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1. INTRODUCTION

The evolution in time of a magnetic fieldB is determined by an electric fieldE through the induction equation
[4, 8, 12, 14]

∂B
∂t

+∇×E = 0, (1)

one of Maxwell’s equations. The magnetic field must also satisfy∇·B = 0. This constraint expresses the absence of
magnetic monopoles, which have never been observed experimentally. Since (1) implies∂t(∇·B) = 0 this constraint
is often treated as an initial condition, which will be preserved under subsequent evolution.

The induction equation (1) is combined with the equations of gas dynamics to describe the behaviour of compressible
electrically conducting fluids subject to magnetic fields. For nonrelativistic fluids, where Maxwell’s displacement
current may be neglected, the combined system is referred to as the magnetohydrodynamic (MHD) equations. The
compressible ideal (inviscid and perfectly conducting) MHD equations may be written as a hyperbolic system of
conservation laws in the form [7, 9, 11]
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= 0, (2)

using a standard notation in whichv is the fluid velocity,ρ the density, andp the pressure. The electric fieldE has
been eliminated using the perfectly conducting conditionE + v×B = 0 appropriate for highly conductive media such
as astrophysical plasmas. The symbolI denotes the3× 3 identity tensor with componentsδij . A factor of1/

√
µ0 has

been absorbed into the definition ofB. The total energy densityU is given by

U =
p

γ − 1
+

1
2
ρu2 +

1
2
B2, (3)

for a perfect gas with ratio of specific heatsγ. The three terms comprise the internal, kinetic and magnetic energy
respectively.

In recent years Godunovtype upwind methods have become popular for solving hyperbolic systems such as (2),
especially when shocks are likely to form [3, 7, 10]. These finite volume methods often compute upwind fluxes by
solving the one dimensional system for initial data comprising uniform left and right states separated by a single
discontinuity at a computational cell boundary,ie by solving the one dimensional Riemann problem [3, 7].
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2. THE MHD RIEMANN PROBLEM

Unfortunately the one dimensional MHD equations are degenerate. If the variables in (2) are functions of one
coordinaten only, the evolution equation forBn becomes simply∂tBn = 0. In a sense, this is consistent with the one
dimensional form of the constraint∇·B = 0, which simplifies to∂nBn = 0. Thus the magnetic fieldBn normal to
the discontinuity should be constant in the initial conditions, and will then remain constant.

In a finite volume discretisation,∇·B = 0 implies that the signed sum of the jumps in the normal component of
B across a cell’s boundary should vanish. Thus the initial data for the one dimensional Riemann problems, if used
to compute fluxes in a multidimensional scheme, will generally contain jumps inBn comparable to the jumps in the
tangential componentsn×B.

One approach is to use the solution of the reduced sevenwave Riemann problem [13], using some average value
for Bn on both sides, to update the seven variables other thanBn, followed by a separate step which updatesBn so
as to preserve∇·B = 0 [2, 16]. An alternative approach, pioneered by Powell [9, 10] (see also [11]), adds terms
proportional to∇·B to the system (2) to make the one dimensional Riemann problem nondegenerate. It is worth
emphasising that although Powell’s approach maintains∇·B ≈ 0 to truncation error in a multidimensional sense,
in the one dimensional Riemann problems∇·B is comparable to∇×B. Numerical experiments comparing various
schemes have been performed recently by Tóth [15].

3. POWELL’S EIGHT WAVE MODIFICATION

Powell [9, 10] (see also [11]) proposed solving the modified system
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, (4)

in which source terms proportional to∇·B have been added to the momentum and induction and energy equations.
This system was constructed by modifying the coefficient matrix in the linearised Riemann problem to include an
eighth wave corresponding to passive advection of jumps inBn with the fluid speedvn. This is the only possibility
that leaves the system invariant under the Galilean transformationsx 7→ x + v0t andv 7→ v + v0, while B andt
remain unchanged.

Janhunen [5] found that the solution of the Riemann problem for Powell’s equations (4) for left and right states with
positive fluid pressures may contain an unphysical intermediate state with negative fluid pressure. This socalled lack
of positivity [3] is a particular problem for astrophysical applications, where the contribution to the total energy from
the fluid pressure is often small compared with the magnetic and possibly the kinetic energy. Thus computing the
fluid pressurep from the conserved quantitiesρ, ρv, B andU often involves the difference between two nearly equal
terms. Janhunen [5] found that positivity, as well as local energy and momentum conservation, could be regained by
discarding the source terms in the energy and momentum equations, so that (4) becomes
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4. DERIVATION FROM RELATIVISTIC ENERGYMOMENTUM CONSERVATION

We now give a systematic derivation of the equations (5). In special relativity, energy and momentum conservation
are expressed compactly as a single conservation law for a fourdimensional stressenergy tensor [6, 8, 12]

∂β(Tαβ
FL + Tαβ

EM) = 0, (6)

whereTαβ
FL andTαβ

EM are the separate fluid and electromagnetic contributions to the stressenergy tensor. Our notation
follows Misneret al. [8] except we retain explicit factors ofc, the speed of light. Greek indices range over0, 1, 2, 3,
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with 0 being the timelike component, and Latin indices range over the spacelike components1, 2, 3. A coordinate
vector is thusxα = (ct,x), while the metric isg = diag(−1, 1, 1, 1).

The fourdimensional stressenergy tensor for a relativistic ideal fluid is [6, 8, 12]

Tαβ
FL = (p + e)uαuβ + pgαβ , (7)

wherep is the pressure ande the relativistic energy density. In the nonrelativistic limit,|v| � c, the various
components ofTαβ

FL become [6]

T 00
FL = ρc2+ε+

1
2
ρv2, T 0i

FL = T i0
FL = ρcv+

v
c
(p+ε+

1
2
ρv2), T ij

FL = pδij +ρvivj , (8)

where the nonrelativistic internal energy isε = p
γ−1 for a perfect gas. Unlike Misneret al. [8], we useρ for the rest

mass density, rather than the combined massenergy density, in agreement with standard fluid dynamical usage. The
electromagnetic stressenergy tensor has components [4, 8, 12]

T 00
EM =

1
2
(B2 +

1
c2 E2 ), T 0i

EM = T i0
EM =

1
c
(E×B)i, T ij

FL = Mij . (9)

We recogniseT 00
EM as the electromagnetic energy density, andT 0i

EM = T i0
EM as the Poynting flux. The remaining

componentsT ij
EM comprise the threedimensional Maxwell stressM,

T ij
EM = Mij =

1
2
(B2 +

1
c2 E2) δij − (BiBj +

1
c2 EiEj). (10)

The components of (9) are unchanged by “duality rotations” [4, 5, 8] of the electromagnetic field, under whichE and
B transform to

E′ = E cos α + cB sin α, B′ = B cos α− 1
c
E sin α, (11)

whereα is a real parameter, not to be confused with a component index. Rindler [12] notes that it is possible to
construct a relativistic field theory in which the electric and magnetic fields have completely interchangeable status,
so∇·E = ρe and∇·B = ρm 6= 0, and which contains conventional electromagnetism (∇·B = 0) as a special case.
This theory, while permitting both electric and magnetic charges, requires no changes to the stressenergy tensor in
(9), which is already symmetric betweenE andB.

The α = 0 component of (6) corresponds to energy conservation, andα = 1, 2, 3 to the three components of
momentum conservation. The fourdimensional derivative is∂β = ∂/∂xβ = ( 1

c∂t,∇). From theα = 0 component
of (6) we obtain the energy equation

1
c

∂
∂t

(ρc2 + U) +∇·
(

ρcv +
v
c

(

1
2
ρv2 + p + ε

)

+
1
c
E×B

)

= 0. (12)

The leading order terms, which reflect the contribution of the rest mass to the relativistic energy, exactly cancel by
virtue of the continuity equation∂tρ + ∇·(ρv) = 0, leaving the nonrelativistic energy equation [6]. The Poynting
flux simplifies usingE + v×B = 0 to

1
c
E×B =

1
c
(−v×B)×B =

1
c
(vB2 − v ·BB), (13)

as in (5). From theα = 1, 2, 3 components of (6) we obtain the momentum equation

1
c

∂
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(

ρcvi+
vi

c2 (p+ε+
1
2
ρv2)+

1
c
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)

+
∂

∂xj
(pδij +ρvivj +Mij) = 0. (14)

The fluid energy flux and the electromagnetic Poynting flux contribute to the momentum density in (14), as well as to
the energy flux in (12). This is due to the symmetry of the stressenergy tensors, or that relativity associates momentum
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with the motion of energy as well as matter [4, 8, 12]. However, these terms in (14) areO(v2/c2) smaller than the
expected terms, those which give the nonrelativistic momentum equation as it appears in (2) and (5). The electric
field’s contributions to the energy and Maxwell stress may also be neglected, since they areO(v2/c2) smaller than the
magnetic contributions in the nonrelativistic limit. For instance, the threedimensional Maxwell stress simplifies to
just

Mij =
1
2
B2δij −BiBj , (15)

and (12) and (14) take the forms in which they appear in (2) and (5). This derivation requires no assumptions about
the presence or absence of magnetic monopoles.

More generally, the electromagnetic part of (14) already contains the terms that Janhunen added to the usual Lorentz
force to make it invariant under duality rotations (11), by which he obtained the “generalised Lorentz force” [5],

f = −∇·M− ∂
∂t

(
1
c2 E×B) =

1
c2 (∇·E)E− 1

c2 Jm×E + Je×B + (∇·B)B, (16)

in combination with the two “generalised Maxwell equations” [4, 5, 14]

−Jm = ∇×E +
∂B
∂t

, Je = ∇×B− 1
c2

∂E
∂t

. (17)

The Lorentz forcef felt by a fluid is not simply−∇·M because the electromagnetic field itself contains momentum, the
Poynting flux. Some of the stress exerted by the electromagnetic field goes into changing the momentum of the field
itself, as expressed by the∂t( 1

c2 E×B) term in (16), instead of changing the momentum of the fluid. This difference
becomes negligible in the nonrelativistic limit.

The (∇·B)B term in (16) is usually discarded, on the assumption that∇·B = 0 in reality, leading to the usual
expressionJe×B for the Lorentz force exerted by a magnetic field on an electrically conducting fluid. However, the
consistent expression for the Lorentz force in the presence of magnetic monopoles remainsf as in (16), which no
longer coincides withJe×B. This is why Powell’s equations (4) fail to conserve momentum and energy.

5. MODIFIED INDUCTION EQUATION

In relativistic electromagnetic theory, the two homogeneous Maxwell equations,∇·B = 0 and∂tB +∇×E = 0,
are components of the single equation [8, 12]

∂αGαβ = 0, (18)

where the fourdimensional tensorGαβ has components

Gαβ =









0 −cBx −cBy −cBz

cBx 0 Ez −Ey

cBy −Ez 0 Ex

cBz Ey −Ex 0









(19)

in terms of the threedimensional electric and magnetic fields in a given frame.
In the presence of magnetic monopoles equation (18) generalises to

∂αGαβ = ρβ
m, (20)

whereρβ
m must be a fourvector in order to make the equation invariant under Lorentz transformations,ie transformations

of the form(ct,x) 7→ (ct′,x′) wherex′ = Γ(x+v0t) andt′ = Γ(t+x·v0/c2), and similarly for other four dimensional
objects. Note thatΓ = (1−v2

0/c2)−1/2 = 1+O(v2
0/c2), andt′ = t+O(v0x/c2), so Lorentz transformations reduce to

Galilean transformations in the nonrelativistic limit. By analogy with the relativistic equation for baryon conservation
(ie continuity of mass) [6], the simplest choice isρβ

m = (ρm/c)uβ , whereuβ = Γ(c,v) is the single fluid fourvelocity.
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The scalarρm is the density of monopoles in the local fluid rest frame, whereuβ = (c,0). In a general frame,
Lorentzinvariance forcesρi

m to be nonzero. The components of (20) then become

∇·B = Γρm,
∂B
∂t

+∇×E = −Γρmv, (21)

the latter of which reduces to the Galileaninvariant modified induction equation of (4) and (5) in the perfectly
conducting and nonrelativistic (Γ → 1) limits.

6. CONCLUSION

Relativistic energymomentum conservation, Eqs. (6), (7), and (9), is already invariant under duality rotations and
requires no changes to accommodate the possibility of magnetic monopoles (∇·B 6= 0). In the nonrelativistic limit
we derive equations which coincide with those previously proposed by Janhunen [5] and differ from those proposed
by Powell [9, 10] in that they retain local conservation of energy and momentum in the presence of monopoles. Our
derivation also leads directly to a conservative form of the equations, whereas Janhunen’s [5] proceeded via primitive
variables.

The possibility of magnetic monopoles,∇·B = ρm 6= 0, requires a source term proportional to∇·B in the induction
equation to preserve Lorentz invariance of the combined system. If magnetic monopoles are treated as particles, the
simplest approach, Lorentz invariance leads to the modified induction equation first proposed by Powell [9] and adopted
unchanged by Janhunen [5].

The Lorentz force consistent with momentum conservation,Je×B + B∇·B, is not perpendicular toB unless
∇·B = 0. This leads to the phenomenon observed by Brackbill & Barnes [1] in which a supposed steady state is
“polluted” by magnetic monopoles accelerating along magnetic field lines. In fact, Tóth [15] recently showed that the
Lorentz force computed by a momentum conserving scheme cannot be perpendicular toB, even if∇·B = 0 in some
discrete sense. T́oth also found that Powell’s formulation computed incorrect propagation speeds for strong shocks
which were inclined to the computational grid. This is typical of nonconservative formulations [7, 15], and it remains
to be seen whether errors in the shock speed are alleviated by restoring just momentum and energy conservation. A
modification of these equations, retaining the exact fluid stress from (7) instead of the approximation in (8), may also
prove useful for relativistic magnetohydrodynamics.
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