z, y, t) and so forth as before, we obtain

uy — Byv’ + ghl, — 2HQu,, — HQv,, = 0, (84a)
vy + Byu’ + ghy, — HQu, = 0, (84b)
hi + H(uj, +v,) = 0. (84c)

The terms involvingH §2 arise from the horizontal part of the rotation vector, and are not present in the traditional shallow water
equations.

Motivated by the dispersion relations in Gifl,we nondimensionalise using the gravity wave speed +/gH, and the
equatorial deformation radiug.q = +/¢/203, to obtain the system

- 1
Gy — Sy +hy =6 <u + 2@,) = 0, (85a)
|
By + Syt + hy — iaay =0, (85b)
hi + iy + 0, = 0, (85c)

for the dimensionless perturbatiohsa, ands. The remaining parametér= 2QH /c is the reduced Lamb parameter defined
previously in (3). Note thad is not the aspect ratio based on the equatorial deformation rddiyswhich is the geometrical
mean of the earlier deformation radig and the planetary radius. )
We seek waves that are harmonic in longitude and time, of the fdnmy, ¢) = h(y) exp(i(kz — wt)) etc. Equations (85)

may then be combined into a single ordinary differential equatiot foy,

d*o 5 ) 1 w? —k? — (1/2)k/w + §(kw + 1/4)

@_(Ay —B)’U, A_m7 B= 1+62/4 ) (86)
the same ordinary differential equation that governs a quantum harmonic oscillator. Solutions that deeaytas are of the
form

= Ho () exp(—€2/2), &=yA'/", (87)

>
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FIG. 6: Dispersion relation for trapped waves on an equatg@ralane, showing the inertia-gravity, Rossby, Yanai, and Kelvin waves.

whereH,, (£) is the Hermite polynomial of degree These solutions represent trapped waves localised within a few deformation
radii of the equatory = 0). The dispersion relation id~*/2B = 2n + 1 forn = 0, 1,2, .. ., which becomes a cubic equation
for w,

w? —k? - % + 6(kw +1/4) = \/1+62/4 (n+ ;) ,forn=0,1,2,... (88)
The only deviation from the standard treatnf@mirises from the terms inA and B.

Figure 6 shows the dispersion relation (88) for the first few Rossby and inertia-gravity wavesl, 2, 3, 4, for both the
traditional shallow water equation§ & 0) and the obliquely rotating shallow water equations in a regime relevant to slow
baroclinic ocean waves (= 0.14). The east/west asymmetry in the inertia-gravity waves caused by the horizontal component of
the rotation vector is visible for this physically plausible vadue 0.14. By contrast, the Rossby wave branch is hardly affected,
as shown by the enlarged view in figure 7, even for the much larger vatu6.6 of the reduced Lamb parameter. This agrees
with Kasahara’é results for normal modes in a stratified atmosphere: that “fast” or short wavelength inertia-gravity waves are
more sensitive to the horizontal component of the rotation vector than longer and slower waves.

Figure 6 also shows two special cases. The Yanai wave, corresponding @in the dispersion relation, joins the Rossby
and inertia-gravity wave branches. It resembles a Rossby wave o010, and an inertia-gravity wave fdr > 0. The other
special case is the equatorial Kelvin wave, distinguished by having no meridional velocity®). Its frequency is given
by w = (/14 62/4 — §/2)k, which corresponds ta = —1 in the dispersion relation (88). The Kelvin wave thus remains
nondispersive, as under the traditional approximation, but its wavespeed is shiftgd bgway from the non-rotating gravity
wave speed. The geostrophic balance that usually holds in the zgnditéction is also modified by th€(4) term in (85c).

Finally, the Kelvin waves’ meridionaly structure is given by

o =oe [ (=aaveerioon)|

4

hly) = exp 1= (5/2)/1+ 02/4+ 62 /4 (69)

This differs slightly from thesxp[—2y2(1 + 62/4)~1/2] structure of the other waves given by (87), although the factors multi-

plying 4> agree when expanded@(5?). This slight difference in meridional structure may affect weakly nonlinear interactions
between the Kelvin wave and other waves.



19

0.25

0.2}

0.15¢

w=w R /c
*ed

0.05}

FIG. 7: Enlarged view of the Rossby wave branch in figure 6. The uppermost curve is the Yanai wave.

XIlll.  CONCLUSION

We have derived an extended set of shallow water equations that describe a thin inviscid fluid layer above fixed topography in a
frame rotating about an arbitrary axis. These equations have been derived from a variational principle, as well as from averaging
the three dimensional Euler equations, and so share the energy, momentum, and potential vorticity conservation properties of the
traditional shallow water equations with a vertical rotation axis. In particular, we have obtained a second topographic term that
corrects the equations given previously by Bazdersoal 2° to restore the expected conservation properties in the presence of
bottom topography.

Our two derivations explicitly integrate out the third dimension by assuming predominantly columnar motion. We have
integrated the three dimensional equations of motion directly, and also integrated the three dimensional Lagrangian in Hamilton’s
principle. The derivation from a Lagrangian introduces a vector potdRtfal the rotation vector, which is only determined up
to the gradient of an arbitrary scalar gauge. While is is straightforward to show gauge-invariance for three dimensional fluids
that either extend to infinity or terminate at rigid boundaries, we have also shown gauge-invariance for flows with free surfaces.
Changing the gauge then changes the Lagrangian by an integral over the free surface. We have shown that this integral is an
exact time derivative, and thus makes no contribution to the action.

The derivation from a Lagrangian motivates a choice of gauge for wRitlas no vertical component. Using this gauge, the
obliquely rotating shallow water equations may be formulated as a noncanonical Hamiltonian system in Eulerian variables using
the same Hamiltonian and Lie—Poisson bracket as the nonrotating and vertically rotating (traditional) shallow water equations,
but with a modified momentum and potential vorticity. This is the same relation that holds between the noncanonical Hamilto-
nian formulations of the quasi-hydrostatic equati§ramd the hydrostatic primitive equatioWsThey share a Hamiltonian and
Poisson bracket, but require different definitions of the momentum and potential vorticity. Further study of our obliquely rotat-
ing shallow water equations may help to illuminate other properties of “deep atmosphere” equations like the quasi-hydrostatic
equations or the regional model by Tangeyal>* in comparison with the usual “shallow atmosphere” primitive equations.

These obliquely rotating equations should also be useful for studying rotating flow over topography, such as rotating hydraulic
control problems. Numerical experiments with nonrotating flows by Naeiga*® compared the one dimensional Green—
Naghdi equations with a fully two dimensional solution of the Euler equations with a free surface, and found good agreement
for obstacle height to width ratios as largeld8. In a geophysical context of a thin layer on a spherical planet, inclusion of the
non-hydrostatic pressure gradient due to vertical acceleration logically requires inclusion of the formally larger contribution from
the horizontal part of the rotation vector as well. Our obliquely rotating Green—Naghdi equations capture the first corrections
to columnar motion from both effects, and linear stability analyses (both our section XI and Kasahara’s tfeafttherthree-
dimensional stratified equations) suggest that both effects may have comparable magnitudes for realistic layer depths, even
though one is formally asymptotically smaller than the other.

In fact, the effects arising from non-traditional rotation are all quite subtle, and a full investigation will require numerical
experiments analogous to those performed by Poleaal *° for the traditional shallow water equations. Since the structure
of the two equation sets is very similar, it should be straightforward to modify existing numerical algorithms for the traditional
shallow water equations. The Hamiltonian structure and potential vorticity conservation properties are the same, and could
be exploited by particle methods, while hyperbolic approaches based primarily on the conservation form of the shallow water
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equations could be applied to the form (62). The latter form requires the same topographic forcing term as the usual shallow
water equations, and just repladesby Q2. — Q- VB in the Coriolis force.

The traditional shallow water equations are just the starting point for families of more complicated models using multiple
layers, or including additional effects like horizontal temperature gradients or magnetic fields. Many oceanic phenomena outside
the tropics may be captured by two layer shallow water motdelsithin the tropics thermodynamic effects like solar heating
or fresh water forcing become important, but these effects may be included by allowing the fluid density in each layer to vary
horizontally?1:53-56Since the rotation vector is nearly horizontal in the tropics, we might expect the effects of oblique rotation to
be particularly significant for these models. Moreover, thermodynamic forcing has been identified previously as mechanism that
may circumvent the usual argument based on the ineqU&lity< N that supports the use of the traditional approximation in
a stratified fluid with buoyancy or Brunt-aikala frequencyN. Several authors have used the inertialess limit of the traditional
shallow water equations to study transport of fluid across the eqfatdThey postulated an Ekman friction to balance the
along-stream component of the pressure gradient. The effects of non-traditional rotation included in our equations offer an
alternative to Ekman friction that is at least comparable in magnitude. Shallow water magnetohydrodynamics (SWMHD) is
another extension of the shallow water equations designed to model the solar tactfd€liftee relevant aspect ratio may not
be particularly small, especially when based on the deformation radius, so the effects of oblique rotation should be investigated.
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APPENDIX A: PARTICLE RELABELING SYMMETRY

In this appendix we extend the usual particle relabeling symmetry arguments to derive a general expression for the conserved
potential vorticity in terms of the canonical momentum obtained from a Lagrangian. These ideas have a lorghistofias
summarised by Padhye and Morri§dand Miller?®. Our approach and notation follows section 7.2 of Salthoand applies
to all Lagrangians in which the particle labels= (a, b) only appear through the height fielddefined by

d(a,b)
A(z,y)

According to Hamilton’s principle, the evolution equations are such as to make the action stationary. In particular, the action
must be stationary under infinitesimal relabelings of the form

h(z,y,t) =

(A1)

a—a =a+da, (A2)

providedda vanishes at the endpoints of the integratiom.itWe consider relabelings that leave the heiglhihchanged. Using
the chain rule for Jacobians,

aa', )  9d, V) o(x,y)

= =1 A3
8a,b) ~ Bwy) Bab) (A9
we find that
dda Db
90 "o (A4)
on neglecting terms aP(6a?). Height-preserving infinitesimal relabelings are thus of the form
§a = V6 = (=0, Da) 59, (A5)
for some scalafv(a, b, 7) analogous to a streamfunction.
Puttinga = a’ — da in the change of variables formula
0x 0x 0x Oa 0x 0b
orle ~ 07 la T Badrle T B o7l (A6)
the variation ink = 2= due to relabeling is
. 0x ox 0x ddéa  Ox 06b
5"—3”/‘57;‘(3@&*%57)- (A7)
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The corresponding variation in the Lagrangian is purely kinetic, sinsaunchanged,

3581' 65aj 5,6
— . A8
da; o’ T b (A8)

oL = /dadbpq;&bi = —/dadbp,;

The variational derivative defining; is taken using the natural mass-weighted inner product for integrals with resp&ethto
instead ofdxzdy. Integrating by parts on and using (A5), we obtain

0 Ox;\ 00y 0O 81‘1 85¢
Hamilton’s principle, £ = 0 under relabeling, thus implies material conservatioyy,0r = 0, of the quantityy given by
0 o0x; 0 ox;
q—aa(piab> 6b< "Da ) (A10)
This expression may be rewritten as
_ Op; Ox; _ Op; Ox; N 5(py»y) O(pe,x)
“Ba b b oa  dab)  oab) (ALD)
Using the chain rule for Jacobians, we finally obtain
INz,y) (OWwy.y) | OPa, ) dpy  Ops
_ : — 2 (DLy 9Pz Al12
1= Ba) (6‘(x,y) By 0x oy (A12)

This is a general expression for the conserved potential vorticity in terms of the Eulerian spatial derivatives of the canonical
momentgp, andp, (defined as variational derivatives of the Lagrangian using the mass-weighted inner product).

APPENDIX B: DISPERSION RELATION FOR A LAYER OF FINITE DEPTH

Most treatments of linear waves on water of finite depth assume that the flow remains irrotational, because the only source of
vorticity is a viscous boundary layer at a rigid lower boundary. However, initially irrotational flow in a rotating frame generally
does not remain irrotational because the Coriolis term provides another source of vortic{B2 xu) = —4€Q - Vu # 0. We
therefore work with the velocity vectar = (u, v, w) and modified pressugg” = p + gz instead of a velocity potential.

The algebra becomes far simpler in axes aligned with the wavevector. We therefore seek solutions of ifie.form¢) =
U(z)exp(i(kx — wt)) with noy dependence, and similarly for the other variahles), andp*. We must then allow arbitrary
orientations of the rotation vect®? to avoid loss of generality. The relevant linearized form of (6) is thus

ou+2Qxu+Vp =0, Vu=0. (B1)

The horizontal momentum and continuity equations may be solved for

©dW 2 (. Q, dW
U(z) = o V(z)= " (szW(z) 0 >
i 4(22 2 . 2
leaving the vertical momentum equation to determine the vertical structure,
49,9, \/w2 402 +97)
W (z) = exp (mz W24Q§) sinh (&zw — a0 ) . (B3)

An arbitrary constant has been chosen to satisfy the lower boundary conditian théton z = 0. The resulting velocity field
is rotational, withV xu # 0 as expected.

The linearized boundary conditions at the free surfacehare w andp* = gh (corresponding to the true pressyre= 0),
and they may be applied at the unperturbed free suefaedd to sufficient accuracy. For time harmonic waves they simplify to
—iwp* = gw onz = H. The resulting eigenvalue problem fidf (2) gives the dispersion relation in implicit form as

T _4(02 £ Q2
wy/w? —4(02 +Q2) = (gk — 2w Q) tanh (me Ve 5 (462+ Z)> . (B4)
w® = z
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The easiest way to transform this dispersion relation back into the standard GFD axes is to rewrite it in terms of the vectors
Q, = (2,,9Q,) andk = (k,0). Multiplying (B4) through by|k|, we obtain

2 —402)[k[2 — 4(Q; - k)2
wy/(@? — 402)[k2 — 4(Q; - k)? = (g]k|* — 2w |, xk|) tanh (Hw Vi 3)‘ LQQ SLEL) > ,  (BS)
we = z

in terms of the invariant quantitie8, |2, |k|?, k - 5, and|kx €25 |. This becomes

wy/ (w2 —492) (k2 + 12) + 4Q2k2 cos? ¢ =

2, 2 . V(W2 —402) (k2 + 12) + 4Q2k2 cos? ¢ (B6)
(9(K® +1%) = 200k cos ¢) tanh (H” W — 40 sin” ¢ |

in the standard GFD axes with, = 0, Q, = Qcos ¢, 2, = Qsin ¢, and horizontal wavevectdr = (k, ). This expression fur-
ther simplifies in the dimensionless variables used in Section X| Witk kR4, L = R4, WhereRy is the Rossby deformation
radius,wo = w/(292), andé = H/Rq,

(B7)

dao+/(0?2 — 1)|K|2 + K2 cos?
@0/ (@2 — 1)|K[? + K2 cos? ¢ = (|K|* — K&d cos ¢) tanh< @/ (@ — 1)[K[? + K2 cos ¢>.
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