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We study the dynamics of the oil-air interface (OAI) (also called meniscus) of the fluid dynamic bearings of hard disk drives, par-
ticularly when the OAI is located among bearing grooves. We derive a simple analytical expression for the evolution of the OAI of an
herringbone-type journal bearing. We also report numerical experiments where we include surface tension as a regularization param-
eter.

Index Terms—Fluid dynamic bearing, hard disk drive, spindle.

NOMENCLATURE

HDD Hard disk drive.
FDB Fluid dynamic bearing.
HB Herringbone.
OAI Oil-air interface.
BEM Boundary-element method.
TSD Tied shaft design.
ODE Ordinary differential equation.
SG Spiral groove.

I. INTRODUCTION

I T IS an acknowledged fact that ball bearing spindles of hard
disk drives are rapidly being replaced by spindles using fluid

dynamic bearings (FDB) [1]. See the nomenclature above for
other acronyms used throughout this paper. FDBs have a long
history, notably the pioneering work of Muijderman [2] and par-
ticularly Bootsma and Tielemans [3]. In FDBs, oil film pressures
are created by slanted grooves in either the rotor or stator. We
limit ourselves to the study of radial bearings in which the shaft
is stationary and does not have any grooves, while the rotor has
grooves in the shape of a “herringbone” (HB). The HB grooves
move relative to the smooth stator and act as a stalled oil pump.
When the spindle does not rotate, the oil is held in the FDB
by capillary pressures alone. When the spindle rotates, the lo-
cation of the oil is dominated by fluid dynamic pressures. In
some FDB designs, one or more of the OAIs are located in the
HB of the FDB. This is cause for concern because the grooves
disturb the OAI. When this disturbing effect is strong enough,
small air bubbles may enter the oil, as reported by Asada et al.
[4]. Once air bubbles are in the FDB, they change the rotordy-
namics and interfere with normal servo operation of the HDD.
Our main goal, therefore, is to investigate the OAI when it is
located among the grooves. Fig. 1 shows the lower section of
a typical FDB of tied shaft design (TSD) Note that the radial
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Fig. 1. Cross section of a tied-shaft fluid dynamic bearing. The journal bearing
extends from A to B. The thrust bearing extends from B to C. The oil-air
interface under study is at A. R: rotor; S: stator; d: bearing radial clearance.

B–C and journal A–B bearings are joined at B. When the rotor
R spins around the stationary shaft S, the location of the OAIs is
different from those with the spindle at rest. Note that one side of
the herringbone section HB is longer than the other to allow the
HB pressure to balance the pressure of the spiral groove thrust
bearing SG. During spindle operation, the thrust bearing has a
capillary buffer C, a tapered reservoir. During standstill, oil also
partially fills a capillary buffer adjacent to the HB. In this paper,
we only study the upper section of the HB with length.

II. PROBLEM DESCRIPTION

We consider the motion of an incompressible viscous fluid
between the stator and rotor as shown in Fig. 2. We use a cylin-
drical polar coordinate system centered at the stator, but a ro-
tating frame of reference in which the rotor appears fixed.

In the rotating frame, the stator then appears to rotate back-
ward. The continuity and Navier–Stokes equations are

(1)

(2)

The asterisks indicate dimensional variables and are the unit
vectors in the radial and axial directions, respectively. The last
two terms in (2) are the Coriolis and centrifugal forces due to

0018-9464/$20.00 © 2005 IEEE



HENDRIKS et al.: DYNAMICS OF THE OIL-AIR INTERFACE IN HARD DISK DRIVE BEARINGS 2885

Fig. 2. Rotating coordinate frame. The rotor is rotating with angular velocity

 in the positive � direction with respect to an inertial frame. The analysis is
expressed in a frame fixed to the rotor in which the grooves are stationary and
the stator (shaft) appears to rotate backward.

the rotating reference frame. Referring to Fig. 2, these equations
hold in the region ,
and .

Here, is the fluid velocity, with compo-
nents in the radial, azimuthal, and axial directions respectively,
and is the fluid pressure, is the fluid density, is the dy-
namic viscosity, and is the angular rotation speed. The ve-
locity must satisfy no-slip boundary conditions at the inner and
outer walls. Thus, at on the
stator, while at on the rotor. We im-
pose symmetry conditions on the herringbone centerline. Along
the oil-air interface

(3)

(4)

(5)

where is the outward normal at the in-
terface ( is the unit vector in the direction), is the surface
tension, equals twice the mean OAI curvature, and

is the viscous stress. At leading order we
have from the -momentum equation. Constancy
of the pressure across the film and the remaining two momentum
equations then lead to a Couette–Poiseuille velocity profile in

. Equation (1) at leading order takes the form of
Reynolds’ equation for an incompressible fluid

(6)

where denotes the wall profile of the grooved rotor.
Homsy [5] shows that a similar argument may be used near
the free surface, invoking the notion of a “passive boundary
layer.” The concept of a single location and velocity of
the free interface forces averaging of the fluid velocities across

. Assuming that there is a single, coherent OAI, we conclude
that the free surface must simply follow the planar velocities
imposed by the interior lubrication region where (6) holds. The
resulting condition on the interface is

(7)

where is the average interfacial height of the OAI,
and the average velocity is given by

(8)

Fig. 3. Pressure distribution and mean flow vectors for the wall profile
f(�; z) = 1 + � sin[n(� � kz)] for k = 2 and n = 5; � = 1.

where . The averaging of the normal
stress boundary condition results in zero pressure at the
interface.

With (8) the kinematic free surface condition, (7) becomes

(9)

subject to the conditions along along
, and and are -periodic in .

III. SHALLOW GROOVE LIMIT

Consider the rotor wall profile with shallow grooves

(10)

where is the amplitude of the rotor wall relative to the
mean gap thickness, is the number of grooves around the rotor
circumference, and , where is the groove angle.
We expand the pressure and the interfacial deflection terms in a
power series in . Fig. 3 shows the pressure and the mean flow
vectors for this case.

The leading order pressure governed by (9) directly gives us
the interfacial deflection

(11)

which yields the magnitude of the OAI deflection as

(12)

This clearly shows that fewer grooves lead to larger deflection,
in agreement with results by Asada et al. [4].
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Fig. 4. Evolution of the oil-air interface at various times t for two values of the
regularization parameter (surface tension) 10 (solid line) and 10 (dashed
line). The groove depth is H = 2, and the number of grooves is n = 5. At
t = 0:075 the dashed line is indistinguishable from the solid line data. No
dashed line data is available for t = 0:377. The value of t for each dashed line
is that of its nearest neighbor.

Fig. 5. Equations and domains of solution with piecewise constant grooved
surface. (a) shows a view onto the plane of the fluid bearing and (b) shows a
cross section of the grooved surface.

IV. NUMERICAL APPROACHES

A. Fourier/Finite Difference Approach

After mapping the physical domain as follows

(13)

was obtained by solving a set of ordinary differential
equations for its Fourier coefficients using a variable-order ODE
integrator [6]. The above model becomes ill-posed in the re-
gion of the downward (toward negative ) moving part of the
OAI. We reintroduced surface tension as a regularizing param-
eter to suppress numerical instability. We tested this scheme for
a rounded-rectangular groove profile given by

(14)

where controls the groove profile steepness, is the minimum
to maximum gap distance (groove depth). Fig. 4 shows the evo-

Fig. 6. Free surface “finger” evolution at successive times, computed
with the boundary element method. From top to bottom, the time is
t = 0:07; 0:17;0:27;0:37. The settings are H = 2; z = 1; � =

�=5; n = 5; � = �=3.

lution of the free surface for two different values of the regular-
ization parameter , and .
The groove depth is 2.

B. Boundary Integral Approach

Using the formulation of Fig. 5, interfacial profiles were ob-
tained with the boundary element method (BEM) for piecewise
constant , a common occurrence in FDBs.

The BEM solution method we use is similar to that used by
Kelly and Hinch [7]. Fig. 6 shows some computed surface evo-
lutions for a piecewise constant groove profile, again showing a
tendency for OAI “fingering.”
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