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Abstract

The vast majority of lattice Boltzmann algorithms produce a non-Galilean invariant viscous stress. This defect arises from
the absence of a term in the third moment, the equilibrium heat flow tensor, proportional to the cube of the fluid velocity. This
moment cannot be specified independently of the lower moments on the standard lattices such as D2Q9, D3Q15, D3Q19 or
D3Q27. A partial correction has recently been demonstrated that restores some of these missing cubic terms on the D2Q9 and
D3Q27 tensor product lattices. This correction restores Galilean invariance for shear flows aligned with the coordinate axes,
but flows inclined at arbitrary angles may show larger errors than before. These remaining errors are due to the diagonal terms
of the equilibrium heat flow tensor, which cannot be corrected on standard lattices. However, the remaining errors may be
largely absorbed by introducing a matrix collision operator with velocity-dependent collision rates for the diagonal components
of the momentum flux tensor. This completely restores Galilean invariance for flows with uniform density, and in general
reduces the magnitude of the defect in Galilean invariance from Mach number cubed to Mach number to the fifth power.
The effectiveness of the resulting algorithm is demonstrated by comparisons with the standard and partially corrected lattice
Boltzmann algorithms for two- and three-dimensional flows.
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1. Introduction

The Navier–Stokes equations may be derived from the Boltzmann equation that describes dilute monatomic gases. This
derivation seeks slowly varying solutions using the Chapman–Enskog expansion [1, 2]. This expansion involves only the lowest
few moments of the Maxwelll–Boltzmann distribution. The lattice Boltzmann approach to computational fluid dynamics seeks
to construct discrete kinetic theories that also yield the Navier–Stokes equations under the same limit. The derivations may
proceed exactly in parallel if one replaces the integral moments of continuous kinetic theory with discrete moments or sums
over a discrete velocity space.

The continuous Boltzmann equation expresses the evolution of the distribution function f (x, ξ, t) for a dilute monatomic
gas as

∂t f + ξ · ∇ f = C[ f , f ]. (1)

The distribution function gives the number density of particles at position x and time t moving with velocity ξ. The left-hand
side is a Lagrangian derivative along particle trajectories, while the integral collision operator on the right hand side involves
only relative velocities between pairs of particles. The Boltzmann equation is thus invariant under Galilean transformations.
This is commonly expressed in kinetic theory by working with the peculiar velocity c = ξ −u, the difference between ξ and the
local fluid velocity u defined in (6) below.

The lattice Boltzmann approach achieves computational efficiency by restricting the particle velocity ξ to a finite set {ξi : i =
0, . . . ,N − 1}, and evolves the finite set of functions fi(x, t) for i = 0, . . . ,N − 1 rather than f (x, ξ, t). The corresponding discrete
Boltzmann equation is a set of N linear, constant coefficient, hyperbolic PDEs, such as (4) below, that is readily discretised
in space and time. All nonlinearity is confined to an algebraic collision term, the discrete analogue of C[ f , f ]. However, the
adoption of a finite velocity set {ξi} inevitably breaks Galilean invariance at the level of the discrete Boltzmann equation. The
set of particle velocities typically satisfies the symmetry property that for each i there is an i such that ξi + ξi = 0, and includes
a so-called rest particle with velocity ξ0 = 0. The frame in which these two properties hold defines a preferred frame.

A much more serious concern is loss of Galilean invariance in the slowly varying limit. The common lattice Boltzmann
formulations contain too few degrees of freedom to correctly reproduce the viscous stress in the Navier–Stokes equations. The
common formulations use discrete equilibrium distributions that are quadratic polynomials in the fluid velocity u [3–5]

f (0)
i = wiρ

(
1 + 3 u · ξi +

9
2

(u · ξi)
2 − 3

2
|u|2

)
, (2)

where ρ is the fluid density, and the wi are weights attached to the different particle velocities ξi. The first three moments
of these discrete equilibria coincide with the corresponding moments of the Maxwell–Boltzmann distribution, but the next
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Speed Velocity template D3Q15 D3Q19 D3Q27
0 (0, 0, 0) 2/9 1/3 8/27
1 (±1, 0, 0) 1/9 1/18 2/27√
2 (±1,±1, 0) 0 1/36 1/54√
3 (±1,±1,±1) 1/72 0 1/216

Table 1: The weights wi for the four different velocity shells |ξi |2 ∈ {0, 1, 2, 3} for the three common 3D lattices [5, 7]. The particle velocities in each shell
comprise the given form and its permutations. The D3Q15 lattice omits the velocities (±1,±1, 0) and their permutations, while the D3Q19 lattice omits the
velocities (±1,±1,±1).

moment is lacking a ρuuu term due to the truncation of the discrete equilibria at O(|u|2). This leads to the viscous momentum
flux [6]

Π(1) = −τρθ
[
(∇u) + (∇u)T

]
+ τ∇·(ρuuu). (3)

The first term is a Newtonian viscous stress with dynamic viscosity µ = τρθ, where θ is the temperature, but the second term
τ∇·(ρuuu) is an error term that breaks Galilean invariance. The ratio of the two terms scales as |u|2/θ = Ma2, so the error term
is commonly treated as negligible on the assumption that the Mach number Ma is sufficiently small. However, it is an obstacle
to the accuracy of the lattice Boltzmann approach at finite Ma, and we show in Sec. 8 below that it has a detrimental effect on
numerical stability.

The natural remedy to this loss of Galilean invariance is to restore the missing O(|u|3) terms to the discrete equilibria, but
this is not possible when the particle velocities form one of the standard lattices known as D2Q9, D3Q15, D3Q19 or D3Q27
[5, 7]. The particle velocities ξi for the three different 3D lattices are given in Table 1, while the velocities for the D2Q9 lattice
arise from projecting any of the 3D lattices onto the xy plane. The dimensionless particle velocity components ξiα all lie in the
set {−1, 0, 1}, so ξ3

iα = ξiα and
∑

i ξ
3
iα fi =

∑
i ξiα fi. The third moment that appears in the calculation of the viscous stress thus

cannot be adjusted independently of the first moment.
The next simplest approach is to adopt a larger lattice with more discrete particle velocities [8–10], although a relatively

early attempt [11] to restore the cubic terms on a two-dimensional 17 velocity lattice used incorrect equilibria [12]. Besides
adding additional particle velocities whose components lie in a larger integer set such as {−2,−1, 0, 1, 2}, one may use higher
order Gauss–Hermite quadratures to motivate other particle velocities whose components are not integer multiples of each
other [13–15]. The latter require interpolation of distribution functions between lattice points or some alternative space-time
discretisation, while any addition of more degrees of freedom per lattice point increases computational cost, and introduces
more scope for grid-scale instabilities of the type analysed in [16].

The free energy approach of Swift et al. [17] simulates non-ideal fluids by adding terms proportional to the density gradient
to the equilibrium momentum flux. These gradients are calculated from finite difference approximations on the lattice. Further
finite difference approximations to velocity gradients may also be added to cancel the non-Galilean-invariant defects introduced
by the non-ideal terms [18, 19], and also those due to the underlying ideal fluid [20]. However, this again increases complexity
and scope for grid-scale instabilities. The standard lattice Boltzmann space/time discretisation (see Sec. 5) defines effective
finite difference stencils that differ from those commonly used [21]. Any inconsistency between the two sets of finite difference
stencils may create grid-scale artifacts.

More recently, it has been realised that a partial correction of the third moment is possible on the D2Q9 lattice [12, 22–24].
This restores Galilean invariance for shear flows aligned with the coordinate axes, which depend only upon the Πxy component
of the momentum flux, but errors remain in the diagonal components Πxx and Πyy. In this paper we show that these remaining
errors may be largely absorbed using a nonlinear matrix collision operator with relaxation times that depend upon the local fluid
velocity u. Matrix collision operators originally appeared as linearisations of lattice gas binary collision operators [25], but have
since been developed to improve the stability of lattice Boltzmann algorithms while preserving the isotropy of the viscous stress
[26–29]. In fact, the D3Q13 algorithm requires a matrix collision operator to produce an isotropic viscous stress [30]. However,
they have also been used to model the strongly anisotropic stress-strain relation that holds in strongly magnetised plasmas [31].
In this paper we introduce small intentional anisotropies into the matrix collision operator to correct the anisotropies caused by
the partial restoration of the cubic terms in the tensor Q(0). The resulting algorithm completely restores Galilean invariance at
the Navier–Stokes level for flows with uniform density, and reduces the error in the viscous stress from O(Ma3) to O(Ma5) in
the presence of density variations.

2. The viscous stress in lattice Boltzmann hydrodynamics

Lattice Boltzmann algorithms are space-time discretisations of discrete Boltzmann equations of the form

∂t fi + ξi · ∇ fi = −
N−1∑
j=0

Ωi j

(
f j − f (0)

j

)
. (4)

Each fi(x, t) is a particle distribution function that propagates with velocity ξi, and the Ωi j are the components of an N × N
collision matrix Ω. The equilibrium distributions f (0)

j are prescribed functions of the moments ρ and u defined in (6) below.
For example, the common quadratic polynomial equilibria are given in (2).
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The discrete Boltzmann equation (4) implies the evolution equations

∂tρ + ∇ · (ρu) = 0, ∂t(ρu) + ∇ ·Π = 0, ∂tΠ + ∇ · Q = −
1
τ

(
Π −Π(0)

)
(5)

for moments of the fi,

ρ =

N−1∑
i=0

fi, ρu =
N−1∑
i=0

ξi fi, Π =

N−1∑
i=0

ξiξi fi, Q =
N−1∑
i=0

ξiξiξi fi. (6)

The first few moments determine the fluid density ρ, velocity u, and momentum flux Π. The superscript (0) on Π(0) indicates
a moment of the equilibrium distributions f (0)

i . The right hand side (5) relies on ξiξi being a left eigenvector of the collision
matrix Ω with eigenvalue 1/τ. The simplest choice is the Bhatnagar–Gross–Krook [32] collision matrix Ω = (1/τ)I, but more
complicated choices with multiple eigenvalues (multiple relaxation times) may be used to improve stability [26–29].

The same system (5) arises as the first few members of an infinite hierarchy of moment equations for the continuous
Boltzmann equation (1). Boltzmann’s binary collision operator C[ f , f ] drives f towards the Maxwell–Boltzmann equilibrium
distribution

f (0) = ρ(2πθ)−3/2 exp
(
−|u − ξ|2/(2θ)

)
(7)

while conserving mass, momentum, and energy. The quadratic polynomial equilibria (2) may be constructed by seeking a
truncated expansion in tensor Hermite polynomials whose first three moments coincide with those of the continuous f (0) above
when the temperature θ takes the value 1/3 in the dimensionless lattice units in which the particle velocity components lie in
the set {−1, 0, 1}.

The Navier–Stokes equations arise from seeking solutions to the moment hierarchy (5) that vary on a slow timescale T
much longer than the collisional timescale τ. The modern Chapman–Enskog expansion [1, 2] uses a multiple-scales expansion
of the non-conserved moments and the time derivative,

∂t = ∂t0 + ϵ∂t1 + · · · , Π = Π(0) + ϵΠ(1) + ϵ2Π(2) + · · · , Q = Q(0) + ϵQ(1) + ϵ2Q(2) + · · · , (8)

in the small parameter ϵ = τ/T , which is equivalent to the Knudsen number. The conserved moments ρ and u are left unex-
panded, equivalent to imposing solvability conditions on an expansion of f = f (0)+ϵ f (1)+· · · . The combination of the expansion
of ∂t and the solvability conditions prevents the expansion of f from becoming disordered at long times when t ∼ T/ϵ, as arises
under the Hilbert expansion of f alone [33].

At leading order we obtain the compressible Euler equations

∂t0ρ + ∇·(ρu) = 0, ∂t0 (ρu) + ∇·Π(0) = 0, (9)

where the inviscid momentum flux Π(0) = θρI + ρuu, with I the identity tensor. Evaluating the last of (5) at leading order gives

∂t0Π
(0) + ∇·Q(0) = − 1

T
Π(1), (10)

where Q(0) is known from f (0). Evaluating ∂t0Π
(0) = ∂t0 (θρI + ρuu) using the Euler equations (9) gives

∂t0Π
(0)

βγ = −θδβγ∇·(ρu) − θuβ
∂ρ

∂xγ
− θ ∂ρ

∂xβ
uγ − ∂α

(
ρuαuβuγ

)
, (11)

using Greek indices for Cartesian tensor components. The third integral moment of the Maxwell–Boltzmann distribution (7)
has components

Q(0)
αβγ =

∫
ξαξβξγ f (0)dξ = ρuαuβuγ + ρθ

(
uαδβγ + uβδγα + uγδαβ

)
. (12)

Substituting this expression into (10) gives the Newtonian viscous stress for an isothermal fluid,

Π(1) = −τρθ
[
(∇u) + (∇u)T

]
. (13)

However, the quadratic polynomial equilibria (2) used by the most common lattice Boltzmann algorithms have a third moment
Q(0) that omits the first term ρuαuβuγ compared with (12). This missing term is responsible for the error term τ∇·(ρuuu) in the
viscous momentum flux (3) that leads to loss of Galilean invariance [6]. In the following we show that this error term may be
greatly reduced by using a suitable matrix collision operator Ω(u) that depends upon the local fluid velocity.

3. Partially corrected third moment

The natural remedy is to restore the missing cubic terms to f (0)
i so that the discrete third moment Q(0) coincides with (12)

for the Maxwell–Boltzmann distribution. However, the commonly used lattices such as D2Q9, D3Q15, D3Q19, and D3Q27 do
not have enough degrees of freedom to specify the whole Q(0) tensor independently of the lower moments. The particle velocity
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components ξiα ∈ {−1, 0, 1} for these lattices so, for example, ξ3
ix = ξix, which implies Q(0)

xxx = ρux. It is possible to correct the
off-diagonal components of Q(0) on the D2Q9 lattice [12, 22, 23]

Q(0)
xxy = θρuy + ρu2

xuy, Q(0)
xyy = θρux + ρuxu2

y , (14)

in agreement with (12), while Q(0)
xxx and Q(0)

yyy must remain unchanged. Wagner & Yeomans [22] constructed equilibria that are
consistent with the Galilean transformations parallel to the coordinate axes that they used to implement Lees–Edwards sliding
periodic boundary conditions. These equilibria satisfy the conditions (14). The same partial corrections were later rediscovered
by evaluating cubic equilibria previously proposed for the D1Q5 and D2Q17 lattices on the D2Q9 lattice [11, 12, 23]. The
conditions (14) are also satisfied by the truncated expansion for |u| ≪ 1 of certain entropy-minimising equilibria [24]. The xy
component of the viscous stress is now correct, which is sufficient for simulating axis-aligned shear flows. For example, the
evolution of the velocity field u = u(x, t)ŷ is given by

∂t(ρu) + ∂xΠxy = 0, (15)

in which only Πxy plays a rôle. However, non-Galilean invariant terms still remain in the Πxx and Πyy components, which
become visible in more general flows, such as the linear shear flows inclined to the axes studied in Sec. 6

To see why a partial, but only a partial, correction of Q(0) is possible on the D2Q9 lattice, it is useful to consider a basis of
moments for this lattice. The first three tensor Hermite polynomials, 1, ξi, ξiξi − θI may be completed with the quantities ξigi

and gi = (1,−2,−2,−2,−2, 4, 4, 4, 4) to form a basis that is orthogonal with respect to the weighted inner product [16, 29]

⟨ fi, hi⟩ =
8∑

i=0

wi fihi, (16)

with the same weights wi that appear in the equilibria (2) The additional basis elements may be written as gi = |ξi|4−(15/9)|ξi|2+
2/9 and ξigi = ξi(|ξi|2 − 4/3), as constructed by orthogonalising |ξi|2 and ξi|ξi|2 against the three tensor Hermite polynomials
using the Gram–Schmidt algorithm. This construction shows that there are only two independent degrees of freedom in the
moments involving ξ3

i , since the most general equilibria for the D2Q9 lattice that still reproduce the Euler equations may be
written as [16, 29]

f (0)
i = wi

[
ρ + 3ρu · ξi + ρuu : (ξiξi − 1

3 I) +
1
4

giN(0) +
3
8

giξi · J(0)
]

(17)

for arbitrary values of the scalar N(0) and vector J(0). In particular, the equilibria with the partial cubic corrections (14) may be
written as

f (0)
i = wiρ

[
1 + 3 u · ξi +

9
2

(u · ξi)
2 − 3

2
|u|2 + 27

2

(
|ξi|2 −

4
3

) (
u3

xξix + u3
yξiy

)]
. (18)

4. Further correction using a matrix collision operator

The viscous stress for a general discrete equilibrium third moment Q(0) may be written as

Π(1) = −τρθ
[
(∇u) + (∇u)T

]
− τ∇·(∆Q(0)), (19)

where ∆Q(0) = Q(0) − ρuuu − θρ(uI + cyclic) is the difference between the third moment of the discrete equilibrium and the
corresponding third moment (12) of the Maxwell–Boltzmann distribution.

The partial correction (14) described above leaves only the diagonal components of the ∆Q(0) tensor nonzero,

∆Q(0)
xxx = −ρu3

x, ∆Q(0)
yyy = −ρu3

y , (20)

while the off-diagonal terms ∆Q(0)
xxy and ∆Q(0)

xyy both vanish. The resulting viscous stress is thus [12]

Π(1) = −τρθ
[
(∇u) + (∇u)T

]
+ τ∂x(ρu3

x)x̂x̂ + τ∂y(ρu3
y)ŷŷ. (21)

The off-diagonal component Π(1)
xy is correct, while the diagonal components Π(1)

xx and Π(1)
yy contain errors.

The Π(1)
xx component may be rewritten as

Π(1)
xx = −2τρθ∂xux + τ∂x(ρu3

x),

= −2τρθ∂xux + 3τρu2
x∂xux + τu3

x∂xρ,

= −2τρθ[1 − 3u2
x/(2θ)]∂xux + τu3

x∂xρ. (22)

We now adjust the collision matrix Ω to apply a relaxation time τxx = τ[1 − 3u2
x/(2θ)]

−1 to Πxx. Replacing the previous τ by
τxx in the last line of (22) gives

Π(1)
xx = −2τρθ∂xux + τ[1 − 3u2

x/(2θ)]
−1u3

x∂xρ. (23)
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Density fluctuations scale as O(Ma2) at small Mach numbers, while the fluid velocity component ux is O(Ma) in the conventional
lattice units with ξiα ∈ {−1, 0, 1}. The second term in (23) is therefore O(Ma4) smaller than the first term, whereas the second
term in (22) is only O(Ma2) smaller than the first, since u2

x/θ = O(Ma2). The error in Π(1)
yy may similarly be reduced by O(Ma2)

by taking the collision time for Πyy to be τyy = τ[1 − 3u2
y/(2θ)]

−1.
The presence of this remaining error due to density gradients suggests an advantage for the pseudo-incompressible lattice

Boltzmann equilibria that replace the actual density ρ by a reference density ρ0 in all terms involving the fluid velocity [34].
The resulting hydrodynamic equations then yield the exact incompressibility condition ∇·u = 0 for steady flows, but otherwise
propagate sound waves in almost the same way as the isothermal compressible Navier–Stokes equations. However, as shown
in the appendix, the defect in Galilean invariance arising from these equilibria cannot be expressed as a divergence analogous
to τ∇·(ρuuu), and therefore provides a much less promising starting point for a fully Galilean invariant algorithm.

5. Implementation

Further discretising the discrete Boltzmann equation (4) in space and time leads to the lattice Boltzmann equation

f i(x + ξi∆t, t + ∆t) = f i(x, t) − ∆t
N−1∑
j=0

Ω̃i j

(
f j(x, t) − f (0)

j (x, t)
)
, (24)

for the transformed distribution functions

f i(x, t) = fi(x, t) +
1
2
∆t

N−1∑
j=0

Ω̃i j

(
f j(x, t) − f (0)

j (x, t)
)
, (25)

and the discrete collision matrix Ω̃ = (I + 1
2∆tΩ)−1Ω [29, 35]. These expressions reduce to those derived by He et al. [36] for

the single-relaxation-time collision operator Ω = τ−1I. A recent rederivation of these results using Strang [37] splitting shows
that the collision matrix Ω may depend arbitrarily on the conserved moments ρ and u without compromising second-order
accuracy [35]. We use an overbar, as in Π, to indicate moments of the f i.

A convenient implementation takes any existing collision matrix with a single relaxation time τ for Π, and adjusts the
collision times for the diagonal components of Π. For example, the post-collisional distribution functions on the D2Q9 lattice
may be calculated as

f
⋆

i = f i − ∆t
8∑

j=0

Ω̃i j

(
f j − f (0)

j

)
− 9

2
wi

(
ξ2

ix − 1
3

) [ ∆t
τ(1 − 9u2

x/2) + ∆t/2
− ∆t
τ + ∆t/2

] (
Πxx − Π

(0)
xx

)
− 9

2
wi

(
ξ2

iy − 1
3

)  ∆t
τ(1 − 9u2

y/2) + ∆t/2
− ∆t
τ + ∆t/2

 (Πyy − Π
(0)
yy

)
, (26)

where all distribution functions are evaluated at (x, t), and Πxx and Πyy are components of the pre-collisional second moment.
We have set θ = 1/3 in the formulae for τxx and τyy from the previous section. For sufficiently small Mach numbers, |u| ≪ 1

in lattice units, the two nonconstant divisors may be expanded for small ux and uy to obtain

f
⋆

i = f i − ∆t
8∑

j=0

Ω̃i j

(
f j − f (0)

j

)
− 36τ∆t

4(τ + ∆t/2)2 wi

[(
ξ2

ix − 1
3

)
u2

x
(
Πxx − Π

(0)
xx

)
+

(
ξ2

iy − 1
3

)
u2

y
(
Πyy − Π

(0)
yy

)]
. (27)

The additional O(Ma5) error introduced by this approximation is the same order as the u3
x∂xρ term in (23).

6. Linear shear flows at arbitrary angles

Measuring the decay rate of axis-aligned shear flows such as u = u(x, t)ŷ superimposed on a uniform background velocity U
is the common benchmark to test loss of Galilean invariance [6, 12, 23, 24]. However, this benchmark only tests the correctness
of the off-diagonal component Π(1)

xy of the viscous momentum flux. We test the correctness of the full viscous momentum flux
tensor using shear flows of the form

u = U + ϵ ẑ×∇ψ. (28)

The small O(ϵ) deviations to the uniform background velocity U are obtained from the streamfunction

ψ(x, y, t) = f (t) sin(m · x), (29)
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Figure 1: (a) Decay rate of axis-aligned sinusoidal shear flow ν = 0.1 and Ma = 0.1. The decay rate in the uncorrected scheme shows the theoretically expected
proportionality to 1−Ma2u2, while the others are independent of u. (b) Decay rate for inclined sinusoidal shear with m = (1, 2). The partially corrected scheme
now also shows a u-dependence of the decay rate, and one which is larger than for the uncorrected scheme. The decay rate for the fully corrected scheme
appears independent of u.

with m = (m, n) in the doubly-periodic domain 0 ≤ x, y < 2π. The small parameter ϵ is introduced to allow the nonlinear cubic
error to be linearised around the background velocity U. The streamfunction and the velocity components

ux = Ux − ϵn f (t) cos(m · x), uy = Uy + ϵm f (t) cos(m · x), (30)

are all periodic when n and m are integers. The standard axis-aligned shear flow tests correspond to n = 0 or m = 0. The
theoretical decay due to a kinematic viscosity ν gives f (t) = f (0) exp(−ν|m|2t) in the absence of cubic error terms.

Figure 1(a) shows the measured decay rate for axis-aligned shear flow with m = 1, n = 0, ν = 0.1, Ma = 0.1, and U = (0,U).
All simulations were performed on 1024 × 1024 grids with periodic boundary conditions. This relatively high resolution
ensures visual accuracy of the computed points in the figures with respect to spatial and temporal truncation errors. The
uncorrected D2Q9 model shows the expected variation of the decay rate with the background velocity, the effective viscosity
being proportional to 1 −Ma2U2, while neither corrected model shows such a variation.

Figure 1(b) shows the corresponding results for a shear flow with m = (1, 2) that is inclined relative to the coordinate
axes, and a background flow U = (U, 0). Only the further corrected model with the u-dependent collision operator exhibits
Galilean-invariant behaviour. The partially corrected model with the cubic terms restored to Q(0)

xxy and Q(0)
xyy shows U-dependent

variations in the decay rate that are even larger than those in the uncorrected model. This is due to the uncorrected diagonal
components Π(1)

xx and Π(1)
yy of the viscous momentum flux.

To calculate the error in the partially corrected algorithm, it is convenient to eliminate the pressure by considering the
vorticity equation

∂tω + u · ∇ω = ν∇2ω − ρ−1ẑ · ∇×∇·(δΠ(1)) (31)

where ω = ẑ · ∇×u = ∇2ψ with the sign convention in (28), and δΠ(1) = τ∂x(ρu3
x)x̂x̂ + τ∂y(ρu3

y)ŷŷ is the non-Galilean-invariant
error in the viscous stress given by (21). We neglect variations in density to obtain

∂tω + u · ∇ω = ν∇2ω + τ∂xy[∂x(u3
x) − ∂y(u3

y)]. (32)

For the small perturbations to a uniform flow U = (Ux,Uy) given by (28), we calculate

∂x(u3
x) = ∂x[(Ux − ϵψy)3] = −3ϵU2

xψxy + O(ϵ2), (33)

and similarly for ∂y(u3
y), giving

∂tω + u · ∇ω = ν∇2ω − 3ϵτ|U|2ψxxyy. (34)

The decay rate for flows of the form (29) is thus

σ = −ν
(
|m|2 − 3Ma2|U|2m2n2/|m|2

)
. (35)

The error in σ is proportional to the product nm, which explains why no error appears in axis-aligned flows with m = 0 or n = 0.
Moreover, the error is independent of the orientation of the background U relative to the vector m. Due to the factor of 3, the
error term may be larger in magnitude than the corresponding term Ma2|U ·m|2 for the uncorrected algorithm, as demonstrated
for the parameters m = (1, 2) in Fig. 1(b).
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Figure 2: The rolled up vorticity in the perturbed anti-parallel shear layers at (a) t=0.25 and (b) t=1.0 for the Minion and Brown [38] initial conditions.

7. Nonlinear simulations

For the more demanding test of an evolving flow with density variations we employ the initial conditions used by Minion
and Brown [38]

ux =

tanh(κ(y − 1/4)), y ≤ 1/2,
tanh(κ(3/4 − y)), y > 1/2,

uy = δ sin(2π(x + 1/4)) (36)

with parameters κ = 80, δ = 0.05 in the doubly-periodic domain 0 ≤ x, y < 1. The sinusoidal perturbation uy triggers a
Kelvin–Helmholtz instability in the two anti-parallel shear layers, which subsequently roll up into spiral vortices as shown in
Fig. 2

In the absence of cubic and other errors, the lattice Boltzmann algorithm yields solutions of the two-dimensional isothermal
compressible Navier–Stokes equations in the form

∂tρ + ∇·(ρu) = 0, ∂tu + u · ∇u + c2
sρ
−1∇ρ = ρ−1∇·

{
ρν

[
(∇u) + (∇u)T

]}
, (37)

where c2
s = θ is the sound speed squared. A constant collision time τ implies a constant kinematic viscosity ν, and hence a

dynamic viscosity µ = ρν proportional to the local density. A lattice Boltzmann solution may differ from the exact solution of
the PDE system (37) through three different sources of error. There is the error due to the ∇·(ρuuu) term in the viscous stress or
its various partially corrected forms, there is the space/time truncation error that should be O(n−2) on a lattice with n× n points,
and finally there is an error due to the Π(2) and higher terms in the Chapman–Enskog expansion (8). These so-called Burnett
terms cause solutions of the discrete Boltzmann PDE system (4) to differ by O(Kn2) from solutions of the Navier–Stokes
equations (37).

Figure 3 shows the behaviour of the discrete ℓ2-norm errors in the vorticity field at t = 1 of the various lattice Boltzmann
models with Re = 2000 and Ma = 128

√
3/2217 ≈ 0.100001 relative to a reference solution. This choice of Mach number

ensures that t = 1 is reached exactly after an integer number of timesteps when n = 512 or a higher power of 2. A highly accurate
reference solution to (37) was computed using a Fourier pseudo-spectral discretisation in space and fourth-order Runge–Kutta
integration in time of the resulting system of ordinary differential equations. This explicit treatment of the viscous term implies
a stringent limit ∆t ≤ 2.7Re/k2

max on the maximum stable timestep ∆t, where kmax = 21/2πM for a simulation with M × M
Fourier collocation points. The solution was converged for M = 512.

The total errors in the solutions computed using the standard and partially corrected lattice Boltzmann algorithm saturate
at around n = 1024, and do not decrease under further grid refinement to n = 2048 and n = 4096. By contrast, the total
error in the solution computed using the fully corrected lattice Boltzmann algorithm remains consistent with second-order
convergence. However, this is only because the Burnett error, and the remaining O(Ma5) error in the viscous stress, are not
significant compared with the truncation errors for this Mach number, Reynolds number, and maximum resolution. These other
sources of error are, though, the most likely explanation for the deviation from second-order convergence at n = 4096.

Also shown in Fig. 3 are the errors in solutions computed using a D2Q13 lattice Boltzmann model with the discrete equilibria
from Weimar and Boon [9]

f (0)
i = ρ

{
Wi

[
1 + 2 u · ξi + 2(u · ξi)

2 − |u|2
]
+ Ei(u · ξi)

3 − Fi(u · ξi)|u|2
}
, (38)
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Figure 3: Errors in (a) vorticity and (b) density at t = 1 for Re = 2000 and Ma = 0.1 on successively finer n × n grids. The errors in the standard and partially
corrected D2Q9 simulations soon become dominated by the O(Ma3) error rather than the space/time discretisation error, and show no improvement under
further grid refinement. By contrast, the fully corrected D2Q9 simulation is more accurate than the D2Q13 simulation, which has the correct Q(0) tensor and
no ∇·(ρuuu) error. The errors run from largest (top) to smallest (bottom) in the figure legends.

with the weights

Wi =


36/96,
8/96,
6/96,
1/96,

Ei =


0,
32/96,
12/96,
1/96,

Fi =


0, for i = 0,
48/96, for i = 1, 2, 3, 4,
12/96, for i = 5, 6, 7, 8,
0, for i = 9, 10, 11, 12.

(39)

The additional 4 axis-aligned particle velocities with |ξi| = 2 enable all four components of the Q(0) tensor to be set to their
Maxwell–Boltzmann values as in (12). This completely removes the ∇·(ρuuu) term from the simulated viscous stress. The
Weimar–Boon model gives the different equation of state c2

s = 1/2 in lattice units, so it was run with Ma = 128
√

2/1810 ≈
0.100011. Again, this Mach number was chosen so that t = 1 was reached exactly after an integer number of timesteps. The
data in Fig. 3 show the errors relative to a second converged spectral simulation with this slightly different Mach number. The
fully corrected D2Q9 solution is thus more accurate than the D2Q13 solution, even though the latter exactly reproduces the
Navier–Stokes viscous stress, while the former retains an O(Ma5) error.

8. Three dimensions

Keating et al. [24] investigated partial cubic corrections in three dimensions using the equilibria

f (0)
i = ρwi

{
1 + 3 u · ξi +

9
2

(u · ξi)
2 − 3

2
|u|2 + 9

2
(u · ξi)

[
(u · ξi)

2 − |u|2]} . (40)

These equilibria give correct values for the off-diagonal components such as Q(0)
xxy on the D3Q27 lattice with the weights given

in Table 1. However, contrary to the assertion of Keating et al. [24], these equilibria give incorrect off-diagonal components
when used with the D3Q15 or D3Q19 lattices. A direct evaluation using velocities and weights from Table 1 gives

Q(0)
xxy =

1
3
ρuy + ρ(u2

x + u2
z )uy, Q(0)

xyz = 3ρuxuyuz, (41)

for the D3Q15 lattice, and

Q(0)
xxy =

1
3
ρuy + ρ(u2

x − u2
z/2)uy, Q(0)

xyz = 0, (42)

for the D3Q19 lattice. In particular, Q(0)
xyz is identically zero for the D3Q19 lattice because no particle has all three of its velocity

components non-zero. The only elements of the orthogonal bases for the D3Q19 lattice that are cubic in ξi are the vector
(|ξi|2 − α)ξi, and the three quantities (ξ2

iy − ξ2
iz)ξix plus cyclic permutations [28, 39]. The constant α in the vector is α = 9/5 for

an ℓ2-orthogonal basis, and α = 5/3 for a wi-orthogonal basis. None of these basis vectors project onto ξixξiyξiz.
It is thus impossible to correct the off-diagonal entries of Q(0) on the D3Q15 and D3Q19 lattices, but these smaller lattices

have other undesirable properties. Simulations using the D3Q15 lattice are susceptible to checkerboard artifacts [40, 41] because
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(a) (b)

Figure 4: Development of the vertical velocity w from planar initial conditions in three-dimensional Taylor–Green flow with U = 0. Plot (a) shows data at
t = 3 for Re = 30, and plot (b) shows data at t = 10 for Re = 100 on the same colour scale.

this lattice decouples into two sublattices that are distinguished by x+ y+ z being odd or even on alternate timesteps [28]. More
recently, growing evidence has emerged of artifacts caused by insufficient isotropy in simulations using the previously popular
D3Q19 lattice. These artifacts are especially visible in flows that should be axisymmetric, and are greatly reduced by using the
D3Q27 lattice [42–45].

Having corrected the off-diagonal elements of Q(0) using the equilibria (40) on the D3Q27 lattice, the earlier formula (26)
for correcting the remaining defects in the post-collisional distribution functions extends into three dimensions as

f
⋆

i = f i − ∆t
N−1∑
j=0

Ω̃i j

(
f j − f (0)

j

)
−

∑
α∈{x,y,z}

9
2

wi

(
ξ2

iα − 1
3

) ( ∆t
τ(1 − 9u2

α/2) + ∆t/2
− ∆t
τ + ∆t/2

) (
Παα − Π(0)

αα

)
, (43)

where the sum is taken over the three coordinates x, y, z. Again, some simplification is available by expanding the denominators
for |u| ≪ 1 to obtain the three-dimensional analogue of (27),

f
⋆

i = f i − ∆t
N−1∑
j=0

Ω̃i j

(
f j − f (0)

j

)
− 36τ∆t

4(τ + ∆t/2)2

∑
α∈{x,y,z}

wi

(
ξ2

iα − 1
3

)
u2
α

(
Παα − Π(0)

αα

)
. (44)

We evaluate this correction using simulations of the three-dimensional Taylor–Green [46] vortex studied by Orszag [47].
Adding a uniform background velocity U = (U,U,U) to the initial conditions gives

ux = cos x sin y cos z + U, uy = − sin x cos y cos z + U, uz = U, (45)

in the triply-periodic domain 0 ≤ x, y, z < 2π. These initial conditions are divergence-free, and evolve into a fully three-
dimensional flow for t > 0. The resulting vertical velocity components for Re = 30 and Re = 100 are shown in Fig. 4. The
initial conditions were translated by π/4 in the z direction so that cos(z + π/4) appeared in the initial conditions. Otherwise the
vertical velocity on z = 2π vanishes due to the symmetry of the initial conditions.

Using u0(x, t) to denote the solution evolving from the initial conditions with U = 0, Galilean invariance implies

u(x, t) = u0(x − tU, t) + U, (46)

where the difference x − tU is computed modulo 2π in each component. We measure the extent to which the various lattice
Boltzmann algorithms deviate from exact Galilean invariance by computing the difference between two lattice Boltzmann
solutions ũ(x, t) and ũ0(x, t), the latter computed with U = 0, using

E(U, t) =

n−3
∑

k

∣∣∣ũ(xk, t) − U − ũ0(xk − tU, t)
∣∣∣21/2

. (47)
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Figure 5: Defects in Galilean invariance for Re = 30 and Ma =
√

3/(4π) ≈ 0.14 on 643, 1283 and 2563 lattices with no, partial, or full correction of the cubic
error term. The errors in the first two sets of simulations become dominated by the cubic errors at the 1283 resolution, so refining to 2563 gives no visible
improvement. The errors in the final set of simulations continue to decrease with grid refinement.

The sum is take over all n3 grid points xk, and the difference xk − tU is again computed modulo 2π.
Figure 5 shows E(U, t) as a function of t for U = 1/4, Re = 30, Ma =

√
3/(4π) ≈ 0.14 for the three different algorithms

on grids with n = 64, 128, 256. The differences for the algorithms with no or partial correction of the cubic error terms are
virtually identical between the 1283 and 2563 simulations, showing that the defect in Galilean invariance is dominated by the
cubic error term rather than by truncation error. By contrast, the defect in Galilean invariance for the fully corrected algorithm
decreases by about a factor of 4 between the 1283 and 2563 simulations, consistent with the remaining defect being primarily
due to truncation error. The O(Ma5) error due to the uncorrected density gradient is not visible for these parameters. Figure 6
shows the same data for simulations with Re = 100, but all other parameters unchanged. The standard lattice Boltzmann
algorithm becomes unstable for these parameters, while the defect in Galilean invariance for the partially corrected algorithm
again saturates at a finite value with increasing resolution.

9. Further correction with adjustable bulk viscosity

The more general form of the Navier–Stokes viscous stress is

Π(1) = −µ
[
(∇u) + (∇u)T

]
− λ(∇·u)I. (48)

The λ term adds an additional bulk viscosity that enhances the dissipation of sound waves. A bulk viscosity much larger than the
shear viscosity is commonly used to improve the stability of lattice Boltzmann algorithms in the weakly compressible regime
[27, 28, 48, 49], but also enlarges the non-Galilean contribution to the viscous stress from the trace of the spurious ∇·(ρuuu)
term.

The off-diagonal components of Π(1) are unaffected by this change, so we consider just the diagonal components

Π(1)
xx = −(2µ + λ)∂xux − λ∂yuy, Π(1)

yy = −(2µ + λ)∂yuy − λ∂xux, (49)

in two dimensions for simplicity. We write this pair of equations in matrix form as

Π
(1)
xx

Π
(1)
yy

 = −

λ + 2µ

1 − 9u2
x/2

λ

1 − 9u2
y/2

λ

1 − 9u2
x/2

λ + 2µ
1 − 9u2

y/2


(1 − 9u2

x/2)∂xux

(1 − 9u2
y/2)∂yuy

 , (50)

and invert to obtain the collision matrix

Ω = −


(λ + 2µ)(2 − 9u2

x)
8µ(λ + µ)

λ(2 − 9u2
x)

8µ(λ + µ)
λ(2 − 9u2

y)

8µ(λ + µ)

(λ + 2µ)(2 − 9u2
y)

8µ(λ + µ)

 (51)
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Figure 6: Defects in Galilean invariance for Re = 100 and Ma =
√

3/(4π) ≈ 0.14 on 643, 1283 and 2563 lattices (top to bottom) with partial or full correction
of the cubic error term. The defect in the fully corrected simulations appears to converge towards zero under grid refinement, while the defect in the partially
corrected simulations appears to approach a non-zero value.

for the discrete Boltzmann PDE. The previous formula Ω̃ = (I + 1
2∆tΩ)−1Ω then gives the discrete collision matrix, with

components such as

Ω̃xx =
2∆t

[
∆t(2 − 9u2

y) − 4(λ + 2µ)
]
(2 − 9u2

x)

64µ(λ + µ) − 4∆t(λ + 2µ)(4 − 9u2
x − 9u2

y) + ∆t2(2 − 9u2
x)(2 − 9u2

y)
. (52)

This approach extends easily to a 3 × 3 matrix for the three diagonal components Π(1)
xx , Π(1)

yy , Π(1)
zz in three dimensions.

10. Conclusion

The derivation of hydrodynamic equations from discrete kinetic theory via a system of moment equations follows the same
route as the derivation from the continuous Boltzmann equation. However, most common lattice Boltzmann algorithms use
quadratic polynomials in u for their equilibrium distributions. The third equilibrium moment Q(0) therefore omits the cubic
term ρuuu that is present in the corresponding equilibrium moment for continuous kinetic theory. This leads to an erroneous
term proportional to ∇·(ρuuu) in the viscous stress that violates Galilean invariance [6].

The missing cubic term is not easily restored because the discrete velocity components ξiα lie in the set {−1, 0, 1} for
common lattices such as D2Q9, D3Q15, D3Q19, and D3Q27. Since ξ3

iα = ξiα, the diagonal components of Q(0) are set by
the first moment ρu and cannot be varied independently. The most common remedy adopts a larger lattice, such as D2Q13 or
D2Q17, with particles moving with |ξi| = 2 or |ξi| = 23/2. This remove the previous constraint, but adds computational cost
and increases susceptibility to numerical instabilities at the grid scale. Another approach, primarily used in the free-energy
approach to multiphase flow, adds finite difference terms to correct the momentum flux.

On the D2Q9 lattice the cubic terms may be restored to the off-diagonal components Q(0)
xxy and Q(0)

xyy. This corrects the lack
of Galilean invariance visible in axis-aligned shear flows [12, 23, 24], in which only the Πxy component of the momentum flux
tensor plays a rôle. However, the diagonal components Πxx and Πyy remain incorrect, causing visible defects for shear flows in
directions inclined to the axes of the discrete velocity lattice. For example, the xx component of the viscous stress is

Π(1)
xx = −τxx

[
(2/3)ρ∂xux − ∂x

(
ρu3

x

)]
= −τxx

[
(2/3)ρ(1 − 9u2

x/2)∂xux + u3
x∂xρ

]
, (53)

where τxx is the relaxation time applied to Πxx in the collision operator. This still contains the non-Galilean-invariant term
∂x(ρu3

x). Moreover, the partial correction of Q(0) may increase the error for shear flows inclined to the underlying lattice, as
shown in Fig. 1(b).

In this paper we adopted a matrix collision operator that applies different relaxation times to the different components
of Π. Setting the relaxation time for Πxx to be τxx = τ/(1 − 9u2

x/2) absorbs the first part of the defect in (53), leaving
only a term proportional to ∂xρ. Similarly redefining τyy = τ/(1 − 9u2

y/2) absorbs the corresponding part of the defects in
Πyy. This completely eliminates the defects in Galilean invariance for flows with constant density, as demonstrated for two-
dimensonal linear shear flows inclined at arbitrary angles to the discrete velocity lattice. For more general flows, in which
density fluctuations are non-zero but O(Ma2), the defect in Galilean invariance is reduced from O(Ma3) to O(Ma5). Numerical
comparisons with independent pseudospectral simulations of the two-dimensional isothermal Navier–Stokes equations confirm
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that a substantial error attributable to lack of Galilean invariance persists in the partially corrected algorithm, but is greatly
reduced in magnitude in the further corrected D2Q9 lattice Boltzmann algorithm. The latter then becomes as accurate as the
Weimar–Boon D2Q13 formulation that completely eliminates the cubic error term.

This approach extends to three dimensions, but only for the D3Q27 lattice that is a tensor product of one-dimensional
three-velocity lattices in each coordinate. All components of Q(0) other than the diagonal components Qxxx, Qyyy, Qzzz may be
corrected by the addition of a cubic term to the equilibrium distributions. This partial correction of the off-diagonal components
of Q(0) is not possible for the smaller D3Q15 or D3Q19 lattices. However, the popularity of these lattices is already diminishing
due to the presence of checkerboard artifacts on the D3Q15 lattice, and increasing evidence for loss of isotropy when using the
D3Q19 lattice. The remaining defects in the diagonal components of Π on the D3Q27 lattice may be corrected by adjusting
the collision times τxx, τyy, τzz through a straightforward modification of any existing collision operator with a uniform stress
relaxation time. The resulting algorithm greatly reduces the defects due to lack of Galilean invariance in three-dimensional
simulations of the Taylor–Green vortex with a superimposed uniform background flow. It retains the standard lattice Boltzmann
streaming and collision steps without needing additional interpolation or calculation of finite difference approximations. The
small additional complexity of the collision operator will therefore have a negligible effect upon the speed of simulations, a
speed typically limited by memory bandwidth rather than by floating point computations.

A. The viscous stress from pseudo-incompressible equilibria

The pseudo-incompressible lattice Boltzmann equilibria [34]

f (0)
i = wi

[
ρ + ρ0

(
3 u · ξi +

9
2

(u · ξi)
2 − 3

2
|u|2

)]
, (54)

replace the density ρ by a constant reference density ρ0 in every term involving the fluid velocity. These equilibria thus differ
by O(Ma3) from the standard equilibria in (2)

The pseudo-incompressible equilibria give the fluid equations

∂tρ + ρ0∇·u = 0, ρ0 (∂tu + u · ∇u) + θ∇ρ = −∇·Π(1), (55)

which may be identified with Chorin’s artificial compressibility equations [50]. The equilibria (54) are commonly called
“incompressible” because ∇·u = 0 holds exactly for steady states. However, the above fluid equations still support sound
waves with velocity cs = θ

1/2, and the equilibria differ by only O(Ma3) from the standard quadratic polynomial equilibria (2).
Unsteady solutions to (55) therefore exhibit the same O(Ma2) compressibility errors, relative to the incompressible limit, as
solutions of the isothermal Navier–Stokes equations (37).

The leading order time derivation of Π(0) = ρθI + ρ0uu is

∂t0Π
(0) = Iθ(∂t0ρ) + ρ0u(∂t0 u) + ρ0(∂t0 u)u,

= −Iθρ0∇·u − ρ0u
(
u · ∇ + θ

ρ0
∇ρ

)
− ρ0

(
u · ∇ + θ

ρ0
∇ρ

)
u. (56)

The third moment of the equilibrium is Q(0)
αβγ = ρ0θ

(
uαδβγ + uβδγα + uγδαβ

)
, with divergence

∇·Q(0) = ρ0θ
[
(∇u) + (∇u)T + I∇·u

]
. (57)

Combining these two gives a viscous stress proportional to

∂t0Π
(0) + ∇·Q(0) = θρ0

[
(∇u) + (∇u)T

]
− θ[u (∇ρ) + (∇ρ) u

] − ρ0
[
u (u · ∇u) + (u · ∇u) u

]
. (58)

The density gradient terms from ∂t0Π
(0) in (56) are no longer cancelled by density gradient terms from ∇·Q(0), and we are

missing the uu∂t0ρ term from ∂t0 (ρuu) that allowed the previous error term to be written as the divergence ∇·(ρuuu). The
latter missing term is O(Ma4), but the ∇ρ terms are O(Ma3), the same order as the previous cubic error term. These pseudo-
incompressible equilibria therefore pose a much less tractable starting point for obtaining a Galilean-invariant algorithm than
the standard compressible equilibria.
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