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Abstract We present a moment-based approach for implementing boundary conditions in a lattice Boltzmann formulation of
magnetohydrodynamics. Hydrodynamic quantities are represented using a discrete set of distribution functions that evolve ac-
cording to a cut-down form of Boltzmann’s equation from continuum kinetic theory. Electromagnetic quantities are represented
using a set of vector-valued distribution functions. The nonlinear partial differential equations of magnetohydrodynamics are thus
replaced by two constant-coefficient hyperbolic systems in which all nonlinearities are confined to algebraic source terms. Fur-
ther discretising these systems in space and time leads to efficient and readily parallelisable algorithms. However, the widely used
bounce-back boundary conditions place no-slip boundaries approximately half-way between grid points, with the precise posi-
tion being a function of the viscosity and resistivity. Like most lattice Boltzmann boundary conditions, bounce-back is inspired
by a discrete analogue of the diffuse and specular reflecting boundary conditions from continuum kinetic theory. Our alternative
approach using moments imposes no-slip boundary conditions precisely at grid points, as demonstrated using simulations of
Hartmann flow between two parallel planes.
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1 Introduction

The lattice Boltzmann approach to computational fluid dynamics is based on a disrete analogue of Boltzmann’s equation from
the kinetic theory of gases [4, 5, 16, 18]. The particle velocity ξ is restricted to a discrete set ξ0, . . . , ξN . The corresponding
distribution functions fi(x, t) evolve according to the discrete Boltzmann equation

∂tfi + ξi · ∇fi = −
N∑
j=0

Ωij

(
fj − f

(0)
j

)
. (1)

Hydrodynamic quantities such as the fluid density ρ, velocity u, and momentum flux Π are given by moments of the fi,

ρ =

N∑
i=0

fi, ρu =

N∑
i=0

ξifi, Π =

N∑
i=0

ξiξifi, Q =

N∑
i=0

ξiξiξifi. (2)

These sums replace the integrals over ξ in classical kinetic theory [4]. The equilibrium distributions f
(0)
j (ρ,u) and collision

matrix Ωij are chosen so that slowly varying solutions of the moment hierarchy

∂tρ+∇·(ρu) = 0, ∂t(ρu) +∇·Π = 0, ∂tΠ +∇·Q = −1

τ

(
Π −Π(0)

)
(3)

obtained from (1) satisfy the isothermal Navier–Stokes equations on timescales much longer than the timescale τ associated with
collisions. We obtain the Euler equations with constant sound speed cs by setting Π(0) = c2s ρ I + ρuu, where I is the identity
tensor. The first correction to the momentum flux is given by

Π = Π(0) − τc2s ρ
(
(∇u) + (∇u)T

)
, (4)

corresponding to a Newtonian viscous stress with dynamic viscosity µ = τc2s ρ.
The constant coefficient hyperbolic system (1) is readily discretised by integration along characteristics [12], or by splitting

into separate advection and collision steps [8], to obtain the fully discrete system [7]

f i(x+ ξi∆t, t+∆t) = f i(x, t)−∆t
N∑
j=0

Ωij

(
f j(x, t)− f

(0)
j (x, t)

)
, (5)
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Fig. 1 Sketch of the discrete velocities ξ0, . . . , ξ8 arranged on an integer lattice. Only the velocities ξ0, . . . , ξ4 shown with thicker arrows are used for
the magnetic distribution functions.

under the change of variables f i = fi +
1
2∆t

∑N
j=0 Ωij

(
fj − f

(0)
j

)
. The discrete collision matrix is Ω =

(
I+ 1

2∆tΩ
)−1

Ω.
These formulae reduce to the standard redefinition of the collision time from τ to τ+∆t/2 for the single-relaxation-time collision
operator Ωij = τ−1δij .

2 The magnetic field

Magnetohydrodynamics describes the interaction between electrically conducting fluids and magnetic fields [3, 14]. The Lorentz
force exerted by a magnetic field B may be expressed as the divergence of the Maxwell stress 1

2 |B|2 I −BB. These two terms
give an isotropic magnetic pressure and a tension directed along field lines. The Lorentz force is thus readily incorporated into
lattice Boltzmann hydrodynamics by choosing the equilibrium momentum flux to be [6]

Π(0) = c2s ρ I+ ρuu+ 1
2 |B|2 I−BB. (6)

Suitable two-dimensional equilibria (in units where cs = 1/3) are given by

f
(0)
i = wi

[
ρ
(
2− 3

2 |ξi|
2
)
+ 3ρu · ξi + 9

2 Π
(0) : ξiξi − 3

2 TrΠ
(0)

]
. (7)

The discrete velocities ξ0, . . . , ξ8 form an integer square lattice in these units, see figure 1. The corresponding weights are
w0 = 4/9, w1,2,3,4 = 1/9, and w5,6,7,8 = 1/36. The expressions (7) reduce to the standard D2Q9 equilibria [16] when B = 0.

The magnetic field evolves through Faraday’s law ∂tB + ∇×E = 0, where the electric field E is given by Ohm’s law
E + u×B = η∇×B in resistive magnetohydrodynamics. Faraday’s law cannot be derived from a kinetic equation of the form
(1), because the vector ρu evolves through the divergence of the symmetric tensor Π in (3). By contrast, ∂tB = −∇·Λ evolves
through the divergence of an antisymmetric tensor whose components Λαβ = −ϵαβγEγ are formed by contracting the electric
field with the alternating tensor.

Instead, we represent the magnetic field as B =
∑

i gi using a set of vector-valued distribution functions gi that evolve
according to the vector Boltzmann equation [6]

∂tgi + ξi · ∇gi = − 1

τm

(
gi − g

(0)
i

)
, (8)

with the equilibrium distributions
g
(0)
i = Wi

(
B− 3 ξi× (u×B)

)
. (9)

The magnetic weights are W0 = 1/3 and W1,2,3,4 = 1/6. The four diagonal velocities ξ5, . . . , ξ8 are not needed for the magnetic
distribution functions.

Slowly varying solutions of (8) obey the correct evolution equation for a magnetic field under resistive magnetohydrodynamics
[6]

∂tB = ∇×(u×B) +∇·(η∇B), (10)

with resistivity given by η = τm/3 in the so-called lattice units with |ξ1,2,3,4| = 1. Discretising (8) leads to a numerical scheme
analogous to (5) that is coupled to the hydrodynamic lattice Boltzmann equation through the macroscopic velocity and magnetic
field at grid points. The resulting numerical scheme preserves ∇·B = 0 to round-off error. It has been used in large-scale (up
to 18003 grid points) simulations of three-dimensional MHD turbulence [19, 17], and to simulate liquid metal flows in cooling
systems for nuclear reactors[15].
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Fig. 2 The boundary conditions must supply values for the incoming distributions f1, f5, f8 on the left boundary, and for f3, f6, f7 on the right
boundary.

3 Boundary conditions for Hartmann flow

We present simulations of the MHD analogue of Poiseuille flow, known as Hartmann flow, in which a uniform pressure gradient
drives a unidirectional flow along a channel spanned by an imposed uniform magnetic field. The flow stretches the imposed field
to create an additional magnetic field component along the channel, and hence a Lorentz force that resists the flow. We choose
axes with y directed along the channel, and x directed across the channel with the walls at x = ±L. Imposing no-flux and
no-slip boundary conditions corresponds to setting u = 0 on the walls. Maxwell’s equations imply continuity of the normal and
tangential components of B at the walls, so B = (B0, 0, 0) takes its external applied value [14].

Following the approach of Bennett [1, 2] we formulate boundary conditions in terms of moments of the fi. At the left-hand
boundary we must supply values for the three distributions f1, f5, f8 that propagate inwards from outside the domain, as sketched
in figure 2. This may be done by specifying values for the three moments ρux, ρuy , and Πyy ,

0 = ρux = f1 + f5 + f8 − f3 − f6 − f7, (11a)
0 = ρuy = f5 − f8 + f2 − f4 + f6 − f7, (11b)

Π(0)
yy = Πyy = f5 + f8 + f2 + f4 + f6 + f7. (11c)

These three moments are chosen because they contain three linearly independent combinations of the unknowns f1, f5, f8. The
first two conditions (11a) and (11b) impose no-flux and no-slip boundary conditions, and the third boundary condition (11c) on
the tangential stress has a more natural physical interpretation than the alternatives involving the higher moments [1, 2]. Solving
this system of three linear equations determines the incoming distributions,

f1 = f2 + f3 + f4 + 2f6 + 2f7 −Π(0)
yy , (12a)

f5 = −f2 − f6 +
1
2 Π

(0)
yy , (12b)

f8 = −f4 − f7 +
1
2 Π

(0)
yy . (12c)

For this simple flow it is sufficient to take Π
(0)
yy = c2s ρ = c2s on the boundary, since the tangential velocity and magnetic field

both vanish. The fluid density ρ is uniform, and may be set equal to unity in the initial conditions. More generally, one would
solve for ρ as part of the linear system by setting Π

(0)
yy = c2s (f0 + · · ·+ f8) in (11c)

A similar approach determines the incoming magnetic distributions g1x and g1y from the boundary conditions Bx = B0 and
By = 0,

Bx = B0 =⇒ gx1 = B0 − (gx0 + gx2 + gx3 + gx4) , (13a)
By = 0 =⇒ gy1 = − (gy0 + gy2 + gy3 + gy4) . (13b)

The same approach enables f3, f6, f7 and gx3, gy3 to be determined at the right-hand wall, and we impose periodic boundary
conditions in the y direction.

4 Numerical experiments

Figure 3 shows the results of a lattice Boltzmann computation using these boundary conditions. The flow was driven by including
an additional linear stress xF x̂ŷ into Π(0), equivalent to a uniform body force F ŷ, as in previous computations [6, 9]. The
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Fig. 3 Streamwise velocity and magnetic field, lattice Boltzmann (LB) computations versus the analytical solution for Hartmann number H = 10,
B0 = 1, and 64 points. The velocity and magnetic field both vanish up to round-off error at the endpoints.

channel was taken to be the domain |x| ≤ L = 0.5 in suitable dimensionless units, with B0 = 1 and F = 1. The resistivity
was η = 0.1 and the kinematic viscosity was ν = µ/ρ = 0.025. The lattice Boltzmann simulation shown was performed with
64 points and Mach number Ma =

√
3/50. The Mach number controls the ratio between the macroscopic fluid speed and the

particle speeds, since cs = |ξ1|/
√
3.

Incompressible Hartmann flow in fluid of unit density has the exact solution [14]

b(x) =
FL

B0

[
sinh(Hx/L)

sinh(H)
− x

L

]
, u(x) =

FL

B0

√
η

ν
coth(H)

[
1− cosh(Hx/L)

cosh(H)

]
(14)

for the streamwise (y-component) velocity and magnetic field, while the spanwise magnetic field remains uniform. The Hartmann
number H = B0L/(ην)

1/2 measures the ratio of Lorentz to viscous forces, with H = 10 for the parameters given. When H ≫ 1
the streamwise velocity is nearly uniform, and the magnetic field nearly linear, outside O(L/H)-wide boundary layers at the
walls, as shown in figure 3.

The streamwise velocity and magnetic field both vanish precisely at the end-points using moment-based boundary condi-
tions, unlike previous computations using bounce-back boundary conditions [6, 9]. Figure 4 shows the discrete ℓ2 norms of the
differences between the lattice Boltzmann (LB) and analytical solutions,

∆u =

(
1

n

n∑
i=1

|uLB(xi)− u(xi)|2
)1/2

, ∆b =

(
1

n

n∑
i=1

|bLB(xi)− b(xi)|2
)1/2

, (15)

for different numbers of grid points n. To achieve the expected second-order convergence rate with the simple linear forcing term
in the equilibrium stress it was necessary to decrease the Mach number Ma =

√
3× 2.56/n with increasing n.

5 Conclusion
Restricting the particle velocity ξ in the Boltzmann equation to a discrete set ξ0, . . . , ξN leads to a tractable system of partial
differential equations for distribution functions fi(x, t). Discretising these equations in x and t leads to an effective tool for
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Fig. 4 Second-order convergence of the computed velocity and magnetic field towards the analytical solution (14) with increasing number of grid points
n.

computational fluid dynamics. However, the widely used bounce-back boundary conditions, inspired by the diffuse and specular
reflection of continuum kinetic theory, only approximate no-slip boundary conditions. The tangential velocity vanishes at a
point approximately half-way between grid points, but the precise location depends on the collision rate τ unless one adopts a
two-relaxation-time (TRT) collision operator with a specific ratio of relaxation times for odd and even moments [11, 13, 10].
The alternative approach of Bennett [1, 2] formulates boundary conditions for moments with direct physical interpretations,
the velocity components and the tangential momentum flux. Solving the resulting linear system for the incoming distribution
functions imposes no-slip and no-flux boundary conditions precisely at grid points. This approach extends easily to impose
boundary conditions on a magnetic field, as shown for simulations of Hartmann flow between planar boundaries.
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