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Abstract. Magnetohydrodynamics couples the Navier–Stokes and Maxwell’s equa-
tions to describe the flow of electrically conducting fluids in magnetic fields. Maxwell’s
equations require the divergence of the magnetic field to vanish, but this condition is
typically not preserved exactly by numerical algorithms. Solutions can develop arti-
facts because structural properties of the magnetohydrodynamic equations then fail to
hold. Magnetohydrodynamics with hyperbolic divergence cleaning permits a nonzero
divergence that evolves under a telegraph equation, designed to both damp the diver-
gence, and propagate it away from any sources, such as poorly resolved regions with
large spatial gradients, without significantly increasing the computational cost. We
show that existing lattice Boltzmann algorithms for magnetohydrodynamics already
incorporate hyperbolic divergence cleaning, though they typically use parameter val-
ues for which it reduces to parabolic divergence cleaning under a slowly-varying ap-
proximation. We recover hyperbolic divergence cleaning by adjusting the relaxation
rate for the trace of the tensor that represents the electric field, and absorb the con-
tribution from the symmetric-traceless part of this tensor using a change of variables.
Numerical experiments confirm that the qualitative behaviour changes from parabolic
to hyperbolic when the relaxation time for the trace of the electric field tensor is in-
creased.
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1 Introduction

Magnetohydrodynamics (MHD) describes flows of electrically conducting fluids in mag-
netic fields by coupling the Navier–Stokes equations with Maxwell’s equations. The lat-
ter require the magnetic field to have zero divergence, but this condition is typically not
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preserved exactly in numerical simulations. A non-vanishing ∇·B can create artifacts in
simulations because structural properties of the MHD equations fail to hold [1–4]. For
example, the divergence of the Maxwell stress 1

2 |B|2I−BB is no longer equal to minus
the Lorentz force (∇×B)×B, and no longer perpendicular to the magnetic field B.

There are several approaches to resolving this problem, some inspired by earlier work
on an analogous problem for the electric field E in electrostatically interacting systems.
While ∇·E is generally not zero in Maxwell’s equations, a consistency condition connects
the evolution of ∇·E with the electric current Je. This consistency condition is usually not
preserved by numerical algorithms, especially those using the “particle-in-cell” approach
[5–8].

Yee’s [9] finite difference time domain (FDTD) scheme for Maxwell’s equations ex-
actly preserves a particular discrete approximation to ∇·B= 0 by representing the elec-
tric and magnetic fields on a staggered grid. Evans & Hawley [10] extended this scheme
to MHD with a form of artificial viscosity that they named constrained transport. De-
Vore [11] designed a flux corrected transport scheme with the same property, and with
flux limiters to resolve discontinuous solutions of the ideal MHD equations. Tóth [3]
showed that these schemes can be transformed into standard finite volume schemes on
unstaggered grids. All these schemes are ancestors of more recent mimetic discretisa-
tions that ensure that the vector identity ∇̃·(∇̃×(···)) = 0 holds for consistent discrete
divergence ∇̃·(···) and curl ∇̃×(···) operators [12, 13].

Brackbill & Barnes [1], and also Boris [5], proposed a projection method for evolving
the magnetic field in discrete timesteps of length ∆t, following the pressure projection
method used for solving the incompressible Navier–Stokes equations [14–16]. In its sim-
plest form, this projection method is:

B⋆=Bn−∆t(∇̃×E)n, (1.1a)

Bn+1=B⋆−∇̃Ψn+1, (1.1b)

where ∇̃ denotes a consistent discrete approximation to the gradient operator. The mag-
netic field Bn is evolved forwards by a single timestep to define an intermediate solution
B⋆. This intermediate solution is then projected onto the space of divergence-free vector
fields by subtracting the gradient of a scalar field Ψn+1 determined by solving the elliptic
equation ∇̃2Ψn+1 = ∇̃·B⋆. This method ensures that ∇̃·Bn+1 = 0 provided the various
discrete operators satisfy ∇̃2Ψ= ∇̃·(∇̃Ψ) [2, 3, 17].

Dedner et al. [18] considered a set of MHD equations based on an extended form of
Maxwell’s equations with [6–8]

∂tB+∇×E+∇Ψ=0, (1.2a)
D(Ψ)+∇·B=0. (1.2b)

The evolution equation for B contains an extra contribution from the gradient of a scalar
field Ψ that is related to ∇·B by a general linear operator D. We can interpret the pro-
jection method (1.1a,b) as a particular discretisation of (1.2a,b) with D(Ψ) =−∇2Ψ via
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operator splitting. Conversely, we can interpret (1.2a,b) as a continuous-time version of
the projection method, analogous to Chorin’s artificial compressibility approach for solv-
ing the incompressible Navier–Stokes equations [19]. We can also interpret (1.2a) as a
Helmholtz decomposition of ∂tB, treated as an arbitrary vector field, into a divergence-
free part ∇×E and a curl-free part ∇Ψ. Following yet another approach, Assous et al. [6]
derived (1.2a) by introducing Ψ as a field of Lagrange multipliers to enforce ∇·B=0 in a
variational formulation of Maxwell’s equations.

Choosing instead D(Ψ)=(∂tΨ+(1/τ)Ψ)/c2
Ψ leads to the telegraph equation

∂tt(∇·B)+(1/τ)∂t(∇·B)= c2
Ψ∇2(∇·B). (1.3)

Short wavelength disturbances in ∇·B propagate away from any sources with speed cΨ,
while long wavelength disturbances decay like exp(−t/τ). For suitable choices of τ and
cΨ, the extended system (1.2a,b) can be solved with only a modest increase in computa-
tional cost over solving the original MHD equations. There is no need to compute the
solutions of elliptic equations that are needed in the projection method. The extended
system is described as the MHD equations with hyperbolic divergence cleaning, as ∇·B
evolves according to the second-order hyperbolic equation (1.3). More recently, hyper-
bolic divergence cleaning has been implemented in smoothed particle magnetohydro-
dynamics [4, 20]. This approach naturally uses material time derivatives following fluid
particles, and so replaces the partial time derivative ∂tΨ with a material time derivative
(∂t+u·∇)Ψ following the fluid velocity u.

The work described in this paper is inspired by recent work by Baty et al. [21] that ex-
tended an existing lattice Boltzmann MHD formulation [22–25] to include Ψ as an extra
scalar field represented by an extra set of distribution functions. Baty et al. [21] also repre-
sented the fluid velocity field using a second set of vector distribution functions, the same
vectorial approach used by Zhao [26] for pure hydrodynamics, rather than adapting one
of the standard hydrodynamic lattice Boltzmann algorithms based on scalar distribution
functions [22–25].

In this paper we show that there is no need to include Ψ as an extra degree of freedom
represented by extra distribution functions. The functionality needed to simulate the
system (1.2a,b) is already present in the existing lattice Boltzmann MHD formulation
that evolves the magnetic field according to [22–25]

∂tB+∇·Λ=0, (1.4)

where Λ is a general rank-2 tensor. This reduces to Maxwell’s evolution equation for B if
Λαβ =−ϵαβγEγ is purely antisymmetric. However, Λ does not remain antisymmetric as
it evolves (see Section 5). The trace of Λ can be used to represent the scalar field Ψ in the
divergence cleaning equations.

Moreover, the underlying kinetic formulation implies that TrΛ evolves according to

∂tTrΛ+∑
α

Mααα =− 1
τ

TrΛ, (1.5)
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where Mααα (no implied summation) are the diagonal components of a tensor M defined
in Section 5. Approximating the components of M by their equilibrium values, M(0)

αβγ =

ΘδαβBγ for some constant Θ, gives (1.2a) with D(Ψ)=(∂tΨ+(1/τ)Ψ)/c2
Ψ and c2

Ψ =Θ/3.
It turns out that ∇·B then satisfies a slight modification of (1.3), with the modification
arising from the symmetric-traceless part of Λ.

However, the kinetic relaxation time τ is normally sufficiently short that we can ap-
proximate (1.5) by its Chapman–Enskog expansion TrΛ=−τΘ∇·B+O(τ2). This expan-
sion is valid for solutions that vary slowly over timescales much longer than τ. In-
deed, the whole tensor Λ is then given by Λ = uB−Bu−τΘ∇B+O(τ2), so (1.4) be-
comes [22, 23, 25]

∂tB=∇×(u×B−η∇×B)+∇(η∇·B). (1.6)

This is the resistive MHD induction equation with resistivity η = τΘ, and a parabolic
divergence cleaning term ∇(η∇·B) that matches the system (1.2a,b) with D(Ψ)=Ψ/η.

By adapting the collision operator applied to the magnetic distribution functions we
can promote TrΛ to be a freely evolving variable, rather than a quantity that is expressed
in terms of B and its spatial derivatives by the Chapman–Enskog expansion. We then
recover the hyperbolic form of divergence cleaning, just as we previously recovered
Maxwell’s equations instead of the MHD equations by promoting the electric field en-
coded in the antisymmetric part of Λ to be a freely evolving variable, rather than being
expressed in terms of B and its gradient via Ohm’s law [24].

2 Maxwell’s equations and magnetohydrodynamics

Maxwell’s equations govern the evolution of electric and magnetic fields. In media with-
out significant polarisation or magnetisation effects, Maxwell’s equations are [27, 28]

∇·E=ρec2, ∇·B=0, ∂tB+∇×E=0, −(1/c2)∂tE+∇×B= Je. (2.1)

These equations are written in units that absorb the vacuum permeability µ0 into the
electric field E and magnetic field B. They support wave-like solutions that propagate
with the speed of light c. In media, there are sources of electric charge ρe and electric
current Je in the equations for ∇·E and ∂tE, but no corresponding sources in the equations
for ∇·B and ∂tB. The divergence of the evolution equation for B gives

∂t(∇·B)=−∇·(∇×E)=0, (2.2)

since the divergence of the curl of any vector field is identically zero. Maxwell’s equa-
tion ∇·B= 0 can thus be treated as an initial condition, one that is preserved under the
subsequent evolution of B.

The equations of magnetohydrodynamics (MHD) combine Maxwell’s equations with
the Navier–Stokes equations to describe electrically conducting fluids coupled to mag-
netic fields [29]. The electric field typically scales as |E| ∼ |u||B| in a fluid moving with
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velocity u. We may thus neglect Maxwell’s displacement current (−1/c2)∂tE in (2.1) for
non-relativistic flows with |u|≪ c. The electric current is then simply Je =∇×B. More-
over, the electric field is given instantaneously by Ohm’s law, which in its simplest form
is E+u×B=η∇×B for resistive MHD with resistivity η. The magnetic field thus evolves
according to

∂tB=∇×(u×B−η∇×B). (2.3)

Meanwhile, the fluid density ρ and velocity u evolve according to

∂tρ+∇·(ρu)=0, ∂t(ρu)+∇·(ρuu)+∇p=∇·(µe)+Je×B, (2.4)

where e=∇u+(∇u)T is the symmetrised velocity gradient tensor, and µ is the dynamic
viscosity of the fluid. There is an extra Lorentz force Je×B on the right hand side of
the momentum equation. Using ∇·B = 0, we can rewrite the momentum equation in
conservation form as

∂t(ρu)+∇·
(
ρuu+pI−µe+ 1

2 |B|2I−BB
)
=0. (2.5)

The tensor 1
2 |B|2I−BB is the Maxwell stress tensor for the magnetic field [27, 28]. It com-

prises an isotropic magnetic pressure 1
2 |B|2 that augments the fluid pressure p, and a

magnetic tension BB in the direction of the magnetic field.

3 Extended Maxwell equations for divergence cleaning

The Maxwell equations with no sources that govern electric and magnetic fields in vac-
uum are invariant under duality rotations that transform E and B into [28, 30, 31]

E′=Ecosφ+cBsinφ, B′=Bcosφ− 1
c

Esinφ, (3.1)

with a constant angle φ. It is natural to consider an extended set of Maxwell equations
that remains invariant under these duality rotations in the presence of sources by intro-
ducing a magnetic charge ρm and a magnetic current Jm [28, 30, 31]

∇·E=ρec2, ∇·B=ρm, ∂tB+∇×E=−Jm, − 1
c2 ∂tE+∇×B= Je. (3.2)

These extended Maxwell equations contain the original Maxwell equations (2.1) as a spe-
cial case when ρm and Jm vanish. By cross-differentiating (3.2) we can derive the two
charge evolution equations

∂tρe+c2∇·Je =0, ∂tρm+∇·Jm =0. (3.3)

The first of these is the consistency condition between ∇·E and Je mentioned in the In-
troduction. The asymmetry in the factors of c arises from our use of the electric and
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magnetic units conventionally used in MHD. The electric field in a frame moving with
velocity u is E+u×B with no factor of c in these units.

To derive a closed set of equations, we must relate the magnetic current vector Jm to
the scalar magnetic charge ρm. The approach used by Powell [32, 33] for MHD brings in
the fluid velocity vector u to set Jm =uρm =u∇·B. We then obtain

∂tB+∇×E+u∇·B=0, (3.4)

which implies

∂t(∇·B)+∇·(u∇·B)=0. (3.5)

The magnetic charge density is thus transported with the fluid velocity u. The same
extension was previously introduced by Godunov [34] to transform the MHD equations
into a symmetric hyperbolic system. This extension also restores Galilean invariance to
the MHD equations when ∇·B ̸= 0. The associated Riemann problem contains an “8th
wave” that advects ∇·B with the fluid velocity normal to the interface.

Dedner et al. [18] followed an alternative approach that does not bring in another
vector field such as the fluid velocity. They set Jm =∇Ψ, using the gradient operator
to convert a scalar field to a vector field, and they related the new scalar field Ψ to the
magnetic charge density ∇·B through a scalar differential operator D to form the system
(1.2a,b).

Replacing E in (1.2a) using Ohm’s law gives a complete set of extended MHD equa-
tions with hyperbolic divergence cleaning:

∂tρ+∇·(ρu)=0, (3.6a)

∂t(ρu)+∇·
(
ρuu+pI−µe+ 1

2 |B|2I−BB
)
=0, (3.6b)

∂tB−∇×(u×B−η∇×B)+∇Ψ=0, (3.6c)

∂tΨ+(1/τ)Ψ+c2
Ψ∇·B=0. (3.6d)

We have chosen to retain the momentum equation (2.5) written in conservation form us-
ing the Maxwell stress, even though it now differs by B∇·B from the momentum equa-
tion (2.4) written using the Lorentz force (∇×B)×B.

We now turn to a numerical implementation of this system using the lattice Boltz-
mann method.

4 Lattice Boltzmann hydrodynamics

The lattice Boltzmann approach embeds the target system of partial differential equa-
tions to be solved into a larger linear constant-coefficient hyperbolic system in which all
nonlinearity is confined to algebraic source terms [35–37]. In particular, to simulate fluid
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dynamics, the fluid density ρ, fluid velocity u, and momentum flux Π are expressed as
moments of a discrete set of scalar distribution functions fi(x,t),

ρ=
N

∑
i=0

fi, ρu=
N

∑
i=0

ξi fi, Π=
N

∑
i=0

ξiξi fi. (4.1)

The fi are postulated to evolve according to a discrete velocity Boltzmann equation,

∂t fi+ξi ·∇ fi =−
N

∑
j=0

Ωij

(
f j− f (0)j

)
. (4.2)

The left hand side represents advection of each fi along a straight characteristic with con-
stant velocity ξi. The right-hand side represents a general linear collision operator that
relaxes the fi towards some equilibrium values f (0)i at rates determined by the elements

Ωij of a constant relaxation matrix Ω. The f (0)i are prescribed functions of the fluid den-
sity and velocity. A common choice is [35]

f (0)i =wiρ

{
1+3u·ξi+

9
2

(
(ξi ·u)2− 1

3
|u|2

)}
, (4.3)

with the weights w0=4/9, w1,2,3,4=1/9 and w5,6,7,8=1/36 in two dimensions. The corre-
sponding nine discrete velocities ξi are shown in Fig. 1. By integrating the combination
(4.2) and (4.3) along their characteristics for a timestep ∆t, and making a suitable change
of variables, we can derive the lattice Boltzmann equation [38, 39]

f i(x+ξi∆t,t+∆t)= f i(x,t)−∆t
N

∑
j=0

Ωij

(
f j− f (0)j

)
, (4.4)

for the transformed variables

f i(x,t)= fi(x,t)+
1
2

∆t
N

∑
j=0

Ωij

(
f j(x,t)− f (0)j (x,t)

)
. (4.5)

The right-hand side of (4.4) contains the elements Ωij of a transformed relaxation matrix
Ω=Ω(I+Ω∆t/2)−1. Due to these transformations, the discrete system (4.4) for evolv-
ing (4.5) approximates the discrete Boltzmann equation (4.2) with second-order accuracy
in ∆t. For the widely-used single-relaxation-time or Bhatnagar–Gross–Krook (BGK) [40]
collision operator with Ω = (1/τ)I, this transformation gives Ω = 1/(τ+∆t/2)I. This
corresponds to the Hénon correction [41] of the relaxation time from τ in the differential
equation (4.2) to τ+∆t/2 in the discrete system (4.4). The same formulation can be de-
rived by combining solutions of the separate advective and algebraic parts of (4.2) using
Strang splitting [42, 43].
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More generally, the matrix elements Ωij should be chosen so that Π is an eigenvector
of Ω with eigenvalue −1/τ, while ρ and ρu are also eigenvectors of Ω. The eigenvalues
for ρ and ρu are irrelevant because the equilibria (4.3) are constructed so that

N

∑
i=0

f (0)i =ρ,
N

∑
i=0

ξi f (0)i =ρu. (4.6)

By taking moments of (4.2) we can then derive macroscopic mass and momentum con-
servation equations,

∂tρ+∇·(ρu)=0, ∂r(ρu)+∇·Π=0, (4.7)

with the right-hand sides vanishing, and an evolution equation for Π of the form

∂tΠ+∇·
(

N

∑
i=0

ξiξiξi fi

)
=− 1

τ

(
Π−Π(0)

)
. (4.8)

The momentum flux corresponding to the equilibria (4.3) is

Π(0)=
N

∑
i=0

ξiξi f (0)i = θρI+ρuu, (4.9)

with constant temperature θ=1/3 in so-called lattice units for which the components of
the discrete velocities ξi take values in {−1,0,1}. Substituting Π=Π(0) in (4.7) thus yields
the compressible Euler equations with the isothermal equation of state p= θρ.

To recover the Navier–Stokes equations, we pose a multiple-scales expansion of the
fi and the time derivative ∂t in powers of the small parameter ϵ = τ/T, where τ is the
momentum flux relaxation time in (4.8), and T is the much longer timescale on which
ρ and u evolve. We impose solvability conditions on the expansion of the fi that are
equivalent to leaving ρ and u, the variables preserved under relaxation, unexpanded,
while expanding the momentum flux as Π=Π(0)+Π(1)+···. This is a more modern form
of the original Chapman–Enskog expansion.

The multiple-scales expansion allows us to evaluate ∂t0 Π(0) in the leading-order evo-
lution equation

∂t0 Π(0)+∇·
(

N

∑
i=0

ξiξiξi f (0)i

)
=− 1

τ
Π(1), (4.10)

and hence express Π(1) solely in terms of ρ, u and their spatial derivatives:

Π(1)=−τρθ
(
(∇u)+(∇u)T

)
+τ∇·(ρuuu). (4.11)

We thus recover the Navier–Stokes viscous stress with dynamic viscosity µ=τρθ, and an
error term τ∇·(ρuuu) [44, 45]. The error term is smaller than the viscous stress by the
square of the Mach number Ma= |u|/θ1/2. The error term arises from using the discrete
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Figure 1: The nine discrete velocities ξ0,. . .,ξ8 forming the D2Q9 lattices used for the fi. The five discrete
velocities ξ0,. . .,ξ4 (thicker lines) form the D2Q5 lattice used for the gi.

equilibria (4.3) that are quadratic polynomials in the fluid velocity u. The equivalent cal-
culation using the true Maxwell–Boltzmann distribution from continuous kinetic theory
would yield the Navier–Stokes viscous stress with no error term. The error is typically
negligible in simulations with small Mach numbers that are intended to approximate
incompressible flows.

5 Lattice Boltzmann magnetohydrodynamics

Using the conservation form of the momentum equation including the Maxwell stress
due to the magnetic field, we can include the Lorentz force in our lattice Boltzmann for-
mulation simply by changing the equilibrium momentum flux to be

Π(0)= θρI+ρuu+ 1
2 |B|2 I−BB, (5.1)

and changing the f (0)i accordingly to

f (0)i =wi

[
ρ

(
2− 3

2
|ξi|2

)
+3ρu·ξi+

9
2

Π(0) : ξiξi−
3
2

TrΠ(0)
]

(5.2)

in two dimensions, and by a similar formula in three dimensions. The difference arises
because TrI=D, the number of spatial dimensions.

The evolution equation for the magnetic field B is less straightforward to simulate
using a kinetic formulation. We can rewrite Maxwell’s equation ∂tB+∇×E=0 in diver-
gence form as

∂tB+∇·Λ=0 (5.3)
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by introducing a tensor Λ with components Λαβ=−ϵαβγEγ. This now resembles the mo-
mentum equation (4.7), except the momentum flux tensor Π defined in (4.1) is symmetric
by construction, while the electric field tensor Λ is antisymmetric by construction. It is
thus impossible to recover (5.3) by representing B as the first moment of some scalar
distribution functions, analogous to our representation of the momentum vector ρu in
(4.1).

Instead, we introduce a set of vector-valued distribution functions gi(x,t), and repre-
sent B and Λ by

B=
M

∑
i=0

gi, Λ=
M

∑
i=0

ξigi. (5.4)

This representation of Λ is not constrained to be either symmetric or antisymmetric. We
can typically choose M smaller than N, and so use fewer discrete velocities to represent
the magnetic field than we used in Section 4 to represent the hydrodynamic variables.
For example, in two dimensions it suffices to use just the five discrete velocities ξ0,. . .,ξ4
shown in Fig. 1.

We now postulate that the gi evolve according to a kinetic equation of the form

∂tgi+ξi ·∇gi =−
M

∑
j=0

Lij

(
gj−g(0)

j

)
, (5.5)

inspired by extending (4.2) to vector-valued distribution functions. Each element Lij is
itself a D×D matrix because gi and gj are D-component vectors in D spatial dimensions.

We choose the equilibrium distributions

g(0)
i =Wi

(
B+Θ−1ξi ·Λ(0)

)
with Λ(0)=uB−Bu, (5.6)

for suitable weights Wi, and a lattice constant Θ defined by the isotropy condition

M

∑
i=0

Wiξiξi =ΘI. (5.7)

In two dimensions, we take W0=1/3 and W1,2,3,4=1/6, giving Θ=1/3.
Equation (5.5) implies that Λ evolves according to

∂tΛ+∇·M=−
M

∑
i=0

ξi

M

∑
j=0

Lij

(
gj−g(0)

j

)
, (5.8)

involving the divergence of a further tensor

M=
M

∑
i=0

ξiξigi. (5.9)
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At equilibrium, with gi =g(0)
i , the components of M take the values M(0)

αβγ =ΘδαβBγ.
As in our previous derivation of the Navier–Stokes equations in Section 4, we now

pose a multiple-scales expansion

∂t =∂t0+∂t1+··· , Λ=Λ(0)+Λ(1)+··· , M=M(0)+M(1)+··· , (5.10)

while leaving B unexpanded. We choose the matrix elements Lij so that we can express
the right-hand side of (5.8) as a linear operator L acting on Λ, giving

∂t0 Λ(0)+∇·M(0)=−
M

∑
i=0

ξi

M

∑
j=0

Lijg
(1)
j =−LΛ(1). (5.11)

For the simplest case with Lij =(1/τΛ)Iδij, we thus obtain [22]

Λ(1)=−τΛΘ∇B+O(|u|3). (5.12)

The error term is O(|u|3), comparable to the error in Π(1), if we take the magnetic field
strength to be such that the Alfvén velocity Bρ−1/2 is comparable with, or smaller than,
the fluid velocity.

The evolution equation for B that we obtain at this order is thus

∂tB=−∇·(Λ(0)+Λ(1))=−∇·(uB−Bu−η∇B), (5.13)

which rearranges into

∂tB=∇×(u×B−η∇×B)+∇(η∇·B). (5.14)

This is the resistive MHD induction equation in the form (1.6) with resistivity η = τΛΘ,
and a parabolic divergence-cleaning term ∇(η∇·B) from the symmetric part of Λ(1).

More generally, we can specify the matrices Lij by specifying how the right-hand side
of (5.5) should act on a basis of moments of the gi. If we choose the 5 discrete velocites
show in Fig. 1 in two dimensions, or the analogous set of 7 discrete velocities in three
dimensions, then

Bα =
M

∑
i=0

giα, Λαβ =
M

∑
i=0

ξiαgiβ, Mαβγ =
M

∑
i=0

ξiαξiβgiγ (5.15)

form a basis of moments of the gi. For these sets of discrete velocities, the components
Mαβγ are identically zero unless α=β. There are thus D degrees of freedom in B, and D2

in each of Λ and M, giving 2D2+D degrees of freedom overall.
We can thus implement the discrete form of the right hand side of (5.5), analogous

to the right hand side of (4.4), by applying suitable relaxation times to the different mo-
ments, then reconstructing the post-collisional distributions from the moments using [23]

giβ =
1
2
(
ξiαΛαβ+ξiγξiα Mγαβ

)
for i ̸=0, g0β =Bβ−Mααβ. (5.16)
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6 Decomposition of the Λ tensor

To proceed further we need a more detailed investigation of the electric field tensor Λ,
recognising that Λ does not remain antisymmetric under the evolution (5.8). We can
decompose Λ into antisymmetric, isotropic, and symmetric-traceless parts as

Λαβ =
1
2
(
Λαβ−Λβα

)
+

1
3

δαβΛγγ+
1
2

(
Λαβ+Λβα−

2
3

δαβΛγγ

)
. (6.1)

This is the most general decomposition of a three-dimensional rank-2 tensor that is irre-
ducible under rotations. We can write this decomposition as

Λαβ =−ϵαβγEγ+Ψδαβ+Sαβ, (6.2)

by introducing

Eγ =−1
2

ϵαβγΛαβ, Ψ=
1
3

Λγγ, Sαβ =
1
2

(
Λαβ+Λβα−

2
3

δαβΛγγ

)
. (6.3)

The evolution equation (5.3) for B then becomes

∂tB+∇×E+∇Ψ+∇·S=0. (6.4)

This matches the hyperbolic divergence cleaning equation (1.2b) with an extra term ∇·S
from the symmetric traceless part of Λ. While it appears natural to identify the anti-
symmetric part of Λ with the electric field E as in previous work [23, 25], and the trace
of Λ with the additional scalar field Ψ in the divergence-cleaning equations, a slightly
different relation is needed to absorb the contribution from ∇·S.

We choose the matrix elements Lij so that the right-hand side of (5.8) becomes a linear
operator L acting on Λ(1) with eigenvalues 1/τE, 1/τΨ and 1/τS for E, Ψ, and S,

∂tΛαβ+∂γ Mγαβ =−[LΛ]αβ =− 1
τE

(−ϵαβγEγ)−
1

τΨ
Ψδαβ−

1
τS

Sαβ. (6.5)

We now suppose that τS is sufficiently small that we can apply the multiple-scales ex-
pansion for the symmetric-traceless part of (6.5). As Λ(0)

αβ =uαBβ−uβBα is antisymmetric,

while M(0)
γαβ =ΘδγαBβ, taking the symmetric-traceless part of (5.11) gives

Sαβ =−1
2

τSΘ
(

∂αBβ+∂βBα−
2
3

δαβ∂γBγ

)
+O(τ2). (6.6)

The error term represents contributions of O(τ2
S) and O(τSτM) from the next order in the

multiple-scales expansion, where 1/τM is the eigenvalue of the collision operator for M.
Under this approximation, the electric field tensor becomes

Λαβ =−ϵαβγEγ+Ψδαβ−
1
2

τSΘ
(

∂αBβ+∂βBα−
2
3

δαβ∂γBγ

)
+O(τ2). (6.7)
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Only S has been expressed in terms of B and its derivatives using the multiple-scales
expansion. We have made no similar assumption for E or Ψ. The eigenvalue 1/τS must
be finite for the collision operator to be invertible, so we cannot avoid the contribution
from ∇·S in (6.4). However, following the approach used to construct the symmetric
Maxwell stress tensor from the canonical electromagnetic stress tensor [27, 28], we can
add a manifestly divergence-free tensor to Λ to form

Λ̃αβ =Λαβ−τSΘ∂γ

(
δβαBγ−δβγBα

)
. (6.8)

The expression in (···) is antisymmetric in the α and γ indices, so ∂αΛ̃αβ =∂αΛαβ, while

Λ̃αβ =−ϵαβγ

(
Eγ−

1
2

τSΘϵγµν∂µBν

)
+δαβ

(
Ψ− 2

3
τSΘ∂γBγ

)
+O(τ2). (6.9)

The equation ∂tB+∇·Λ̃=0 thus becomes

∂tB+∇×
(

E+
1
2

τSΘ∇×B
)
+∇

(
Ψ− 2

3
τSΘ∇·B

)
=O(τ2). (6.10)

This now matches the postulated form [6–8, 18]

∂tB+∇×Ẽ+∇Ψ̃=0 (6.11)

if we define the effective electric and scalar fields

Ẽ=E+
1
2

τSΘ∇×B, Ψ̃=Ψ− 2
3

τSΘ∇·B. (6.12)

The coefficient of τSΘ∇·B in the definition of Ψ̃ is 1/D−1 in D spatial dimensions, equal
to −2/3 as shown in three dimensions, and equal to −1/2 in two dimensions.

The existence of the transformation (6.12) to absorb the contribution from ∇·S is a
consequence of the Helmholtz decomposition theorem, by which the vector field ∂tB can
always be expressed uniquely as the sum of the curl of a vector field and the gradient of
a scalar field [46, 47]. However, these explicit formulae for Ẽ and Ψ̃ arise from using the
multiple-scales expansion to express S in terms of the spatial derivatives of B.

As a check that we can recover existing results from this decomposition, applying the
multiple-scales expansion for the single relaxation time collision operator Lij=(1/τΛ)Iδij
gives

E=−1
2

ϵ : Λ=−u×B+
1
2

τΛΘ∇×B, Ψ=
1
3

TrΛ=−1
3

τΛΘ∇·B, (6.13)

on neglecting O(τΛ
2) errors. The : denotes a double tensor contraction between the alter-

nating tensor ϵ and Λ. Equations (6.10) and (6.12) then rearrange into

∂tB=∇×(u×B−η∇×B)+∇(η∇·B). (6.14)

This is the usual evolution equation for lattice Boltzmann MHD with constant resistivity
η=τΛΘ and parabolic divergence cleaning [22, 23, 25].
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6.1 Modified telegraph equation

More generally, but still assuming that the relaxation time τM is sufficiently short that we
may replace M by M(0) in (6.5) to sufficient accuracy, the scalar field Ψ= 1

3 TrΛ evolves
according to

∂tΨ+
1
3

Θ∇·B=− 1
τΨ

Ψ, (6.15)

which we can rewrite as

τΨ∂tΨ+Ψ=−1
3

τΨΘ∇·B. (6.16)

The scalar field Ψ̃=Ψ− 2
3 τSΘ∇·B defined in (6.12) then evolves according to

τΨ∂tΨ̃+Ψ̃=−1
3

Θ((τΨ+2τS)∇·B+2τSτΨ∂t∇·B). (6.17)

Eliminating ∇·B using ∂t∇·B+∇2Ψ̃=0 gives the modified telegraph equation

τΨ∂ttΨ̃+

(
1− 2

3
ΘτSτΨ∇2

)
∂tΨ̃=

1
3

Θ(τΨ+2τS)∇2Ψ̃. (6.18)

This equation is also satisfied by ∇·B. It resembles the earlier telegraph equation (1.3)
with an extra term ∇2∂tΨ̃ due to the symmetric part of the electric field tensor Λ. This
extra term can be made small by choosing τS ≪τΨ, but we need τS >0 for invertibility of
the collision operator.

Solutions of (6.18) proportional to exp(ik·x−λt) exist when λ satisfies the dispersion
relation

λ=
1

6τΨ

[
3+2ϵΘk2τ2

Ψ±
(
(3+2ϵΘk2τ2

Ψ)
2−12Θk2τ2

Ψ(1+2ϵ)

)1/2
]

, (6.19)

where ϵ=τS/τΨ and k= |k|. This dispersion relation has wave-like oscillatory solutions
with λ complex when the wavenumber k lies in the range k−< k< k+ with

k±=

√
6
Θ

1
2ϵτΨ

(
1+ϵ±

√
1+2ϵ

)1/2
. (6.20)

The function K(ϵ)=(1+ϵ−
√

1+2ϵ)/ϵ2 is a non-negative, monotonic decreasing function
of ϵ with K(ϵ)→1/2 as ϵ→0. The range of wavenumbers for which oscillatory solutions
exist in (6.18) then approaches the range k>

√
3/Θ/(2τΨ) for which oscillatory solutions

exist in the telegraph equation with τS =0.
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6.2 Viscoelastic fluid analogy

A transformation similar to that from E and Ψ to Ẽ and Ψ̃ in (6.12) arises in models
for viscoelastic fluids. The linear Maxwell model describes the elastic stress σσσp due to
polymer molecules suspended in a Newtonian viscous fluid using

τ∂tσσσp+σσσp =µ′e, (6.21)

where e=∇u+(∇u)T is the symmetric strain rate tensor. The parameters are the stress
relaxation time τ and the steady-state viscosity µ′. The total deviatoric stress is σσσ=µe+σσσp
with a further Newtonian viscous stress µe from the suspending fluid. The total devia-
toric stress thus evolves according to the Jeffreys model [48, 49]

τ∂tσσσ+σσσ=(µ+µ′)
(
e+

µ

µ+µ′ τ∂te

)
. (6.22)

This becomes the Oldroyd–B viscoelastic model if we replace the partial time derivatives
with upper convected derivatives [49, 50].

If we suppose that the fluid velocity is a shear flow of the form u=w(x,y,t)ez, so that
u·∇u=0, the momentum equation becomes ρ0∂tu=∇·σσσ for a fluid with constant density
ρ0. There is no contribution from the pressure. The divergence of σσσ satisfies

τ∂t∇·σσσ+∇·σσσ=(µ+µ′)
(
∇2u+

µ

µ+µ′ τ∂t∇2u
)

, (6.23)

so the velocity component w satisfies the same modified telegraph equation as Ψ̃,

τ∂ttw+
(
1−ντ∇2)∂tw=(ν+ν′)∇2w. (6.24)

The parameters ν′ = µ′/ρ0 and ν = µ/ρ0 are the kinematic viscosities associated with
the polymer molecules and the suspending fluid respectively. Equation (6.24) coincides
exactly with (6.18) if we take τ=τΨ, ν=(2/3)ΘτS and ν′=(1/3)ΘτΨ.

7 Implementation

To implement hyperbolic divergence cleaning with an adjustable parameter, we simply
adjust the matrices Lij to apply a different relaxation time τΨ to Ψ= 1

3 TrΛ in the decom-
position (6.3). The collision operator in the discrete scheme acts on transformed tensors
computed from transformed vector distribution functions:

Λ=
M

∑
i=0

ξigi, M=
M

∑
i=0

ξiξigi, gi =gi+
1
2

∆t
M

∑
j=0

Lij

(
gj−g(0)

j

)
. (7.1)

This change of variables, analogous to that from fi to f i in Section 4, gives a discrete
scheme with second-order accuracy.
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A minimal discrete collision operator with the required property in three dimensions
computes the post-collisional electric field tensor Λ

′ as

Λ
′
=Λ(0)+

τΛ−∆t/2
τΛ+∆t/2

(
Λ−Λ(0)

)
+

1
3
I

(
τΨ−∆t/2
τΨ+∆t/2

− τΛ−∆t/2
τΛ+∆t/2

)
TrΛ. (7.2)

The last term changes the relaxation time applied to TrΛ from τΛ to τΨ, while having no
effect on the traceless part of Λ. The combinations τΨ±∆t/2 and τΛ±∆t/2 arise from the
change of variables from gi to gi.

Similarly, the post-collisional tensor M′ is given by

M
′
=M(0)+

τM−∆t/2
τM+∆t/2

(
M−M(0)

)
, (7.3)

while B is unaffected by both collisions and the change of variables. We can now recon-
struct the post-collisional distribution functions using

g′iβ =
1
2

(
ξiαΛ

′
αβ+ξiγξiα M′

γαβ

)
for i ̸=0, g′0β =Bβ−M′

ααβ, (7.4)

and stream them to adjacent lattice points:

gi(x,t+∆t)=g′
i(x−ξi∆t,t). (7.5)

8 Numerical experiments

Most previous tests of the lattice Boltzmann MHD algorithms and its variants used smooth
initial magnetic fields, such as the Orszag–Tang vortex and the doubly-periodic coales-
cence instability [22]. These smooth fields can be accurately represented on a finite lattice,
so any discrete analog of ∇·B will be extremely small. The divergence cleaning equations
exactly coincide with Maxwell’s equations when ∇·B=0.

To see the consequence of a nonzero discrete analog of ∇·B, we adopt a smoothed ver-
sion of DeVore’s [11] benchmark for a two-dimensional current-carrying cylinder. Any
magnetic field of the form

Bx =−y f (r), By = x f (r), r=
√

x2+y2, (8.1)

satisfies ∇·B=0 analytically, but any discrete analog of ∇·B will be nonzero due to trun-
cation error. We use a smoothed tanh profile in r,

f (r)=
1

2rmax

(
1+tanh

(
rmax−r

δr

))
, (8.2)

instead of the step function used by DeVore [11]. The lattice Boltzmann algorithm pre-
sented here solves the viscous and resistive MHD equations. It does not include flux or
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slope limiters to accommodate the discontinuous solutions that are permitted by the ideal
MHD equations. The factor of 1/rmax in the definition of f (r) ensures that max|B| ≈ 1,
which is convenient for scaling purposes.

If we suppose that the magnetic field is sufficiently weak, so that the Lorentz force
is negligible, we can derive a closed pair of evolution equations for Ψ = 1

2 TrΛ in two
dimensions and δ=∇·B,

∂tΨ+
1
2

Θδ=− 1
τΨ

Ψ, ∂tδ=∇2
(

1
2

τSΘδ−Ψ
)

. (8.3)

We formulate an evolution equation for Ψ, rather than Ψ̃=Ψ− 1
2 τSΘ∇·B, because Ψ can

be directly computed from the magnetic distribution functions in the discrete scheme.
Having promoted TrΛ to be a freely evolving variable, we can no longer use a Chapman–
Enskog expansion to approximate ∇·B using TrΛ as in (5.12).

We turn the weak magnetic field approximation into an exact linearisation by omit-
ting the Maxwell stress from Π(0) and the f (0)i . The qualitative behaviour is the same
as in simulations of the full system with a weak initial magnetic field. We use a two-
dimensional domain [−50,50]2 with periodic boundary conditions, and parameters rmax=
8 and δr= 1 in the initial conditions. We take the Mach number to be

√
3/156, and the

fluid and magnetic Reynolds numbers to be 100. This determines the single relaxation
time that we use for the hydrodynamic variables, and the relaxation time τE for the anti-
symmetric part of Λ, to be around 10−6 in the dimensionless variables we use to formu-
late the system of partial differential equations. We set the relaxation rate τS equal to the
relaxation rate τE, and set τM =10−4τE so that M remains very close to equilibrium.

We initialise the distribution functions for a fluid at rest (u = 0) with this magnetic
field using the consistent initialisation algorithm described in the appendix. This creates
a small but non-zero initial value for Ψ= 1

2 TrΛ. Inverting the transformation (7.1) from
gi to gi gives Ψ in terms of the gi in the numerical algorithm,

Ψ=
1
2

TrΛ=
1
2

τΨ

τΨ+∆t/2
TrΛ. (8.4)

We approximate ∇·B using the finite difference formula

∆=
1
2
(1+4τSτM)∆++

1
2
(1−4τSτM)∆×. (8.5)

This is a convex linear combination of the two natural finite difference approximations

∆+(x,t)=
1

2∆x ∑
|ξi |=1

ξi ·B(x+ξi∆t,t), ∆×(x,t)=
1

4∆x ∑
|ξi |=

√
2

ξi ·B(x+ξi∆t,t), (8.6)

using the four neighbouring points on the axes for ∆+, and on the diagonals for ∆×, as
illustrated in Fig. 2. One can show, by considering the discrete evolution of Λxx and Λyy,
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Figure 2: The four points on the coordinate axes used to form ∆+, and the four points on the corners (longer
arrows) used to form ∆×. The finite difference formulae ∆+ and ∆× are both second-order accurate approxi-
mations to ∇·B at the central point (I, J) marked by an open circle. They both approximate the flux of B out
of the square shown with thick lines.

that ∆ is the optimal combination of ∆+ and ∆× for a magnetic collision operator with
relaxation times τM for M, and τS for the symmetric-traceless part of Λ. The optimal
combination is independent of the relaxation time τΨ for TrΛ.

The simulations were run on an NVIDIA V100 graphical processor unit using CUDA
Fortran. The largest simulation using a 4096×4096 lattice to evolve both the fluid and
magnetic variables ran at a speed of 2970 million lattice updates per second (MLUPS).
This corresponds to a useful memory bandwidth of 840GB/sec, not far below the theo-
retical maximum of 900GB/sec. The initialisation procedure described in the appendix
was run on the host processor and parallelised using OpenMP. The linear systems were
solved using the LAPACK routine ZGESV [51].

Following [24] we can compute reference solutions for the system (8.3) in a domain
with periodic boundary conditions using discrete Fourier transforms. For each wave-
vector k with modulus k we have a 2×2 matrix system for the Fourier coefficients Ψ̂ and
δ̂,

∂t

(
Ψ̂
δ̂

)
=A

(
Ψ̂
δ̂

)
with A=

(−1/τΨ Θ/2
k2 −τSΘk2/2

)
. (8.7)

The solution of the initial value problem can be written as
(

Ψ̂(t)
δ̂(t)

)
=exp(tA)

(
Ψ̂(0)
δ̂(0)

)
(8.8)

using the matrix exponential

exp(tA)=exp(−βt)
{

cosh(αt)
(

1 0
0 1

)
+

1
α

sinh(αt)
(

β Θ/2
k2 −β

)}
(8.9)

262



with coefficients

α=
1

τΨ

(
1+k2Θ(2τΨ−τS)τΨ+k4Θ2τ2

S τ2
Ψ/4

)1/2
, β= k2τSΘ/4+1/(2τΨ). (8.10)

This gives an analytical solution for the Fourier coefficients Ψ̂ and δ̂, and hence a semi-
analytical solution of (8.3) given the discrete Fourier transform of the initial conditions.
We used the initial Ψ = 1

2 TrΛ and ∆ ≈∇·B computed from the initialised distribution
functions gi, and the fast Fourier transform library FFTW3 [52].

Figure 3 shows these initial conditions for a numerical experiment with τΨ=0.01 using
a 4096×4096 lattice. Figure 3 also shows the initial current computed from Λxy−Λyx, and
the convergence of the initial Ψ and ∆ towards zero with increasing spatial resolution.

Figures 4 and 5 show the evolution of Ψ and ∆ for two different numerical experi-
ments with τΨ = 0.01 and τΨ = 0.1, both computed on a 4096×4096 lattice. Both values
of τΨ are much larger than the relaxation time τE ≈ 10−6 that determines the resistivity,
but the solution with τΨ = 0.01 still shows diffusive behaviour. The supports of both Ψ
and ∆, the regions of space over which these fields are non-zero, are well approximated
by circular discs that expand with time. The two fields also have very similar spatial
structures. This is consistent with Ψ=− 1

2 τΨΘ∇·B+O(τ2
Ψ) from the Chapman–Enskog

solution that is valid when τΨ is sufficiently small. By contrast, the second solution with
τΨ = 0.1 shown in Fig. 5 shows a hyperbolic behaviour. The support of ∆ is confined
to two concentric expanding annuli, each quite narrow, while the support of Ψ also in-
cludes the region between these two annuli. The supports have expanded more quickly
than those shown in Fig. 4, and the spatial structures of Ψ and ∆ are noticably different.

Figures 6 and 7 show the ℓ2-norms of the relative errors in Ψ and ∆ computed using
the Fourier-based reference solution for the same initial conditions. The relative errors are
quite large in all cases, because the initial fields, and hence the amplitude of the reference
solution are small, and become smaller as the spatial resolution increases (see Fig. 3(d)).
The Ψ field appears to be computed with second-order accuracy, while ∆ is only a first-
order accurate approximation to ∇·B in the reference solution. This may be because the
finite difference approximation (8.5) is not completely consistent with the discrete evolu-
tion of B under the lattice Boltzmann algorithm with separately evolving Λ and M fields.
However, the comparison in Fig. 8 shows that the computed solutions remain visually
indistinguishable from the reference solutions, even at later times when the effects of the
periodic boundary conditions are clearly visible.

9 Conclusions

Numerical algorithms for simulating magnetohydrodynamics typically do not preserve
∇·B= 0, and so are inconsistent with Maxwell’s equations. This can lead to artifacts in
the computed solutions, because structural properties of the MHD equations cease to
hold [1–4]. There have been several approaches to improve the structural properties of
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Figure 3: The initial fields from the consistent initialisation, (a) current ẑ·∇×B, (b) discrete divergence ∆≈∇·B,
and (c) scalar field Ψ, computed on a N×N lattice with τΨ=0.01 and N=4096. Panel (d) shows the different
rates of convergence of the ℓ2-norms of ∆ and Ψ towards zero with increasing N. Convergence appears to be
second order for ∇·B, but only first order for Ψ.

the equation set being solved by including extra terms proportional to ∇·B. This can be
motivated by considering an extended set of Maxwell equations that includes magnetic
charges and magnetic currents. Powell [32,33] proposed that ∇·B should advect with the
fluid velocity u, while Dedner et al. [18] proposed that ∇·B should propagate and decay
isotropically according to a telegraph equation.

The original lattice Boltzmann MHD algorithm already solves an extended set of
Maxwell equations, since it replaces ∂tB+∇×E= 0 with ∂tB+∇·Λ= 0. The two equa-
tions are equivalent when Λαβ =−ϵαβγEγ is purely antisymmetric. However, Λ is itself
an evolving variable in our kinetic formulation. The tensor Λ develops a symmetric part,
even though its equilibrium form Λ(0) is purely antisymmetric. The symmetric part of
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Figure 4: Evolution of Ψ and ∆ over time for τΨ=0.01. The fields Ψ and −∆ have very similar spatial structures,
consistent with Ψ=− 1

2 τΨΘ∇·B+O(τ2
Ψ) in the Chapman–Enskog solution.
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Figure 5: Evolution of Ψ and ∆ over time for τΨ=0.1. The two fields have distinctly different spatial structures
for this larger value of τΨ. In particular, Ψ is non-zero in the annulus bounded by the two concentric annuli on
which ∆ is non-zero.
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Figure 6: Relative errors in (a) Ψ, and (b) ∆ approximating ∇·B, versus the reference solutions with τΨ =0.01
for N×N lattices with N=1024, 2048, 4096.

Λ provides the parabolic divergence cleaning term ∇(η∇·B) in the induction equation
(1.6) simulated by the first version of the lattice Boltzmann MHD algorithm [22] when
one computes the first correction Λ(1) to Λ(0) via a Chapman–Enskog expansion.

However, the underlying kinetic equation (5.5) is a hyperbolic system for the mag-
netic distribution functions gi, or equivalently for the basis of moments B, Λ, M. Parabolic
behaviour, as in resistive MHD, only emerges from employing a Chapman–Enskog ex-
pansion to find slowly varying solutions for the variables that are conserved, or vary
slowly, under collisions. By modifying the collision operator applied to the gi we can
impose a different and much longer relaxation time τΨ for the trace of the Λ tensor, while
the remaining antisymmetric and symmetric-traceless parts relax with much shorter re-
laxation times τE and τS respectively. We can then recover the hyperbolic divergence-
cleaning system studied by Dedner et al. [18] by identifying their scalar field Ψ with
TrΛ, up to a small modification proportional to the relaxation time τS applied to the
symmetric-traceless part of Λ. This modification can be made small by taking τS small,
but we need τS > 0 for the collision matrix to be invertible. The resulting modified tele-
graph equation satisfied by Ψ and ∇·B coincides with the equation satisfied by the ve-
locity field for shear flows using the linear Jeffreys model for viscoelastic fluids [48, 49].
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Figure 7: Relative errors in (a) Ψ, and (b) ∆ approximating ∇·B, versus the reference solutions with τΨ =0.1
for N×N lattices with N=1024, 2048, 4096.

A Consistent initialisation

For accurate results, the non-equilibrium part of the distributions functions must be ini-
tialised consistently with the equilibrium. For example, the non-equilibrium part of
Λ must depend upon the spatial derivatives of the initial magnetic field to match the
Chapman–Enskog solution from Section 5. We do this by seeking a steady solution, one
that solves

fi(x+ξi∆t)= fi(x)−
∆t

τ+∆t/2

(
fi(x)− f (0)i (x)

)
, (A.1)

and

gi(x+ξi∆t)=gi(x)−Lij

(
gj(x)−g(0)

j (x)
)

, (A.2)

where f (0)i (x) and g(0)
j (x) are known functions of the prescribed initial ρ, u and B. This

is equivalent to assuming that the non-equilibrium part will approach the Chapman–
Enskog solution on a timescale much shorter than the timescale on which the macro-
scopic variables ρ, u and B evolve. We have used a simple single-relaxation-time collision
operator for the hydrodynamic distribution functions in (A.1) for simplicity.

Taking a discrete Fourier transform of (A.1) gives, for each wavevector k,

(
exp(i∆tk·ξi)−1

)
f̂i =− ∆t

τ+∆t/2

(
f̂i− f̂ (0)i

)
, (A.3)
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Figure 8: The computed fields Ψ and ∆ are visually indistinguishable from the reference solutions, even at later
times when the effects of the periodic boundary conditions are clearly visible.

where f̂i and f̂ (0)i are the discrete Fourier transforms of fi and f (0)i . We can now solve for

f̂i =
∆t

exp(i∆tk·ξi)(τ+∆t/2)−(τ−∆t/2)
f̂ (0)i . (A.4)

Similarly, taking a discrete Fourier transform of (A.2) gives, for each wavevector k,
(

exp(i∆tk·ξi)−1
)

ĝi =−Lij

(
ĝj−ĝ(0)

j

)
, (A.5)

where ĝi is the discrete Fourier transform of gi. We now have a general constant collision
matrix Lij on the right-hand side. For each k, writing all the ĝi for the different discrete
velocities as one vector Ĝ gives

DĜ=−L
(

Ĝ−Ĝ(0)
)

, (A.6)
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with all the Lij combined into one matrix L. The left-hand side involves the diagonal
matrix

D=diag{(exp(i∆tk·ξi)−1)I}, (A.7)

where I is the 2×2 identity matrix in two spatial dimensions. We can now solve for

Ĝ=(L+D)−1LĜ(0). (A.8)

This requires the solution of a separate 10×10 linear system for each wavevector k when
using the D2Q5 lattice show in Fig. 1, The linear systems for different wavenumbers are
independent, and so can be solved in parallel.

The conserved moments of the fi and gi given by this procedure do not exactly match
the conserved moments of the f (0)i and g(0)

i , due to the coupling with adjacent lattice
points. However, they differed by less than 1% in the numerical experiments. The refer-
ence solutions were initialised using the actual fields on the lattice after the initialisation
of the lattice Boltzmann scheme by this procedure.
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cient solver based on kinetic schemes for magnetohydrodynamics (MHD) equations. Appl.
Math. Comput., 440:127667, 2023.

[22] P. J. Dellar. Lattice kinetic schemes for magnetohydrodynamics. J. Comput. Phys., 179:95–126,
2002.

[23] P. J. Dellar. Moment equations for magnetohydrodynamics. J. Statist. Mech., page P06003,
2009.

[24] P. J. Dellar. Electromagnetic waves in lattice Boltzmann magnetohydrodynamics. Europhys.
Lett., 90:50002, 2010.

[25] P. J. Dellar. Lattice Boltzmann magnetohydrodynamics with current-dependent resistivity.
J. Comput. Phys., 237:115–131, 2013.

[26] J. Zhao. Discrete-velocity vector-BGK models based numerical methods for the incompress-
ible Navier–Stokes equations. Commun. Comput. Phys., 29:420–444, 2021.

[27] L. D. Landau and E. M. Lifshitz. Classical Theory of Fields. Pergamon, Oxford, 4th edition,
1975.

[28] J. D. Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1999.
[29] D. Biskamp. Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge,

1993.
[30] W. Rindler. Introduction to Special Relativity. Oxford University Press, Oxford, 1982.
[31] P. Janhunen. A positive conservative method for magnetohydrodynamics based on HLL

and Roe methods. J. Comput. Phys., 160:649–661, 2000.
[32] K. G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in

more than one dimension). ICASE Report No. 94-24, NASA Langley Research Center, 1994.
Available from http://hdl.handle.net/2060/19940028527.

[33] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw. A solution-adaptive
upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154:284–309, 1999.

[34] S. K. Godunov. Symmetric form of the equations of magnetohydrodynamics. Chislennye
Metody Mekh. Sploshnoi Sredy, 1:26–34, 1972. in Russian.

[35] Y. H. Qian, D. d’Humières, and P. Lallemand. Lattice BGK models for the Navier–Stokes
equation. Europhys. Lett., 17:479–484, 1992.

[36] S. Succi. The Lattice Boltzmann Equation: For Complex States of Flowing Matter. Oxford Univer-

271



sity Press, Oxford, 2018.
[37] P. Lallemand, L.-S. Luo, M. Krafczyk, and W.-A. Yong. The lattice Boltzmann method for

nearly incompressible flows. J. Comput. Phys., 431:109713, 2021.
[38] X. He, S. Chen, and G. D. Doolen. A novel thermal model of the lattice Boltzmann method

in incompressible limit. J. Comput. Phys., 146:282–300, 1998.
[39] P. J. Dellar. Incompressible limits of lattice Boltzmann equations using multiple relaxation

times. J. Comput. Phys., 190:351–370, 2003.
[40] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. I. Small

amplitude processes in charged and neutral one-component system. Phys. Rev., 94:511–525,
1954.
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