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Shallow water magnetohydrodynamics (SWMHD) is a recently proposed model for a thin layer of incom-
pressible, electrically conducting fluid. The velocity and magnetic field are taken to be nearly two dimensional,
with approximate magnetohydrostatic balance in the perpendicular direction, leading to a reduced two dimen-
sional model. The SWMHD equations have been found previously to admit unphysical cusp-like singularities
in finite amplitude magnetogravity waves. This paper extends the Hamiltonian formulation of SWMHD to
construct a dispersively regularized system, analogous to the Green—Naghdi equations of hydrodynamics, that
supports smooth solitary waves and cnoidal wavetrains, and shares the potential vorticity conservation properties
of SWMHD.

. INTRODUCTION

The shallow water magnetohydrodynamics (SWMHD) equations were recently proposed by Gilman [1] as a model for phe-
nomena in the solar tachocline [2], the thin layer between the outer turbulent convection zone, and the quiescent interior where
heat transfer is predominantly radiative. The tachocline also marks a transition between an almost rigidly rotating interior, and
an outer region where the angular velocity at fixed latitude is nearly independent of depth. The resulting strong shear across the
tachocline may be expected to align any local magnetic field with the azimuthal direction.

The SWMHD equations comprise a hyperbolic system, and may be written in conservation form as [3]

hu huu — hBB + 1gh?l
ol h | +V hu =0, (1)
hB huB — hBu

subject to the constraiv-(hB) = 0. They describe a thin layer of incompressible, perfectly conducting fluid with a free
surface. The variables andB in Eq. (1) are the horizontal components of the fluid velocity and magnetic fiedthe layer
depth, and; the gravitational acceleration. Although the unmagnetized shallow water equations (SWE) coincide with the Euler
equations for a barotropic fluid with densfiyand equation of stafe= %ghz, the SWMHD equations differ from the barotropic
fluid MHD equations through the omission of an isotropic magnetic pressure%tE?h The magnetic pressure is already
included in the%g}ﬂl term because the height is determined byttital pressure, fluid plus magnetic, balancing gravity in the
hydrostatic approximation [1]. Moreover, the total horizontal magnetic/Bxn a fluid column is conserved by Eq. (1), rather
than the pointwise magnetic field intensiy

The SWMHD equations admit various families of waves that were investigated in Refs. [3] and [4]. The non-rotating SWMHD
equations admit the self-similar shocks and rarefaction waves expected in a hyperbolic system [3]. The rotating SWMHD
equations admit smooth periodic wavetrains [4] in which nonlinear steepening is balanced by the dispersive effects of the Coriolis
force. However, in finite amplitude magnetogravity waves the maximum permissible height perturbation is finite, and the free
surface develops cusps as this limit is approached [4]. This unphysical behavior, with an apparently infinite Lorentz force, was
attributed to the neglect of small horizontal lengthscales in the derivation of the SWMHD equations. Only the locally vertical
component of the rotation vector is retained in shallow water theories, the so-called traditional approximation [5, 6], and this
component vanishes at the equator. Thus if SWMHD were used to describe a train of magnetogravity waves propagating from
midlatitudes towards the solar equator, as suggested by the “butterfly diagram” of observed sunspot activity, these waves may be
expected to break when the Coriolis force becomes too weak to balance nonlinear steepening. In a terrestrial context, breaking
of upwardly propagating gravity waves at high altitudes contributes significantly to the general circulation of the atmosphere.

Moreover, the tachocline spans perha&fs of the Sun’s radius [7]. While shallow, the tachocline is comparatively much
less shallow than the Earth’s atmosphere or oceans. For the parameters considered by Sclle¢4érfor the tachocline’s
overshoot layer, the horizontal lengthscale set by the Rossby deformation radius (see Sec. VI A) may be as short as four layer
depths. It therefore seems worthwhile to seek an extension to SWMHD that retains higher order terms in the aspgtt ratio
where/ is a typical horizontal lengthscale. Various such extensions of the shallow water equations for pure hydrodynamics
have been proposed [8-12]. They typically postulate some simple vertical structure for the three dimensional variables, and
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integrate the three dimensional equations in the vertical to derive more complicated, but still two dimensional, equations such
as the Green—Naghdi [8] and Boussinesq [9] equations. The one dimensional form of the Green—Naghdi equations was given
previously by Su and Gardner [13], and the two dimensional form was rediscovered by Bazdeak@¥0]. These systems in

turn reduce to the Camassa—Holm [11], Benjamin—Bona—Mahony (BBM) [14], and Korteweg—de Vries (KdV) [9] equations for
unidirectional waves. The extra terms manifest themselves as dispersion on short lengthscales, so these various sets of equatior
have been generically named “dispersive shallow water” (DSW) equations [15].

In this paper we develop a magnetohydrodynamic analogue of the Green—Naghdi [8] equations, one that both retains terms
of O(h?/¢?) and regularizes the unphysical cusps in the original SWMHD equations, while retaining the great simplification of
eliminating one spatial coordinate. Following subsequent rederivations of the Green—Naghdi equations [6, 16—19] we substitute
a columnar ansatz for the horizontal velocity and magnetic field into a Hamiltonian formulation of magnetohydrodynamics in
Eulerian variables. Unlike a previous Hamiltonian formulation of SWMHD [20], we retain small contributiadéhdf/¢?) to
the kinetic and magnetic energies from the vertical field componendsid B,. For simplicity we consider a fluid layer with a
flat lower boundary at = 0, but the theory readily extends to accomodate variable bottom topography [10, 12, 15-19].

In numerical experiments with two dimensional (one horizontal and one vertical coordinate) flow over topography, Nadiga
et al. [15] found that the one dimensional Green—Naghdi equations agreed well with vertically averaged features of their two
dimensional Euler solutions. They observed that the Green—Naghdi equations are formally just a small aspect ratio approxima-
tion of the Euler equations. There is no explicit assumption of weak nonlinearity, as required in the derivation of the KdV or
Boussinesq equations. The main limitations of the Green—Naghdi equations, like any vertically averaged approximation, are that
they cannot reproduce the effects of overturning surface waves; and that their derivation implicitly assumes an infinite density
ratio across the free surface, whereas Nadigal's Euler computations used finite ratios of0 : 1 and 1000 : 1. Ertekin
et al. [21] also found good agreement between solutions of the Green—Naghdi equations and laboratory experiments for the
generation of solitons by a moving pressure distribution in a shallow channel. Shields and Webster [22] compared solitary waves
of the Green—Naghdi equations with exact potential flow results and with various higher order versions of the Green—Naghdi
equations, and found good agreement for waves as short as three mean depths.

II. HAMILTONIAN FORMULATION

In their most general form, Hamilton’s evolution equations@&® = {F, 1} for all functionalsF, where{F, H} denotes
the Poisson bracket of the functiong&lwith the Hamiltonian functional [6, 18, 23, 24]. The Hamiltonian usually coincides
with the total energy of a system. The Poisson bracket is required to be bilinear, antisymmetric, and to satisfy the Jacobi identity
{F, G}, K} + {{G6,K}, F} + {{K,F},G} = 0 for all functionalsF, G, andK. These three properties express the usual
notion of a Hamiltonian system, normally expresses in canonical coordinates, in a coordinate-free manner. The Jacobi identity
is usually by far the most difficult property to verify.

Most continuum systems are only expressible in canonical Hamiltonian form using inconvenient Lagrangian variables, so it
is common to use Eulerian variables in combination with a generalised “non-canonical” Poisson bracket [6, 18, 23, 24]. The
Hamiltonian formulation offers a very compact derivation of the dispersive SWMHD equations, reflecting the general utility of
Hamiltonian perturbation theory. We restrict the ubiquitous Lie—Poisson bracket for magnetohydrodynamics, Egs. (5) and (6)
below, to two spatial coordinates, and integrate the three dimensional energy density in the suppressed vertical coordinate to
obtain the Hamiltonian. A longer derivation directly from the three dimensional incompressible ideal MHD equations is given
in the appendix. The Lie—Poisson form of the bracket implies that the dispersive SWMHD equations could also be derived in
the alternative Euler—Poin@aformulation [25—-27] by approximating the Lagrangi@nand hence the action, instead of the
Hamiltonian as in Eq. (3). This approach would be closer to that of Miles and Salmon [16] who rederived the Green—Naghdi
equations from Hamilton’s principle, as expressed in Lagrangian variables, by approximating the action.

A. Hamiltonian

The Hamiltonian for shallow water magnetohydrodynamics is the total energy of a three dimensional layer of an incompress-
ible, perfectly conducting fluid with unit density,

h(z,y) 1
H = / da / dy / dz 5 (jusP? + [Bsf?) + g2, 2
0

whereus andBj; are the three dimensional velocity and magnetic fields. The fluid is confined to the fegion< h(z,y),
with an assumed free (constant pressure) surfage-ak(z, y). The three terms in Eq. (2) correspond to kinetic, magnetic, and
gravitational potential energies respectively.

The original SWMHD equations, like the shallow water equations, describe a thin layer whosehdeptiuch smaller
than a typical horizontal lengthscald1, 5, 6]. The three dimensional fluid velocityy; and magnetic field33; are assumed
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to be predominantly horizontal, and functions of the two horizontal coordinatexly only. The two solenoidal constraints
Vs-u3 = 0 andV3-B; = 0, and the boundary conditions = 0 andB, = 0 onz = 0, then imply thatu, = —2(V-u) and
B, = —z(V-B) are both linear in the vertical coordinate HereV, u, andB denote the horizontak(andy) components of
the three dimensional objecig;, us, andBj; respectively.

This ansatz allows the integration in Eq. (2) to be completed, so that

1 1
H=3 /gh2 + h([uf* +[BI*) + Sh*(IV-ul* + |V-B|*) ddy. 3)

For a thin layeru, = O(h/¢)|u] andB, = O(h/{)|B| are both small, so the terms involvig-u|? and|V-B|? areO(h?/¢?)

smaller than theu|? and |B|? terms. In other words, the vertical field components contridtg?/¢2) less to the kinetic

and magnetic energies than the horizontal components. These contributions were previously discarded [20], and the remaining
Hamiltonian coincides then with the total energy given by Gilman [1], but in this paper we retain the full Hamiltonian as given

by Eq. (3).

B. Poisson bracket

The Poisson bracket is most naturally formulated in terms of the conserved variables. These are the laysgtheaptignetic
flux Q = hB in a vertical column [1, 3, 20], and the conserved momentum

oH 1 :
m=-u" hu — gv(hJV'U) =Lpu )

of the Green—Naghdi equations [17, 19, 28]. Equation (4) relatés u via a positive definite, self-adjoint, and coercive linear
operatorlL;, provided the depth satisfiesh > h,;, > 0. Equation (4) may thus be inverted to determine- L;lm as a
continuous function ofn, but in general there is no explicit formula farin terms ofm.

The reconstructed three-dimensional magnetic feldmust be tangential to the free surface. In other wollg, n =
(Bz, By, —hV-B) - (=03h,—0yh,1) = —=V-(hB) = 0 onz = h(x,y), with n being a vector normal to the free surface.
This implies that:B is the conserved quantity associated with the magnetic field. Similarly, the condition that the free surface
be a streamline of the three dimensional velocity fialdreconstructed fromu will lead to the continuity equation (14a).
The asymmetry between and B arises becaus®;-uz; = 0 must be enforced by a pressure gradient, wRileB; = 0 is
an automatic consequence of antisymmetry in the three-dimensional induction equation. The direct derivation of dispersive
SWMHD in the appendix confirms that the SWMHD induction equation is unmodified(at/¢?), while the momentum
equation acquires extra dispersive terms from the pressure gradient. It is of course possible to reformulate dispersive SWMHD
to include an evolution equation féB — %V(h?’V-B) instead ofhB, just as Li [28] usedvu instead ofm as given by Eg. (4)
in the Green—Naghdi equations, but the Poisson bracket would take a more complicated form invpbsngits inverse.

In (m, h, Q) variables the Poisson bracket takes the form

5G/6m;

([ 6F OF 6F
0= [ (5 i) pgen | da ®

in terms of the Poisson tensor (or cosymplectic operator)
m;0; + 0ym;  hd; Q;0; — OQrdy;
0

Jij = — 6jh 0
0;Qi — Qrokdiy; 0 0

; (6)

where partial derivatives act on everything to their right. This Poisson bracket is manifestly bilinear and antisymmetric (after an
integration by parts). Here, and subsequently, the fluid variables are assumed to satisfy suitable boundary conditions, such as
decaying sufficiently rapidly at infinity, to justify the neglect of surface terms arising from an integration by parts. The necessary
boundary conditions for a finite domain ake n = 0 andB - n = 0, or impermeable and perfectly conducting boundaries [29].

This Poisson bracket was shown by Morrison and Greene [30] to satisfy the Jacobi idé#tie}, H} + {{G, H}, F} +
{{H,F},G} = 0for all functionalsF, G, and’H. Itis, however, not in canonical form. Instead, each term is linear in one of
the conserved variablésn, 1, Q), and contains one spatial derivative. This is typical for hydrodynamic systems expressed in
Eulerian variables [24, 29, 31]. In fact, the Poisson bracket wigfiven by Eq. (6) is the natural non-canonical Lie—Poisson
bracket for a fluid system with an advected scalar dersignd an advected magnetic figlj and was derived as such by Holm
and Kupershmidt [32] from a canonical bracket expressed in Lagrangian variables using Clebsch potentials.
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The advective, or “semi-direct product” structure is responsible for the block of zerb®inside the first row and first
column. The different arrangement of indices in tRgerms is because a magnetic field is most naturally treated as a “two-
form”, a geometrical object defining the magnetic flux through surface elements, rather than as a vector like the momentum.
The same Poisson bracket arose previously in conventional barotropic fluid magnetohydrodynamics [30, 32, 33], and in special
relativistic MHD [34], for whichB andQ coincide. The non-magnetic part of the Poisson bracket involvingiondyndh arose
previously in various shallow water models [11, 12, 17, 19, 35], and was used in a disguised form by Li [28].

Hamilton’s evolution equationg, F = {F, H} for all functionalsF, then correspond to [6, 23, 24]

o [mi IH/om,;
o h | =Jd;; | 0H/oh |, @
Q; OH/6Q;
or in vector notation,
57—( 67—( oH 67—(
oh + V- (h(m> =0, (8b)
om
0,Q = Vx <6H><Q> — 5—HV Q. (8c)
om

As the above system has no explicit dependence on the spatial coordiratels;, Noether’s theorem implies that the total
momentum is conserved. The momentum equation may thus be rewritten in conservation fprm-a8/-T = 0. To actually
compute the stress tensbiit is useful to rewrite Eq. (8a) as

OH 0H OH OH
8tmi——8j (mltsTrL]_Qj(ng) — 0 (m]5 —|—h7 Q]5Q3>

oH oH
v (o on+ 500 ) ©

5m; 0t 5

The first two terms are now in conservation form, while the last term differs by the divergence of a stress from the @rddient
of the Hamiltonian density, the integraitfl appearing in the Hamiltoniakl = | Hdxzdy. This generalises a result from Holm
and Kupershmidt [34] for purely algebraic Hamiltonian densities, for which the last term in Eq. (9) is prétigelyHolm et
al. [26] gave an equivalent manipulation for the Euler-Poigédarmulation involving the gradient of the Lagrangian density.

By contrast, the induction equation (8c) is not automatically in conservation form, but the non-conservative final term typically
vanishes becauseé-Q = 0, corresponding either t&-B = 0 in conventional MHD, or t&v-(hB) = 0 in SWMHD [20]. The
constraintV-Q = 0 is preserved by the induction equation, since Eq. (8c) implies

oV-Q+ V- <§HV-Q> =0, (10)
om

so is most naturally imposed as an initial condition. In shallow water magnetohydrodynamics (with or without dispersion) the
V-(hB) = 0 constraint has a natural interpretation as the reconstructed three dimensionaBseb&ing tangent to the free
surface [1]. In other words, the free surface is a magnetic field line. However, the-exWaQ term is needed in general
(whenV-Q # 0) to make the system Galilean invariant [3, 20, 36—38], and to ensure that the Poisson bracket satisfies the
Jacobi identity [30]. The difficulty with Galilean invariance arises because Eg. (10) would be simpl) = 0 without the
non-conservative term proportional¥0 Q in Eg. (8c).

lll. DISPERSIVE SHALLOW WATER MHD EQUATIONS

With respect to the variablas, h, andQ, the Hamiltonian in Eq. (3) takes the form

H = %/gh2 +m-u+Q-|B- 3ihV(h3v-B) dxdy, (12)

after integrating by parts. Substituting the variational derivatives,
oH oH

oy i - 3

5o =u so=B 3hV(h V-B), (12)
4 _ _1 2 2 _1 2 2 1 2 2 1 3

—5;;/ = gh—5(uf + BP) = 5h*(V-w)’ + Sh*(VB)’ + 5B - V(h*V B), (13)
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into the general expressions above, we obtain the dispersive shallow water magnetohydrodynamic equations in the form

Oy + V-(hu) = 0, (14a)
8y(hB) + V-(huB — hBu) = 0, (14b)

1 1
h(6u+u-Vu+gVh)— V-(hBB) §v [R*D(hV-u)] + hBxVx [MV(hSV-B)]

—hV BhQ(V-B)Q + SihB : V(h3V~B)} : (14c)
subject toV-(hB) = 0, and whereD = 9; + u - V is the material time derivative. The left hand sides of Eqgs. (14a-c)
are the original SWMHD equations, while the right hand side of Eq. (14c) contains dispersive corrections due to finite layer
depth. The(1/3)VA*D(hV-u) term in Eq. (14c) is the Green—Naghdi dispersion [8, 10, 13, 16, 17], sometimes rewritten as
—(1/3)Vh2D?h, sinceDh = —hV-u from Eq. (14a). One qualitative change in these equations is the appearance of a further
time derivative on the right hand side of Eq. (14c). Equation (14c) may be further manipulated into the form

h(0pu+u-Vu+ gVh) — V-(hBB) = %v [R*D(hV-u) + h*(V-B)? — h°B - V(V-B)] (15)

that arises from a perturbative solution of the original three dimensional equations (see Appendix). Moreover, tthenhayght
be eliminated between Egs. (14a,b) to obtain the familiar frozen-flux equationificmmpressiblenagnetohydrodynamics,

B+u-VB—B-Vu=0, (16)

although neithen nor B have zero divergence in shallow water magnetohydrodynamics.

IV. ALTERNATIVE VARIABLES

Like the original shallow water magnetohydrodynamic equations [20], the dispersive SWMHD equations may be simplified
by a change of variables. However, the situation is slightly more complicated than before, because thewasiablem =
u-+O(h?/£?) no longer coincides with the fluid velocitythat appeared previously. In principle this distinction always arises in
fluids with electromagnetic fields, because the Poyntingdfi3E x B contributes to the momentum, but it is usually negligible
in nonrelativistic MHD. The distinction also tends to appear in higher order Hamiltonian perturbation theories even for pure
hydrodynamics, sinc&H /du is rarely justhu, and is commonly met in a rapidly rotating context [39].

In (v, h, Q) variables, the Poisson bracket becomes [33]

1 0F 6G 0F\ 0G 0G\ OF

0F |1 0G oOF 1 0G 1 0F 686G  OF 4G
o 10 (vag)] +sg [ (Rexi )| +ava (5 3G - 5 &) e

where we have retained the last term proportional/t@ that was omitted in Ref. [33]. This form emphasises tbie 1of
the potential vorticityh~!(V xv), and extends easily to include the Coriolis force in a frame rotating with angular vefacity
by replacingV xv with Vxv + 2€ inside the bracket [23]. Alternatively, the unmodified bracket may be used provided the
momentum is taken to hex = (v + R), whereR is any vector potential for the Coriolis force withxR = 2 [35, 40].

As with the original hyperbolic SWMHD equations [20], the dispersive SWMHD equations take a particularly simple form
when theV-(hB) = 0 constraint is used to writB = h='2x V¢ = h™!(—1,,v,,0) in terms of a magnetic flux function.
The choice of) and the sign convention is the usual one in magnetohydrodynamics. The Poisson bracket then becomes [20]

0G/6uy
_ [ (97 3F 3F 3FN [ 9G/6u,
0G /6
with Poisson tensor
0 —q 9 —h71Q,

J—_ q 0 0y h™'Q.
= ) o, 0 o0 |

h1Q, —h71Q, 0 0

(19)
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whereq = h=12 - (Vxv + 2Q) is the (scalar) potential vorticity. The upper left, purely hydrodynasmig,3 block was used
previously by Shepherd [23]. The exact Poisson tensor (19) was used previously by Ripa [41] in a shallow water model with
horizontal temperature gradients, withplaying the role of temperature. However, our derivation from a Lie—Poisson bracket
via a change of variables offers a much more direct proof [40] of the essential Jacobi idérfitg}, H} + {{G, H}, F} +
{{H,F},G} = 0than Ripa’s long formal proof [41].

The dispersive SWMHD equations in these variables are

8h + V-(uh) =0, O +u- Vi =0, (20)

1 1 1
v + (22 + Vxv)xu+BxVx {B - %V(hSVB)] +V <gh+ 5|u\2 - 5|B\2

_1 2 2 1 2 2 i 3 _i ) 30 _
2h (V-u)® 4+ 2h (V-B) +3hB V(h°V-B) 3hu V(h’V-u) | =0,
wherev = m/h = u — (1/(3h))V(h3V-u), and the last term is the gradient of the Bernoulli function. The variational
derivatives of the Hamiltonian are known from the variational chain rule,

OH _1OoH (oW _ (0H\ 0K OH o W 1)
ov _hem’ \on),  \on)_ "V em s VeQ

even though the Hamiltonian itself cannot be written explicitly in termsvof.( 1)) because there is no explicit formula for the
inverse operatok; ' that determines from m or v.

V. CONSERVATION PROPERTIES

The Hamiltonian structure of shallow water magnetohydrodynamics implies many conservation properties, and these are
shared by the dispersive extension derived above. However, the velocity splitting causes some modifications. Materially con-
served quantities liké and) are transported by the vertically averaged veloaitys seen in the first two of Egs. (20), but the
definitionof the transported quantity that is the potential vorticity contains the different veloditgtead ofu. This velocity
splitting occurs because the operations of taking a curl and vertical averaging do not commute [12]. In other words, the vertically
averaged vorticity is not the curl of the vertically averaged velocity. The same phenomenon occurs in saaxesifebthed”
models of incompressible fluids [25-27], where an average over (assumed isotropic) small-scale fluctuations takes the place of
a vertical average.

The Poisson bracket has the Casimir functionals [20, 40, 41]

c= / hf(6) + hag(t) dedy, (22)

wheref () andg(v) are arbitrary functions of the magnetic flux functionAll such quantities are conserved by the SWMHD
equations, with or without dispersion, becau€/d(m, h, 1) = 0 for all such Casimir functionals [24, 29, 31] whéiis given
by Eq. (19). Thu,C = {C, H} = 0, becausdC, F} = 0 for all functionalsF.

The Casimirs in Eqg. (22) imply conservation properties of the flux function and potential vorticity identical to those for the
SWMHD equations given in Ref. [20], although the definitioryah terms of the primitive variableas andh has been modified
by dispersion. In particular, the magnetic flux functigris materially conserved, as calculated explicitly in Eq. (20). The
potential vorticityq is not materially conserved when magnetic fields are present, due to the source term on the right hand side
of EqQ. (23), but the total potential vorticity between any two magnetic field linescst is conserved [20].

Equations (20) imply the potential vorticity equation

1 1
dqg+u-Vg=B -V [hz.w <B— %V(h3V-B))], (23)

which shows that potential vorticity is materially conserved by the non-magnetic Green—Naghdi equations [16}; Ut as
V xu is materially conserved by the shallow water equations [5, 6]. Equation (23) corresponds to a Kelvin circulation theorem
(see Ref. [35] for a non-magnetic version)

d 16H
o cv dl_fch(mvw dl, (24)
for the evolution of the circulation of around any closed material curgemoving with the transport velocity. The circulation

is equal to the surface integral of the vorticR¥/x v over any surface spanning the loop by Stokes’ theorem. Unlike the pure
fluid case, the right hand side contains a source term due to the magnetic field. However, this source term vanishesdf the loop
is a closed magnetic field line, for whieh is perpendicular t&/v, which confirms that the total potential vorticity inside any
closed field line is conserved [40].



VI. UNIDIRECTIONAL WAVES

We begin the study of dispersive SWMHD by considering unidirectional waves. If the dependent variables are assumed to
depend on one spatial coordinatenly, Egs. (14) simply to

O + 8y (hug) = 0, (25a)

Oz (hBs) = 0, (25b)

0¢(hBy) + 0y (huy By — huyB,) = 0, (25¢)

O¢(huy) + Ox (huxuy hByBg) = —fhug, (25d)
8t(hu1)+8${humuw+;ghQ—hBIBw—;th(hamuw)—;)h?’(ame)z—&—;h3B$8mBI} = fhu,, (25e)

whereD = 0; + u,0,. The right hand sides arise from a Coriolis force due to a possible rotation abauaitie with angular
velocity ) = %f, f being the Coriolis parameter [5, 6]. The initial conditions have been taken to s&t&fy= 0, soQ, = hB,
is constant. In the absence of rotatigh=¢ 0) Egs. (25a,b,e) fok, B,, andu, decouple from Egs. (25c,d) fd8, andu,. In
contrast to conventional MHD, there is no magnetic pressure contributionfpim the z-momentum equation (25e).

A. Linear waves

We consider solutions of Egs. (25a-€) in the fokm= ho + A’ exp(i(kz — wt)), and similarly foru,, u,, B,, and B,,.
We adopt a frame in whicliy = 0. As in Ref. [4], we exclude the possibility of shear instabilities in a rotating system due
to a nonzeray,o. A perpendicular magnetic field componeBy, is permitted, but does not feature in the linearised system.
Following Li [28], we scale both horizontal and vertical lengths with the undisturbed layer dgpdind scale time such that the
long gravity wave speed/ghy is unity.

The five perturbations’, v, u;, B;, andB; are related by

B B
W, =ch/, B, = -2/ B, = — 0 Y (26a)
C C
(B2 = ¢*)(1+£2/3) +1] U;"i‘zf?cu; =0, (B% - —’fi L =0, (26b)

wherec = w/k is the phase speed of the wave. Only theomponents are affected by dispersion, as manifested by the
(1 + k2/3) factor. The other terms are all identical with Egs. (4) of Ref. [4] for non-dispersive SWMHD.

Dispersive SWMHD, like non-dispersive SWMHD [3, 4], admits only four propagating waves despite having five dependent
variables. The fifth wave associated wRhQ is degenerate [3], by analogy with the eighth wave associated VB in
compressible MHD [36-38]. In the non-rotating case the four waves split into a pair of transveréa whves, involvingz;
andB,, only, and a pair of longitudinal magnetogravity waves involvirgu;,, andB;, only. Being transverse, the Alan waves
are unaffected by the dispersion, and so propagate with unchanged phasé&speeBy contrast, the dispersion relation for
the two magnetogravity waves becomes

2 k2

— 2 2
= m +k B.’L‘O (27)

in dispersive SWMHD. For long wave# (< 1) where dispersion is ineffective Eq. (27) becomes: k\/1 + B2,, the phase
speed: = w/k being the usual combination of the surface gravity and &ifwave speeds.
The exact dispersion relation for magnetogravity waves on a fluid layer of unit depth is

w? = ktanh(k) + k*B2,, (28)
a formula that may be derived from the dispersion relation

e k(p1 — p2) + k%2B2,[coth khy + coth khs)]
p1 coth khy + ps coth kho

(29)

given by Talwar [42] for two superposed fluid layers of finite densitieandp,, and depthé, andh,, by lettingp, — 0 and
ho — o0, While p; = 1 andh; = 1 in our dimensionless variables. The non-magnetic part of Eq. (29) may also be fajag&1in
of Lamb [43], and the infinite depth limit if97 of Chandrasekhar [44]. The magnetic field appears as an anisotropic surface
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FIG. 1: The exact water wave phase speéd= gh tanh kh, and the Green—Naghdi and KdV approximations derivedifor< 1. The
Green—Naghdi approximation is substantially more accurate than KdV for modeéraaed its phase speed does not become negative.

tension, of magnitudés? cos? § for waves propagating at an angleo the magnetic field lines [44]. In particular, théB2,
term is independent of the fluid layer depth, and both the phase spéeand the group speetly/dk asymptote towards the
Alvén speed3, for sufficiently short waves (als — o).

Dispersive SWMHD captures the magnetic contributidi?, to the dispersion relation exactly, while thé/(1 + k2/3)
term in Eq. (27) is a Padapproximation td tanh k from the exact gravity wave dispersion relation. Singeeh k has poles at
k = +1iim, this Pa@ approximation is more accurate than the Taylor series approximiatian- k2/3) obtained from KdV
dispersion [14, 19]. These three dispersion relations are plotted in Fig. 1. Bergaalif14] also argued that the unbounded
group speedw/dk obtained from KdV dispersion in the short wave limit is undesirable. As any shallow layer model will be
inaccurate for sufficiently large wavenumbétrsone should aim for some “innocuous” behaviorkas: co.

In a rotating system, the two families of ABm and magnetogravity waves are coupled by the Coriolis force. However, the
dispersion relation still has two branches given by

B P PP AR P )

2 _ kQB2
Wi 0t ST k2/3) 21+ k2/3) :

(30)

which coincides with Eq. (3) of Ref. [4] fokh < 1. For smallk, the upper branclv, emerges from the Coriolis frequency

f, while the lower branch emerges from zero with « k2. The two branches are often called “fast” and “slow” waves, the

term fast meaning waves whose frequencies are greater than the Coriolis frequency, and slow meaning waves whose frequencie
become arbitrarily small for large wavelengths [5, 6]. Fast waves in rotating incompressible MHD are also called inertial
waves, while slow waves are sometimes called MAC (magnetic Archimedean Coriolis) waves to reflect the dominant balance of
Lorentz, buoyancy, and Coriolis forces [45]. They should not be confused with the fast and slow shock waves in hon-rotating
compressible MHD.

In rotating hyperbolic SWMHD, without dispersion, the only characteristic lengthscale is the Rossby deformation radius
R4 = V/gho/f, the scale on which the Coriolis force becomes comparable to the horizontal pressure gradient [5, 6]. In
dispersive SWMHD the layer depthdefines a second preferred lengthscale, one wiiere O(1), so the dispersion relation
in Eg. (30) contains two free parameters, showyi asd B, rather than one as in SWMHD [4]. Figure 2 shows the frequency
w4+ and phase speed, /k for the case withRy = hg, and alsoB,, = +/ghg as in Ref. [4]. The main effect of dispersion
is that the fast branch_ asymptotically approaches the Aéfm dispersion relation at high wavenumbers, rather than the long
magneto-gravity wave dispersion relation as in SWMHD [4].
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FIG. 2: Phase speeds of fasty( branch) and slow.{_ branch) waves in rotating dispersive SWMHD. Slow waves are almost unaffected by
dispersion. The fast waves asymptote to the non-rotatingeAlspeed, instead of the faster long magnetogravity wave speed, in line with the

behavior of magnetogravity waves in non-rotating dispersive SWMHD. ThetAlfpeedB.o| = v/gho, and the Rossby deformation radius
Ra = /gho/ f = ho, the layer depth.

B. Nonlinear waves

The one dimensional non-rotating dispersive SWMHD equations also support finite amgdithitisolitary waves analogous

to those present in the one dimensional Green—Naghdi equations [13, 28, 46], and also in the finite depth irrotational water wave
equations. These solutions are

h(z —ct) =1+ (¢ — Q% — 1)sech? l 32(62 —@ - (x — ct)] ; (31)

provided the wave spedd| > /1 + @2, the speed of linear long magnetogravity waves from Eq. (27). The other variables
are given byu, = c¢(1 + 1/h) andB,, = Q/h. When@ = 0 these formulas reduce to those given by Li [28] for the Green—
Naghdi equations. More generally, theh? waves are the infinite wavelength limit of a family of periodic cnoidal [9, 43] wave

solutions given by
- 33 1/2 o 1/2
h(z —ct) = 1 + acn? l(xct) (4(1+a)(1+0¢—ﬁ)) ’(ﬁ) ) (32)

wherecn is the Jacobi elliptic function with modulug’'a/3. The parametes is the wave amplitude, an@ controls the wave
length. The other variables are given By = Q/h andu, = ¢+ M/h. The mass flud/ through the wave train is determined

by M? = Q% + (1 + a)(1 + o — ). As there is no natural preferred frame, analogous to the frame in which the fluid is at rest
at infinity for solitary waves, the wave speethay be chosen freely. The cnoidal ardh? waves coincide in the limit where

8 =a= M?—-Q? - 1and the wavelength becomes infinite. The horizontal magneticflorly appears in the combinations

M? — Q?, or ¢ — Q? for the solitary waves wher&/ = c.

VIl. CONCLUSION

The shallow water magnetohydrodynamics (SWMHD) equations have a Hamiltonian structure in terms of the ubiquitous non-
canonical Lie—Poisson bracket describing barotropic fluids with magnetic fields in Eulerian variables. The SWMHD Hamiltonian
results from integrating the three-dimensional energy density in the suppressed vertical coordinate and discarding terms involving
the small aspect ratio. In this paper we have constructed a dispersively regularized extension of the SWMHD equations by
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retaining two small contributions to the energy from the vertical fluid velocity and magnetic field. The same dispersive SWMHD
equations may also be derived directly from the three dimensional MHD equations (see appendix), and for unmagnetised fluids
they coincide with the Green—Naghdi equations.

The unmodified SWMHD induction equation is already accurat®th?/¢?), the same as the Green—-Naghdi equations,
provided the horizontal velocity and magnetic field are interpreted as the layer avaraiggB (see appendix). The momentum
equation acquires further dispersive term®ék? /¢?) due to magnetic contributions to the non-hydrostatic pressure gradient in
addition to those in the Green—Naghdi equations. In the absence of rotation, the dispersive SWMHD equations support smooth
solitary waves and periodic wavetrains analogous to those in the Green—Naghdi and irrotational water wave equations, in contrast
to the traveling shocks in the original SWMHD equations. The effect of rotation on these finite amplitude waves remains to be
investigated.

Dispersive SWMHD shares the same Poisson bracket as SWMHD, and thus inherits many conservation properties. In partic-
ular, the potential vorticity inside closed magnetic field lines is still exactly conserved, but the definition of potential vorticity in
dispersive SWMHD is changed @(h?/¢?) by dispersion. It remains to be seen what implications these conservation properties
have for nonlinear stability, such as analogues of the results obtained byatialnj29] for two dimensional barotropic MHD,
and whether the additional dispersion has the destabilising effects found by Baz@¢m=kdt0] for shear flows in the Green—

Naghdi equations. Any instability associated with the variation of the vertical component of the rotation vector with latitude
would be important for momentum transport by wave breaking in the solar tachocline, the scenario suggested in the introduction.

Dispersive SWMHD, like the Green—Naghdi equations, may be extended to include varying bottom topography, by replacing
the boundary conditions, = b, = 0 atz = 0 with no-normal-component boundary conditions at a spatially varying depth
z = B(x,y) [10, 12, 15-19]. The vertical velocity and magnetic field appearing in the Hamiltonian in Eqg. (2) then become
u, = V-(fu) — z(V-u) andB, = V-(6B) — z(V-B). Moreover, dispersive SWMHD is purely a small aspect ratio approx-
imation, and require no assumptions about the magnitudes of velocities or height variations. Further assumptions would lead
to magnetic analogues of the great lake [12] or generalised Boussinesq [15] equations for small amplitude fluctuations in the
velocity and free surface height. The generalised Boussinesq equations may be obtained by repI:%)dilngVthﬁ)2 in the
Hamiltonian with ho[V-(hu)]?, wherehy is the undisturbed layer depth [19]. This modification has the effect of linearizing
the dispersive term to jus%%hOVhtt in the equation fov;u [19]. Unfortunately, the magnetic dispersive terms vanish com-
pletely in this approximation becau§& (hB) = 0, so the resulting dispersion relation for linear magnetogravity waves does
not match Eg. (27). However, a cruder Iinearizatior%—hg(V-B)2 does retain a magnetic contribution to the dispersion. A
key simplification then arises because variations imay be neglected in the operatorelatingm to u. This operator be-
comesLu = u — %VVu, and may be diagonalised by a Fourier transform. A further modification, repléd:ig'@~u|2 with
£h3|Vu|? in the Hamiltonian, leads to the operatar = u — 13 V*u that acts on the vortical part of not just its divergence.

This operator appears inv*smoothed” models of incompressible ideal fluid dynamics [25, 27], and recently incompressible
ideal MHD [47], where the average over a thin layer is replaced by an average over small scale fluctuations.
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APPENDIX A: DERIVATION OF DISPERSIVE SWMHD BY AVERAGING

In this appendix we rederive the dispersive SWMHD equations from perturbative solutions to the full three dimensional MHD
equations. We follow the approach of Camasstal. [12] for their “great lake” equations, but we perndi(1) displacements
of the free surface, and include both a Coriolis force and a magnetic field. Consistent with a shallow layer scaling, we use the
traditional approximation [5, 6] that takes the angular velocity veftdo be vertical and independent of 2Q2 = f(z,y)Z2.
This removed2 from the vertical momentum equation (A2b). We do all@ao vary horizontally, as in &-plane model [5, 6].

The three-dimensional rotating MHD equations for an incompressible fluid layer, confined between a rigid:badeantd
a free surface at = h(z,y), are

Opuz +uz - Vauz — B3 - V3B3 +2Qxu3 = —V3p—g2, (Ala)
0;B3 +u3 - V3B3 — B3 - Vzuz = 0, (Alb)
Vg'B =Vs3uz = 0, (A].C)

subject to the boundary conditions that = u, = 0 onz = 0. The free surface conditions aB- n = 0 andd;h = u-non
z = h(z,y,t), where the (unnormalised) normal vector= (—0,h, —0,h, 1) points upwards out of the fluid. Unlike Camassa
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et al. [12], we work with the unmodified total pressuysefluid plus magnetic, that vanishes on the free surface.

The important step is to scale the vertical coordinatgth a small parametet = 1 /¢, the aspect ratio. The divergence-free
conditionsV; - uz = 0 andV; - B3 = 0 then suggest scaling the vertical velocityand vertical magnetic fiel@, to beO(9),
so we setus = (u,dw) andB3 = (B, db). Equations (A1) then become (as in Ref. [12] for the non-magnetic, non-rotating

part)

du+u-Vu+wi,u—B-VB—-00,B+20Qxu+V(p+gz) = 0, (A2a)
520w +u - Vw + wd,w — B -Vb—bd,b) +0.p+g = 0, (A2b)

B +u-VB+wid,B—B-Vu->5bd,u = 0, (A2c)
ob+u-Vb+wd,b—B-Vw—bd,w = 0, (A2d)
V-B+0,b=Vu+0d,w = 0. (A2e)

As before,V, u, andB denote the horizontak(andy) components of the three dimensional objéc¢ts us, andB; respectively.

The 62 multiplying the vertical acceleration in Eq. (A2b) justifies the hydrostatic approximation leading to the usual (non-
dispersive) shallow water equations [5, 6], and to shallow water MHD [1]. The Green—Naghdi equations, and their magnetic
analog dispersive SWMHD, contain corrections to the pressure arising frof(ti¢ term in the vertical momentum equation
(A2b). Following Camassat al. [12] we seek solutions of Egs. (A2) via an asymptotic expansion in the small parameter

u u® 4520 4. B=BO 4+ B0 4.

w = w® + 5200 4 ... b=0b0 445%™ 4 ... (A3)

p = p(O) +52p(1) + ..
The O(1) terms in Eq. (A2b) imply thap(®) is the hydrostatic pressurg(’?) = g [h(z,y,t) — z], with the property that
Vp®) = ¢gVh is independent of. The horizontal momentum and induction equations are thus satisfied at leading order by a
z-independent velocity(®) = u(® (x, y, t) and magnetic field(®) = B (z, y,t). The continuity equations (A2e) then give

w® = —2V.u® andb(® = —2V-B(®). The integration constants have been chosen saitha andb = 0 on z = 0.
Having determinedi(?), B(®) (9 andb(®), the vertical momentum equation (A2b) gives

a,pM) = 2 [atv.u(o) +u® . v(Vu®) - (vu®)? -BO.y(v.BO) 1+ (vV.BO)?| (A4)
atO(4?). Since the term in square brackéiss independent of, Eq. (A4) integrates to give

p =1

2(22 - h(CIZ,y7t)2)H7 (AS)

using the free surface conditipn= 0 on z = h(z, y,t). Moreover,

V) = 2(2 ~ )V - AR, (16)
and
h 1 1
| Vs = 2Vl - 1R = - V)
A 3 3
- f%v {hQD(hV'u(O)) +R3(V-B©)2 — p3BO).. V(V-B<0>)} : (A7)

where theV-u®) term has been rewritten [8, 10, 13, 16, 17, 28] usihg= 9, + u(® . V. Spatial differentiation does not
commute with layer averaging because the layer depshtself a function ofr andy.

In principle, theO(§2) correctionsu™, B, ™), andb(!) may be computed from th@(42) terms in Egs. (A2). However,
Camassat al. [12], following Su and Gardner [13], preferred to derive equations for the layer mean vaiagiegn by

1 h(Iﬁlj}t)
u t) = — t)d A8
u(x7y7 ) h(x7 y’ t) /0 u(x7y7 Z? ) Z7 ( )

where an overbar denotes a depth-averaged quantity. Wu [48] showed that

h(3F + us - VsF) = 8,(hF) + V-(huF), (A9)
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for generalF', by integrating by parts in and using the kinematic boundary conditionsdgrat the two material surfaces= 0
andz = h(x,y,t). Similarly,

h(Bs-VsF) = V-(hBF), (A10)

using the tangency conditions tHat n = 0 onz = 0 andz = h(x, y).
The layer averaged continuity equation

dh + V-(hu) = 0, (A11)

is given by Eq. (A9) withF' = 1, for which the left hand side vanishes. Equation (A2a) may be integrated using Eq. (A9) with
F =u, andF = u,, and Eq. (A10) withF" = B, andF' = B,, to give

h
Oy (hu) + V-(huu — hBB) + 2Qxhu+ [ Vpdz =0, (A12)
0

were theO(62) correction to the hydrostatic pressure is given by Eq. (A7). The vertically averaged Reynolds stress factorizes as
uu = uu + O(4*), because the cross temtit) u(?) in the z-integration isO(6*) [12, 13]. Thus Eq. (A12) becomes

Or(h) + V-(huu — hBB) + 2Qxhut + ghVh — %V {R*D(hV-u) + 1*(V-B)* — h°B-V(V-B)} = 0(5*), (A13)

where, to close the system, th€") term is evaluated using andB instead ofu(® andB(® by incurring a further error of
O(8*). Similarly, the induction equation may be integrated to give

Oi(hB) + V-(huB) = V-(hB1a) + O(5). (A14)

Note that it is is unnecessary to computeé) or B(Y) explicitly. In particular, the structure inneed not be specified, although
it would be natural to seek solutions involving a term proportionaftplus az-independent term.

The horizontal component & that we have omitted above was retained by Bazderdtosl. [10], who computed the
leading order corrections to the Green—Naghdi momentum equation, Eq. (A13Bwith0. However, these corrections are
formally O(h/¢), so a fully consistent treatment (1?2 /¢?) would require both an expansion in powerssohstead of5?,
u=u® +su +52u® + ... inplace of Eq. (A3), and the explicit evaluation of the first correctidh .

In our Lie—Poisson Hamiltonian treatment, and in Miles and Salmon’s [16] derivation of the Green—Naghdi equations from
Hamilton’s variational principle, the horizontal velocity appearing in the three-dimensional Hamiltonian or action integral is
taken by fiat to be independent af In other words, it iax(®) that appears in the Hamiltonian or in the action. The Hamiltonian
structure then leads to the Green—-Naghdi equationsifdr  Similarly, Green and Naghdi’s [8] derivation took the vertical
velocity w to be precisely linear in. On the other hand, in this derivation directly from the three-dimensional Euler equations,
the horizontal velocityr = u(® +62u®) + - - . varies inz, albeit not at leading order, and the vertical veloeitis not precisely

linear inz. Thus the Green—Naghdi, or dispersive SWMHD, equations hold for the layer aierag€?® + §2u(l) instead of
for u(®,
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