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Convergence of a three-dimensional

quantum lattice Boltzmann scheme

towards solutions of the Dirac equation

By Denis Lapitski and Paul J. Dellar

OCIAM, Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK

We investigate the convergence properties of a three-dimensional quantum lat-
tice Boltzmann scheme for the Dirac equation. These schemes were constructed as
discretisations of the Dirac equation based on operator splitting, but their output
has previously only been compared against solutions of the Schrödinger equation.
The Schrödinger equation arises as the non-relativistic limit of the Dirac equa-
tion, describing solutions that vary slowly compared to the Compton frequency.
We demonstrate first-order convergence towards solutions of the Dirac equation
obtained by an independent numerical method based on fast Fourier transforms
and matrix exponentiation.
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1. Introduction

The lattice Boltzmann approach to computational hydrodynamics relies on the
Navier–Stokes equations describing slowly varying solutions of the Boltzmann equa-
tion. The same property holds when the continuous velocity space of standard ki-
netic theory is truncated to obtain a discrete Boltzmann equation, which we write
as (Chen & Doolen, 1998; Succi, 2001; Benzi et al., 1992)

(∂t + ξi · ∇)fi =
n∑

j=0

Ωij

(
fj − f

(0)
j

)
, (1.1)

for i = 0, . . . , n. The distribution functions fi propagate in the directions given by
the discrete velocities ξi, and relax towards their equilibrium values f (0)

i through
the action of the collision matrix Ωij .

The quantum lattice Boltzmann (QLB) schemes introduced by Succi & Benzi
(1993) exploit the structural similarities between the discrete Boltzmann equation
and the Dirac equation of quantum electrodynamics (Berestetskii et al., 1982).
Both are linear, symmetric hyperbolic systems with algebraic source terms, so nu-
merical algorithms for the Dirac equation may be obtained by applying the same
techniques that lead from the discrete Boltzmann equation to lattice Boltzmann
schemes for hydrodynamics (see Succi, 1996, 2001; Palpacelli & Succi, 2007).QLB
schemes may also be interpreted as cellular automata that evolve probability am-
plitudes (qbits) rather than bits (Bialynicki-Birula, 1994; Meyer, 1996). Palpacelli
& Succi (2008) have surveyed recent applications of QLB schemes to simulate the
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Schrödinger equation of non-relativistic quantum mechanics. The Schrödinger equa-
tion describes slowly varying solutions of the Dirac equation, in close analogy with
the derivation of the Navier–Stokes equations as describing slowly varying solutions
of the Boltzmann equation. However, attention has not previously been paid to the
properties of QLB schemes for computing solutions to the Dirac equation itself.

2. The Dirac equation

The Dirac equation offers a quantum mechanical description of an electron that is
compatible with special relativity (Berestetskii et al., 1982). Its standard form is

(∂t + cα · ∇)ψ = −iωcβ ψ + i g ψ, (2.1)

where c is the light speed, ~ is the reduced Planck’s constant, and ωc = mc2/~ is
the Compton frequency for a particle of mass m. The wavefunction ψ is a column
vector with 4 components, β is a 4×4 matrix, and α = (αx, αy, αz) is a collection of
three 4×4 matrices, so that α ·∇ = αx∂x +αy∂y +αz∂z. The last term couples the
wavefunction to an applied scalar potential V via the coefficient g = qV/~, where
q > 0 is the modulus of the charge on an electron. This sign convention was used
in previous QLB schemes, but it differs from that in Berestetskii et al. (1982).

The 4× 4 matrices αi and β may be written in block form as

αi =
(

0 σi

σi 0

)
, β =

(
I 0
0 −I

)
, (2.2)

where I is the 2×2 identity matrix. The off-diagonal blocks are Pauli spin matrices,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.3)

that satisfy the well-known commutation relations (Berestetskii et al., 1982)

σiσj − σjσi = 2i εijkσ
k, (2.4)

where εijk is the alternating Levi-Civita tensor. The α matrices are all Hermitian,
and hence diagonalisable, but the commutators of their non-zero blocks do not
vanish. There is thus no basis in which the α matrices are simultaneously diagonal.

Writing the wavefunction as ψ =
(
φ+

1 , φ
+
2 , φ

−
1 , φ

−
2

)T
, the ± superscripts corre-

spond to components with positive and negative energies. For a free particle these
oscillate in proportion to exp(∓iωct) in the long-wave limit. The subscripts 1 and
2 label the two different spin states. To derive the Schrödinger equation one writes
ψ =

(
Φ+

1 ,Φ
+
2 ,Φ

−
1 ,Φ

−
2

)T
exp(−iωct) to transform away the rest energy of the +

states, assumes ∂tΦ−1,2 ¿ 2iωcΦ−1,2, equivalent to a non-relativistic limit, and sub-
stitutes the resulting adiabatic approximations for Φ−1,2 into the evolution equations
for Φ+

1,2. Palpacelli & Succi (2008) give a derivation in this notation.

3. Quantum lattice Boltzmann schemes

The Dirac and discrete Boltzmann equations are both linear, symmetric, hyper-
bolic systems with algebraic source terms. However, the discrete Boltzmann equa-
tion is highly unusual among multi-dimensional hyperbolic systems in possess-
ing one-dimensional characteristic curves of the form (x, t) = (x0 + sξi, t0 + s),
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as parametrized by s. All one may expect in general is the existence of three-
dimensional characteristic surfaces in four-dimensional (x, t) space (Whitham, 1974).

The three α matrices are not simultaneously diagonalisable, so the characteris-
tics of the Dirac equation are indeed three-dimensional surfaces, the light cones of
special relativity. Discontinuities in the initial conditions are confined to propagat-
ing along these surfaces, but there are no one-dimensional characteristic curves to
integrate along. The approach that leads from the discrete Boltzmann equation to
a lattice Boltzmann scheme (as in He et al., 1998) thus cannot be employed.

Instead, multi-dimensional QLB schemes use operator splitting to approximate
solutions to the three-dimensional Dirac equation using solutions of one-dimensional
Dirac equations in which spatial dependences in the other two directions are tem-
porarily neglected. For instance, neglecting dependence on y and z leads to

(∂t + c αx∂x)ψ = − 1
3 iωcβ ψ + 1

3 i g ψ. (3.1)

The factor of 1/3 on the right hand side arises from dividing the algebraic terms
into three equal parts, one associated with each spatial direction (Palpacelli &
Succi, 2007). Each of these one-dimensional Dirac equations does have characteristic
curves, since the α matrices are Hermitian and thus diagonalisable. Equation (3.1)
and its analogues in y and z may thus be evolved forward in time using the one-
dimensional QLB algorithm described by Succi & Benzi (1993) and Succi (1996).
It is convenient to choose units in which c = 1 and ~ = 1, so ∆x = ∆t and ωc = m.

Existing QLB schemes begin with the Majorana form of the Dirac equation (see
Berestetskii et al., 1982) but the same approach may be applied to the standard
form (2.1) in which the algebraic terms are diagonal. The only disadvantage is that
αy must be diagonalised by a complex matrix. The two approaches based on the
Majorana and standard forms agree to within numerical round-off errors.

The three α matrices in the standard form (2.1) may be diagonalised as

X†αxX = Y †αyY = Z†αzZ = β, (3.2)

where † denotes the Hermitian transpose, by the three unitary matrices

X =
1√
2




1 0 −1 0
0 1 0 −1
0 1 0 1
1 0 1 0


, Y =

1√
2




0 i 0 1
−i 0 i 0
−1 0 −1 0
0 −1 0 −i


, Z =

1√
2




1 0 0 −1
0 −1 1 0
1 0 0 1
0 1 1 0


 .

(3.3)
Thus the streaming step in x consists of multiplying ψ byX†, streaming ψ̂ = X†ψ in
the x directions by±∆x, and finally multiplying ψ̂ byX to undo the transformation.
The first QLB schemes suffered from numerical artifacts due to applying the X
and X† matrices in the wrong order (see Dellar et al., 2010). We also use operator
splitting to separate the spatial derivatives from the algebraic terms, which are
diagonal in the standard representation. The + components are

∂tφ
+
1,2 = 1

3 i (g −m)φ+
1,2, (3.4)

which we discretise using the Crank–Nicolson scheme to obtain

φ+
1,2(t+ ∆t)− φ+

1,2(t)
∆t

= 1
6 i (g −m)

(
φ+

1,2(t+ ∆t) + φ+
1,2(t)

)
. (3.5)
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The solution, and its analogue for φ−1,2(t+ ∆t), may be expressed in the manifestly
unitary form

φ±1,2(t+ ∆t) = φ±1,2(t)
1 + i ∆t(g ∓m)/6
1− i∆t(g ∓m)/6

. (3.6)

Writing the transformed post-collisional wavefunction as ψ̂ = (φ̂+
1 , φ̂

+
2 , φ̂

−
1 , φ̂

−
2 )T,

the QLB step for colliding and streaming in x may be written as

ψ(x, t+∆t) = X

(
φ̂+

1,2(x−∆t, t)
φ̂−1,2(x+ ∆t, t)

)
, where ψ̂(x, t) = X†

(
φ+

1,2(x, t+ ∆t)
φ−1,2(x, t+ ∆t)

)
. (3.7)

The full QLB scheme combines this step with analogous collision and streaming
steps in the y and z directions, as diagonalised by the Y and Z matrices.

4. Free particle

We apply the QLB scheme described above to initial conditions in which the positive
energy, spin-up component φ+

1 is a spherically symmetric Gaussian wavepacket with
spread ∆0, as in Palpacelli & Succi (2007),

φ+
1 (x, y, z, t) =

(
2π∆2

0

)−3/4
exp

(
−x

2 + y2 + z2

4∆2
0

)
. (4.1)

The other three components φ+
2 and φ−1,2 are initially set to zero. We study the

dispersion of the wavepacket over time, as measured by the spread ∆ defined by

∆ =
(∫

1
3 |x|2|φ+

1 |2 dV
)1/2

/
(∫ |φ+

1 |2 dV
)1/2

. (4.2)

We approximate these integrals using the trapezium rule, which is exponentially
accurate for equally spaced points in a domain with periodic boundary conditions.

According to the Schrödinger equation, the spread of this wavepacket grows as

∆S(t) =
(

∆2
0 +

~2t2

4m2∆2
0

)1/2

. (4.3)

Figure 1(a) shows the measured spread for a free particle with m = 0.35 and
∆0 = 14 in a cube with side length ` = 200 and periodic boundary conditions. All
these quantities are expressed in natural units with c = 1 and ~ = 1. The cube was
discretised using N3 points for N = 128, 256, 512, 1024. The computed spreads on
the different grids all follow the general trend of the Schrödinger solution ∆S , but
they are all subject to superimposed high frequency oscillations. Similar oscillations
were seen in one-dimensional computations by Valdivieso & Muñoz (2009).

Figure 1(b) shows the differences between the measured spreads and the spread
∆S predicted by the Schrödinger equation. Also shown is the spread ∆D for a
highly accurate numerical solution to the Dirac equation, computed as described
in the next subsection. High frequency oscillations are also present in ∆D. These
oscillations, at frequencies comparable to the Compton frequency, are an intrinsic
feature of the Dirac equation as a relativistic theory that accounts for a particle’s
rest energy mc2 as well as kinetic energy due to its motion. Figure 2(a) shows
second-order convergence of the measured spreads towards the spread ∆D of the
reference solution. Further confirmation is given in figure 2(b), showing first-order
convergence of the four fields φ±1,2 towards the reference solution in the L2 norm.
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Figure 1. (Online version in colour.) (a) Evolution of the spread ∆ for different numbers
of gridpoints. (b) Difference between the computed ∆ and the Schrödinger solution ∆S .

(a) Reference solutions

In the absence of a potential (g = 0) the Dirac equation becomes a linear
partial differential equation with constant coefficients. It is thus amenable to Fourier
transform techniques. Substituting ψ(x, t) = ψ̃(t) exp(ik · x) into (2.1) leads to

i∂tψ̃ = Hkψ̃, (4.4)

with the 4× 4 matrix Hamiltonian Hk = mβ + α · k. The solution to (4.4) is given
by ψ̃(t) = exp(−itHk)ψ̃(0), where

exp(−i tHk) = cos(Ωt)I− (i/Ω) sin(Ωt)Hk, (4.5)

and Ω = (m2 + |k|2)1/2. Exponentially accurate numerical solutions in periodic do-
mains may be computed by expressing the initial ψ as a Fourier series, and evolving
each Fourier coefficient using (4.5). Transformations between grid-point values and
Fourier coefficients may be computed efficiently using fast Fourier transforms.

5. Particle in a harmonic potential

We consider the same initial conditions, with zero initial momentum, confined by
a harmonic potential V (x) = − 1

2mω
2
0 |x|2 under our sign convention. Setting ω0 =

1/(2m∆2
0) leads to the initial spread ∆0 of the wavepacket being preserved by

subsequent evolution under the Schrödinger equation. For this test case we consider
a cube with side length ` = 200, mass m = 0.1 and initial spread ∆0 = 14. To avoid
the convergence properties being affected by discontinuities in the gradient of V at
periodic boundaries, we approximate |x|2 by v(x)+ v(y)+ v(z), where the function
v(x) is the first 6 terms of a Fourier cosine series approximation to x2 in [−`, `].

(a) Reference solutions

A spatially varying potential couples the different Fourier modes, so exact solu-
tions cannot be computed as Fourier series. However, accurate approximations may
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Figure 2. (Online version in colour.) (a) Second order convergence of the spreads ∆ towards
the reference solution ∆D of the Dirac equation. (b) First order convergence of the moduli
of the four fields φ±1,2 towards the reference solution φ±1,2 D at t = 200.

be obtained by splitting the Hamiltonian. The free particle Hamiltonian Hk decou-
ples into one 4×4 block for each Fourier mode, as above. The coupling Hamiltonian
Hg = −g(x)I is diagonal in physical space, with a time-evolution operator given by

[exp(−i∆tHg)ψ] (x, t) = exp(i∆tg(x))ψ(x, t). (5.1)

Thus g is minus the dimensionless potential energy in our sign convention. Strang
splitting approximates the coupled evolution to second order accuracy by using

exp(−i∆tH) = exp(− 1
2 i∆tHg) exp(−i∆tHk) exp(− 1

2 i∆tHg) +O(∆t3). (5.2)

For the reference computations we used Forest & Ruth’s (1990) fourth-order accu-
rate splitting into seven steps, with an overall timestep ∆t = 1.0 and 1283 Fourier
modes. This solution was indistinguishable, for comparison purposes, from one com-
puted with ∆t = 0.25 and 2563 Fourier modes.

(b) Results

Figure 3(a) shows the evolution of the spread ∆ for the reference solution, and
for four QLB solutions on N3 grids with N = 128, 256, 512, 1024. All solutions
are in good agreement for 0 ≤ t . 75, after which the initially regular oscillations
are disrupted by negative energy states reflecting from the periodic boundaries.
The solutions appear very sensitive to small errors due to the finite resolution,
as shown by the diverging trajectories. Figure 3(b) shows similar behaviour in
the squared L2 norms of the negative-energy components φ−1,2, as normalised by
M =

∑ ||φ±1,2||2 and 2M respectively. These two components are initially related
by ||φ−2 ||2 = 2||φ−1 ||2, as expected for solutions in which φ+

1 is spherically symmetric
and ||φ+

2 || ¿ ||φ+
1 ||. Again, the numerical solutions diverge away from this relation

when t ≈ 100. However, at t = 100 we still have first-order convergence of all four
components φ±1,2 of the QLB solutions towards the reference solution, as shown in
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Figure 3. (Online version in colour.) Evolution of the (a) the spread ∆, and (b) the relative
magnitudes ||φ−µ ||/(µM) of the negative-energy components, for different grid resolutions.
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Figure 4. (Online version in colour.) Convergence of the four components φ±1,2 towards the
reference solutions at (a) t = 100 and (b) t = 400 as the number of gridpoints N increases.

figure 4(a). The rate of convergence deteriorates at later times, due to the apparent
sensitivity of the solution for t ≈ 100. The measured convergence rate at t = 400 is
only N−1/4 over the range of resolutions used, as shown in figure 4(b).

6. Conclusion

The quantum lattice Boltzmann schemes are viable numerical schemes for solv-
ing the Dirac equation, not just for recovering its non-relativistic limit. Each step
within the schemes is unitary, and at least second order accurate. However, the
overall schemes are only first order accurate due to operator splitting. We presented
numerical evidence of first order convergence towards highly accurate reference so-
lutions for all four components of the Dirac wavefunction. The oscillations seen
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in the numerical output of QLB schemes that are not present in the Schrödinger
equation are explained as relativistic effects due to the finite mass of the particle.
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