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The lattice Boltzmann approach is used to solve continuum equations describing colloids of ferromagnetic
particles (ferrofluids) in a regime where the particle spins are in equilibrium with magnetic torques. This limit of
rapid spin adjustment yields a symmetric total stress tensor that is essential for a kinetic formulation based on the
Boltzmann equation. The magnetisation equation is solved using a vector-valued distribution function analogous
to the earlier treatmenti] Comput. Phys179, 95] of the induction equation in magnetohydrodynamics, but
the details are rather more complex because the magnetisation equation is not in conservation form except in a
weakly magnetised limit.
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. INTRODUCTION

Ferrofluids are colloids of tiny (10 nm) single-domain ferromagnetic particles suspended in an insulating liquid such as
toluene [1-3]. First synthesised in 1964, they have evolved from a laboratory curiosity to important technological materials, with
applications such as high performance seals and bearings. Ferrofluids also raise interesting questions in basic fluid mechanics
since a continuum description of a ferrofluid sometimes requires an asymmetric stress tensor, or couple stress. This arises from
the torqueM x B exerted when the induced magnetisafdiof the ferromagnetic particles is inclined to the magnetic induction
B. The usual argument for symmetry of the stress tensor is incorrect for colloids. A volume of lengthscaiginsO(L3)
suspended particles that are free to rotate relative to the fluid under magnetic torques, as sketched in figure 1, so its moment
of inertia scales a&?, rather than a£® as usually assumed. However, this paper considers the rapid spin relaxation limit, for
which the asymmetric viscous and Maxwell stresses combine into a symmetric total stress.

The study of ferrofluids differs from magnetohydrodynamics (MHD) that concerns itself with nonmagnetisable but electri-
cally conducting fluids, so the key ingredient is the Lorentz faFeeB generated by flowing currenfs While the magnetic
manipulation of liquid metals, say, by the Lorentz force is usually impractical due to resistive losses, these losses are absent in
insulating ferrofluids wherd = 0. Their rheology is thus readily manipulable by weak (10 mT) magnetic fields.

Lattice Boltzmann equations are becoming a very popular simulation tool in fluid dynamics [4, 5], but have attracted less
attention in MHD. The lattice Boltzmann approach expresses macroscopic quantities like fluid density, velocity, or stress, as
moments of a distribution function. Macroscopic evolution equations arise in turn from moments of the postulated evolution

FIG. 1: Suspended particles with individual spins in a ferrofluid.
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equation for the distribution function, and naturally take the form of the density evolving through the divergence of the mo-
mentum, the momentum evolving through the divergence of a stress, and so on. Thus it is straightforward to incorporate the
Lorentz force due to a magnetic field by adjusting the distribution function to obtain the magnetic contribution to the total stress
[6-8]. Moreover, the viscous stress is also available from the distribution function, and this may be manipulated to simulate
non-Newtonian fluids with shear-dependent viscosities [9], and even some kinds of viscoelastic behavior such as a Jeffreys
viscoelastic fluid [10].

However, the usual scalar distribution function borrowed from the kinetic theory of gases cannot describe evolution equations
like ;B + VXE = 0 (see§ll). An early formulation [6, 7] of MHD used a tensor-valued distribution function for both
fluid and magnetic quantities, and was subsequently modified to simulate ferrofluids in a weak magnetisation limit [11]. This
paper explores more general ferrofluid equations based on the author’s reformulation of MHD [8] using a separate vector-valued
distribution function forB. In fact, a vector distribution function had already been used [12] to evolve the magnetisation in
simulations of nuclear magnetic resonance (NMR) in normal fluids like water, and various vector and tensor distributions have
been used in continuum models of liquid crystals [13, 14].

We follow standard ferrofluid conventions [1], which differ somewhat from conventional fluid dynamics and MHD. The
symbolw is used for intrinsic angular velocity or spin, which at equilibriurhaf the usual fluid vorticityw =~ %qu. In this
context “spin” means rotation of the suspended particles. It is also conventional to use Gaussian units in which the magnetisation
(6) retains a factor ofr.

II. LATTICE BOLTZMANN APPROACH TO HYDRODYNAMICS

The lattice Boltzmann approach to hydrodynamics expresses macroscopic quantities likesdgakigityu, and momentum
flux II as moments of an underlying distribution functifix, ¢),
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where the constant vectogs correspond to particle velocities in kinetic theory. Postulating evolution of tuy the discrete
Boltzmann—-BGK equation

1
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then implies mass and momentum conservation equations as moments of (2),
Qep + V-(pu) =0, dp(pu) + V-IIL =0, 3)

provided the equilibri@“i(o) are chosen so th@fvzo fi(o) =p andZﬁV:O gifi(o) = pu. For suitable choices of thg andfi(o),
the implied conservation equations (3) may be shown to coincide with the compressible Navier—Stokes equations in the slowly
varying (smallrs) limit. In two dimensions, th€, are most commonly chosen to form a square lattice as shown in figure 2.

The difficulty with extending this approach to magnetohydrodynamics, or ferrofluids, is that the momentum fludIensor
appearing in (1) and (3) is symmetric by definition. By contrast, the magnetidBielblves according to

OB+VXE=0, or B+ V-A=0, @)

where the fluxA is anantisymmetridensor with componentd,.g = —eqg,E,. It is thus impossible to obtain the correct
induction equation (4) from a moment of a scalar equation like (2). Rather than use a tensor-valued distribution function for both
fluid and magnetic variables [6, 7], Dellar [8] introduced a separate vector-valued distribution fugicsioch that

N N
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This formulation was shown to be effective at simulating resistive MHD, for wiiich: —uxB + nV x B, with resistivity

n « 75. Although associating a vector with each lattice direction requires two or three times more storage than a scalar, it is
possible to use fewer lattice directions without destroying isotropy [8]. Five lattice vectors suffice in two dimensions, as shown
by the thick lines in figure 2, whereas nine lattice vectors for the hydrodynamic distribution fungtians necessary for an
isotropic viscous stress.



FIG. 2: Two dimensional nine velocity (D2Q9) lattice for the fluid, and five velocity subset (D2Q5) for the magnetic field.

. CONTINUUM DESCRIPTION OF FERROFLUIDS

In ferrofluids it is important to distinguish between the magnetic indudaand the magnetic fielH. In a vacuum, the two
are simply related b8 = 1oH, where the constant of proportionality is called the permeability of free space. However, this
simple relation is typically lost when one averages the vacuum Maxwell equations, with their associated microscopic charges
and currents at the atomic level, to derive macroscopic or effective Maxwell equations for continuous media [15, 16]. The
macroscopic quantity normally writteB is the average of the microscopic magnetic field, and satisfi& = 0 because
averaging commutes with differentiation. To account for the average of the microscopic currents in the inhomogeneous Maxwell
equations, one typically relat®¥ to B via

B=H+4r M, (6)

in the Gaussian units commonly used in the ferrofluids literature. The vB€tisrthe magnetisation, for whicki x M is the
effective current density that arises from averaging the microscopic currents due to moving charges. One may alsd/nterpret
as the average magnetic moment per unit volume in the continuum, which has the advantage of eliminating the gauge uncertainty
arising from equating only¥’ x M with a physical quantity.
The macroscopic Maxwell equations for an insulating material are then

VB=0, VxH=0. @)

We neglect Maxwell’s displacement current, as in magnetohydrodynamics, since it is tiny for materials moving nonrelativisti-
cally. The macroscopic current is then jisk H, which vanishes in insulating materials. The magnetisation is negligible in the
media usually treated in magnetohydrodynamics, so one typically just ideflRifssl H, and often writes the current 8x B
instead ofV x H.

The magnetisatio®I evolves according to the equation

1

M +u- VM =wxM — —(M — M), (8)
™

whereu andw are the fluid velocity and spin. This formula holds for incompressible fluids wiiese= 0. The equilibrium
magnetisatioM is usually modelled by the Langevin formula [1, 3]

Mo = nmL(€)H, ¢ =m|H|/kgT, L(&)=cothé& —1/¢, 9)

whereH is a unit vector parallel t#, m is the magnetic moment of a single ferromagnetic particle,ratite number density

of particles. The temperature’l§ andkg is Boltzmann’s constant, so the parameteepresents the ratio of the energy due to
dipoles interacting with the magnetic field to the thermal fluctuations tending to randomize dipole orientations. Relaxation of
the magnetisation with timescatg is due to a combination of Brownian motion and thed\effect,.e. physical rotation of the
ferromagnetic particles, and rotation of the magnetic dipole moments relative to stationary particles. The relative importance of
these two effects depends on the size of the particles.
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The momentum flux may be written 86 = puu — o, defining the deviatoric stregs For polar materials like ferrofluids the
usual linear momentum equation

Du
"Dt
equivalent to (3), must be supplemented by a second equation for the spin, or internal angular momentum [1, 3]

_ v_(a_hydro + o_mag)’ (10)
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Herel represents the moments of inertia of all the ferromagnetic particles in a unit volume. The spin viscepitysents the

viscous drag on particles rotating relative to the surrounding fluid. The corresponding viscous stress tensor for an incompressible
fluid in our notation is [17],

= 2¢(Vxu — 2w) + MxH. (11)

Ugbédro = —p5a6 + s (&xuﬁ + aﬁua) + CEOﬁV [qu - Qw]’W (12)

whereys is the usual shear viscosity, and the extra antisymmetric term is due to spin viscosity. Equivalent formulas appeared
previously in a different notation [3]. The Maxwell stress exerted by the magnetic field may be written as [3, 18]

. 1
o™ = —HH + MH — p,|, (13)
I

with magnetic pressurg,, = H? /8w — 27 M?, after using (6) to eliminats.
While the equilibrium magnetisatidwl, given by (9) is parallel td1, the instantaneous magnetisatidhneed not be parallel
to H. Thus the magnetic stress (13) is generally asymmetric, like the spin viscous stress in (12). This gives rise to the couple
forceM x H in the spin equation (11).
However, the timescale fap to adjust to equilibrium under (11) is usually extremely shbot; ! s according to [3], so we
may replace (11) by the equilibrium approximation

1 1
w—§qu+EM><H. (14)

The total stresg™™° + ™28 then becomes symmetric [3, 17], which is crucial for a lattice Boltzmann formulation of the
momentum equation in the form (3), as explained above. Combining the asymmetric terms from (12) and (13), and using (14)
to eliminatew, we find

1 1
[MH]QQ + Ceam[VXu — 2(.0},), = MaHg — §CGQQV[MXH}7 = i(MaHﬁ + HQM[}), (15)
so the total stress becomes a symmetric tensor [3],

1 1
Oap = —(p —|—pm)5aﬁ + EHQHQ + §(MQH5 + HQMB) + Us (aa’LLg + agua) . (16)

IV. HYDRODYNAMIC EQUILIBRIUM DISTRIBUTIONS

The usual nine velocity fluid equilibria [19] may be determined by projecting the desired moments onto tensor Hermite
polynomials [20]. The relevant expression, for the momentuméhix+ puu, is

7O =, (p + éé’i - (pu) + #(5151 —0l): (puu)) ’ )

where the weights; for the D2Q9 lattice shown in figure 2 atg = 4/9, w1 2,34 = 1/9, andws ¢ 7.8 = 1/36.
This approach gives formulas [8] for the necessary terms to change the equilibrium momentlIrFPﬂby AII,

1

A = Wi (€€; — 01) : (ATL— 0I(TrATD)). (18)
Recalling thaflI = puu — o, we obtain
AFO = Sk (€, M), H) 40020 — 1 — |, M - H), (19)

262
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from the AII = —%(MH + HM) part of (minus) the Maxwell stress. This formula holds in two dimensions whete= 2.
From the magnetic pressure term we obtain

A = pawiz (1 —20)(1€, 1> - 26), (20)

1
202
again in two dimensions. These formulas are not unique, because the formula (18) involves only six of the nine possible
degrees of freedom in the nine equilibrium distribution functions at each lattice point. However, these formulas worked well for
magnetohydrodynamics.

Notice that the desired changdl in the momentum flux is contracted with the symmetric terigp¢, — 61) in the formula
(18) for the change in the distribution function. Thus only the symmetric paiIdfcan contribute to the distribution function.

This is consistent withT®) = Zf;o gigifi(o) being a symmetric tensor by construction.

Thus it is impossible to incorporate any asymmetric component of the stress tensor into the equilibrium distribution in this
way. Instead, one must include the divergence of the antisymmetric part as an explicit body force in the momentum equation.
The body force will typically involve spatial derivatives of the field variables, and in general these must be calculated by some
finite difference or other approximation, instead of arising naturally through the streaming,te¥if; in the Boltzmann—-BGK
equation (2). This approach has been used to approximate continuum equations with asymmetric stresses that describe liquic
crystals in various regimes [13, 14].

V. LATTICE KINETIC MAGNETISATION EQUATION
Using the equilibrium approximation (14) far, the magnetisation equation (8) becomes

1 1 1
8tM+u-VM:i(qu)xM—i—Q(MxH)xM——(M—M(O)L (21)

Y

with M(®) = x(JH|)H from (9). This equation is not in conservation form, but one may eliminate derivativesnofavor of
derivatives ofM,

1 1 1 1 1 1
OMA+V- (uM - -Mu+ =(u-M)l) = Zu;, VM, — ~uV-M + — (MxH)xM — — (M — M), (22)
2 2 2 2 4C Tm
whereu; V My, is the vector withith component:,. 9; M., or symbolically as
1
OM+VAD = ——M-M) +8, (23)

Y

whereS denotes the remaining source terms on the right hand side of (22).
By analogy with MHD [8] we postulate a vector distribution functgn

N N
1
M= e A= gm g (M e a). (24
=0 =0

The usual lattice Boltzmann relaxation time controls diffusiodvbf This effect should be very small, much smaller than the
diffusivity implied by 7, which suggests using a multiple relaxation time (MRT) collision operator [21]

O0igi+&;-Vgi = — ! (gi - gl(o)) - iwz (M - M(O)) + w;S. (25)

Tp Y

From the zeroth and first moments we get (at leading order)

M + VA = —i(M—M<0>)+s, (26)
Y
o 4 v co®) — LA _AO@
(A + v <;£1£ng> —(A-A®), 27)

while the gradient oM is available from the non-equilibrium part of the magnetisation distribution function to ev&uate

A=A — 9, VM +.... (28)
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The rearrangement (22) is required because the vorficityu is not available fronTI — ITI(”), only the symmetric strain field
Vu + (Vu)T.

Constructing a fully discrete form of (25) is complicatedloly not being an invariant of the full collision operator, but only
of the first term(g; © _ g:)/m. Integrating (25) along a characteristic for tie gives

At
gi(x + &ALt + At) — gi(x,1) = Ri(x +§;s,t + s)ds, (29)
0
where the right hand side contains the source and relaxation terms from (25). Approximating this integral with the trapezium
rule gives

At
5 (Ri (x+& AL t+AL) +Ri(x, t)) +O(AP). (30)
SinceR; (-, t + At) depends om; (-, t + At), both throughHM and through the nonequilibrium part involviRgM, this system
is implicit.

The usual procedure [22] defines new variables

i (X+€LAt? t+At> -8 (Xa t) =

1) = g 1)~ SR, (31)
for which the previously implicit system (30) becomes fully explicit,
g (x+ &AL t+ At) —g;(x t)——TDiAt Ri(x,t) + O(At?) (32)
g; iR, gi’_TD+At/2 i(X, .
However, reconstructinyI from g, by summing (31) leads to
At At
Zgz M+—(M M(0)>—T(ukVMk—uV M)—Q(MXH) x M, (33)

where the magnetisation gradienM = —(A — A®)(M))/(67,) depends linearly oM through the definition oA (”). The
field H and equilibriumM (?) are further coupled tdI through Maxwell’s equationdyI(®) = yH = y(B + 47M), andy may
depend oH and hencéM as well. Solving the system (33) at each lattice point¥bthus typically requires Newton’s method.

VI. THE MAGNETOVISCOUS EFFECT IN POISEUILLE FLOW

Experiments [23] with Poiseuille flow of ferrofluids found that the flow rate reduced in the presence of a steady magnetic field,
an effect explained theoretically [3, 24] as thEx B torque resisting the necessary rotation of fluid parcels in this vortical flow.
We assume that all variables are functions of the streamwise coordioatg, and the fluid velocity is purely in thedirection,

u = v(x)¥. In this geometry the magnetostatic form of Maxwell's equations are readily solved as

Hy =B, —4nM, = H® —4xM,, H,=H, (34)
whereH(®) = B(®) is the imposed external field. Neglecting spin viscous effects, the steady solution for the magnétition

HY — LQmH{) (U dm)HY + LQmHY
v 1+4my + 10272

M, = ) , 35

Xl+47r)<+%§227r,21 (35)
where) = 9v /0 is the vorticity. Substituting into the streamwise momentum equation, and dropping terms invoteipg
we recover Poiseuille flow with an increased effective fluid viscosity

Vet =V imHée)Q + iva;@”/(l +4my)?. (36)
This is a nonequilibrium, or finitey,, effect that cannot be captured by equilibrium descriptions of ferrofluids [1, 3, 24].

Figure 3 shows results from two numerical experiments. They were conducted in a periodic channel, with a sinusoidal body
force F'sin(27x)y, to avoid issues with diffusive boundary layers on the magnetisation at the walls. The parameters were
™m = 1, x = 1 (assumed constant}; = 0.1, » = 0.1 in suitable dimensionless units, and a very small magnetic diffusivity
n = 1/1600 that had no visible effect on the solutions. The corresponding effective viscosities from (38} ate).1217 for
H() = 4%, andver = 0.35 for H(®) = §. These values were used for the theoretical parabola in the figure, and are in good
agreement with the numerical results.
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FIG. 3: Periodic channel flow computations illustrating the magnetoviscous effect for imposedfietdé4, 0) andH = (0, 1). Only half
the channel is shown.

VIl. CONCLUSION

The vector-valued distribution function approach from MHD may be extended to simulate the magnetisation equation (21)
arising in ferrofluids, even though in general the equation takes a non-conservation form involving the fluid W@rticityl his
makes a lattice Boltzmann implementation much more involved than for magnetohydrodynamics [8], or for ferrofluids in the
weak magnetisation limit [11] where théM terms are dropped. However, a “pure” or finite difference-free implementation is
still possible using the nonequilibrium magnetic distribution functd® to obtain the gradierf7 M.

The change of variables (31) resulting from integrating forcing terms along characteristics becomes very clumsy when the
forcing depends upon the variable being forced, especially nonlinearly. Alternatives based on operator splitting for the time
integration, as used by Salmon [25] for the Coriolis force, are simpler, but gave much larger errors for a given timestep. Another
possibility would be to use a predictor-corrector method to solve the implicit set of equations (29) arising from the trapezium
rule, without introducing thg, variables. This approach was used in Salmon'’s first treatment of the Coriolis force [26], and
continues to be used in liquid crystals [14].

For general geometries ani1) magnetisation, the magnetostatic form of Maxwell’s equations (7) must be solved in parallel
with the fluid and magnetisation equations, althollis just the imposed fiel(¢) in the weak magnetisation limit. In the
geometry of Poiseuille flow the solution of Maxwell’s equations may be written down (34), allowing a simple computation of
the magnetoviscous effect [3, 23, 24].
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