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Lattice Boltzmann equations using multiple relaxation times are intended to be
more stable than those using a single relaxation time. The additional relaxation
times may be adjusted to suppress non-hydrodynamic modes that do not appear di-
rectly in the continuum equations, but may contribute to instabilities on the grid
scale. If these relaxation times are fixed in lattice units, as in previous work, solu-
tions computed on a given lattice are found to diverge in the incompressible (small
Mach number) limit. This non-existence of an incompressible limit is analysed for
an inclined one dimensional jet. An incompressible limit does exist if the non-
hydrodynamic relaxation times are not fixed, but scaled by the Mach number in the
same way as the hydrodynamic relaxation time that determines the viscosity.

1. INTRODUCTION

Methods based on lattice Boltzmann equations (LBE) are a promising alternative to conventional numerical methods for
simulating fluid flows [9, 32]. Using a velocity-space truncation of the Boltzmann equation from the kinetic theory of gases
[6, 7, 18], lattice Boltzmann methods lead to linear, constant coefficient hyperbolic systems with nonlinear source terms.
Almost all lattice Boltzmann equations simulate compressible fluids with some finite soundcgpdedever, the computed
solutions are expected to converge towards an incompressible limit when the fluidjapeedufficiently small compared
with ¢, i.e.as the Mach numbévla = |u|/cs tends to zero. Most recent work with lattice Boltzmann equations follows Chen
et al.[8] and Qiaret al.[29] in employing the Bhatnagar-Gross—Krook (BGK) collision operator [5], for which every variable
relaxes towards equilibrium with the same timesecal@he BGK approximation was originally seen as a simplification over
previous lattice Boltzmann equations using first linearized forms of binary collision operators originating in lattice gas cellular
automata, and then general linear operators constrained by symmetry and conservation properties [4, 23, 24]. These historical
developments have recently been reviewed by Seical. [33]. Lallemand and Luo [25] found that some more complicated
collision operators improve stability at high Reynolds numbers compared with the BGK collision operator. In this paper we
show that incompressible limits do not exist for lattice Boltzmann equations with these collision operators, unless they are
modified to make every timescale proportional to the Mach number.

The Boltzmann equation for a discrete velocity space with the BGK collision operator may be written as

oufi+& V= (fi- 1), ®

where the distribution functiong;, equilibrium fi(o), lattice vectorst;, and other variables are defined in detail below. For
suitable choices of thg; and fi(o), solutions of (1) may be shown to simulate the Navier—Stokes equations with kinematic
viscosity v proportional tor. Equation (1) is sometimes called a discrete Boltzmann equation. It is usually implemented
computationally as the fully discrete system, or lattice Boltzmann equation,
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for the modified distribution functiong, defined below, which is a second order accurate approximation to (1) in both space
and time. For spatially uniform solutions, (2) may be rearranged into the form

Filt+ At — fO) = - (L2ZTAEY (7 4y - 50 @)
( ) <1 +27/At

The scheme (2) is typically used with< At to attain high grid Reynolds numbers, for which the coefficient —(1 —
27/At)/(1+27/At) in (3) is close to-1. In other words, for smatt the discrete variableg, areover relaxedoy an amount

close to the linear stability boundary, rather than driven rapidly towards equilibrium as in the continuum system (1). In other
words, the non-equilibrium parts of the distribution functions are rapidly oscillating but only slowly decaying. This is the
source of the instabilities that restrict the maximum feasible Reynolds number for a given lattice.

To ensure isotropy, most lattice Boltzmann equations include more variables than appear in the hydrodynamic equations
that they simulate. For example, the most common two dimensional lattice Boltzmann equation [29] includes nine distribution
functions, while only six independent variables are necessary to recover the two dimensional Navier—Stokes equations. These
six variables are the scalar densitythe velocityu, and the symmetric momentum flux tenddr The three extra variables are
associated with non-hydrodynamic or “ghost” variables [3, 4, 12] that have no effect on the intended hydrodynamic behavior
at large spatial scales, but may dominate at the smallest permitted scales comparable with the computational lattice [12].

Lallemand and Luo [25] proposed using a more complicated collision operator that over relaxes only those combinations
of the f; that contribute to the momentum fliiX, and hence to the viscous stress, while damping the three non-hydrodynamic
combinations that do not appear in the Navier—-Stokes equations. This modification might be expected to improve stability
for a given Reynolds number, and was extended to three dimensions by kst al. [14]. Lallemand and Luo [25]
used a non-hydrodynamic relaxation timgeslightly larger thatAt/2, while Higueraet al.[24] and Succi [32] recommended
choosingr, = At/2, for which~y = 0 in (3), to maximally damp the non-hydrodynamic variables. The latter is equivalent to
McNamaraet als [27] approach of setting the non-hydrodynamic modes to zero at each lattice point after each timestep.

The potential gains available from using a multiple relaxation time (MRT) collision operator to damp non-hydrodynamic
modes are illustrated by the solutions shown in Fig. 1. The four subplots show the results of simulating the roll-up of two
antiparallel shear layers through a Kelvin—-Helmholtz instability, as considered by Minion and Brown [28] (see Section 5).
The initial conditions were given by equation (32) below with= 80, § = 0.05. The Reynolds number wads = 30000,
and the Mach number wada = v/3/25 ~ 0.07. Using the BGK collision operator, the simulation oh28? lattice becomes
unstable and “blows up” before= 1.0. On a256 lattice the BGK simulation remains stable, but develops two spurious
vortices of the kind investigated by Minion and Brown [28]. By contrast, the simulation on a dea%sgrid using a multiple
relaxation time collision operator withy, = At/2 compares favorably with the well resolvai2? solution that uses the BGK
collision operator. Although the shear layers have been thickened by the coarse gti284RT solution is stable and
lacks spurious vorticies. Similarly, Dellar [11] found that enhancing the bulk viscosity while leaving the non-hydrodynamic
modes unchanged could suppress spurious vortex formation.

In this paper we show that solutions computed by lattice Boltzmann equations that damp non-hydrodynamic modes in
this way, with timescales that are fixed multiplesf, do not converge to an incompressible limitls, — 0. Instead,
the solutions on a fixed lattice diverge @Ma ') in the small Mach number limit. This observation, originally based on
numerical experiments, is confirmed by theoretical analysis of a linearized problem. It applies not just to the usual isothermal
lattice Boltzmann equation, but also to an “incompressible” modification [35, 20], because the two equations coincide when
linearized around a uniform rest state. The difficulty arises from the use of non-hydrodynamic relaxation times that are fixed
in lattice units, as employed by Lallemand and Luo [25] and d’Hareset al. [14], and may be avoided by scaling every
relaxation time with the Mach number in the same way as the stress relaxationrgime, /3N Ma/Re in lattice units.

In outline, the details being given in Section 7, a lattice Boltzmann scheme reaﬂm\ésfl) timesteps to reach a fixed
macroscopic time, as determined in terms of an eddy turnover time for instance. Thus the eigenmodes of the linearized
system decay in proportion {d@ — O(7))*/M2, and this expression attains a nonzero limit only & O(Ma) asMa — 0.

In other words, the correct incompressible limit exists if the non-hydrodynamic modes are assigned a fixed Reynolds number
R, instead of an explicit relaxation time. This Reynolds number may differ from the usual hydrodynamic Reynolds number
related to the shear viscosity, but determines the non-hydrodynamic relaxation time as a function of Reynolds number, Mach
number, and spatial resolution by the same formula that relates the stress relaxation time to the usual Reynolds number.

The above all applies to a fixed lattice. The divergence at small Mach numbers may be suppressed by suitably refining the
lattice as the Mach number decreases. The error is proportioh&l TN —3, whereN is the number of lattice points per unit
interval, and so may be made small by increasihgHowever, this soon becomes very expensive because the computational
work is proportional taV(P+)Ma~! in D spatial dimensions. Thus it is common to test a scheme by separately verifying
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FIG. 1.  Vorticity during the roll up of a perturbed doubly-periodic shear layeRat= 30000. For this high value of the Reynolds number, the
BGK simulation on a1282 grid develops grid scale instabilities leading to “blow up” befere- 1.0, while the BGK simulation on 2562 grid forms
spurious vortices of the kind investigated by Minion and Brown [28]. Th&? grid simulation using a multiple relaxation time (MRT) collision operator
with 7g = At/2 compares more favorably with tt3 22 grid BGK simulation. Although the shear layers have been thickened by the coarse gridgthis
MRT simulation is stable and lacks spurious vorticies.
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spatial convergence at fixed Mach number, and Mach number convergence on a fixed lattice; except the latter limit does not
exist for the proposed MRT lattice Boltzmann equations.

2. LATTICE BOLTZMANN HYDRODYNAMICS

In the lattice Boltzmann approach to hydrodynamics, macroscopic variables like the fluid deasityvelocityu are
expressed as moments of a discrete set of distribution funcfigrst),

p=> _fi, pu=> &fi, =D &&fi @)
=0 =0 =0
whereg,, ..., ,, are a discrete set of particle velocities associated wittfthe

These distribution functions evolve according to the discrete Boltzmann equation,
Oufi+&-Vii=—Qyf; — £iV), fori=0,...,n, (5)

with an implied summation over the repeated ingexThe collision matrix(2;; and equilibrium distributionsfj(o) must be
chosen so as to recover Navier—Stokes behavior for the macroscopic variables in a slowly varying limit. In particular, the right
hand side of (5) should conserve mass and momentum, in the sense that [4, 33]

n

Z Qi(f; = £7) =0, > &8 - £ =0. (6)

=0

Moreover£2;; should only depend on the angle between the two particle velogitsds ; to ensure isotropy [32, 4, 24, 16].
The commonly employed Bhatnagar—Gross—Krook (BGK) approximation [5] takes
1
Q= ;5”7 (7)

so that everyf; relaxes towards its equilibrium valtﬁéo) with the same timescale
The Chapman—-Enskog expansion [18, 7, 34] seeks slowly varying solutions to (5) by inserting a formal parédmieter
front of the collision operator right hand side,

1
Onfit & - Vfi=—Quy(f; = f;"). fori=0,....m, ®

so that the slowly varying limit correspondsde- 0. The Chapman—Enskog expansion is a multiple scales expansion of both
f andt, but notx, in powers ofe,

=t etV 4P 1 0, =0 €D+, ©)

subject to the solvability conditions

Zfi(m) = ZEifi(m) =0,form=12,.... (10)

=0 1=0
Substituting the expansions (9) into (5), collecting terms at each order, and then taking moments we obtain macroscopic mass
and momentum conservation equations in the form

Oup+ V-(pw) =0, 9y(pu) + V- (IO + emm® .. ) =0, (11)

whereIT™ = > Sisifi(n)' The right hand sides vanish in (11), apdindu require no superscripts, by virtue of the
solvability conditions in (10).
To reproduce the compressible Euler equations, the first few moments of the quﬁl%mnust be

Z fi(O) =, Zsifi(()) = pu, oo — ZSzngz(O) = Opl + puu, (12)

=0 =0 =0
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FIG. 2. The nine particle velocitieg; in the 2D square lattice. In lattice uni, | = 1, and|€5| = v/2.

wherel denotes the identity tensor. The equation of state is ghusfp, wherep is the pressure anithe temperature. The
most common lattice Boltzmann equation simulates an isothermal (coisfant by using nine particle velocities arranged
on a square lattice in two dimensions, as illustrated in Fig. 2. The equilibrium distributions are given by [9, 29, 21]

£ = wip (1 +3€ u+t %@ - 2“2> ’ )

in units where the (constant) temperatére= 1/3, and the components of the particle speégdsake the integer values
{-1,0,1}. The weight factorsv; are

4/9, =0,
w; =¢1/9, i=1,2,3,4 (14)
1/36, i=5,6,7,8

The Navier—Stokes viscous stress is determineﬂIEfQ, which may be evaluated from the evolution equationiigr

oI+ V- (Z 515151f1> B _% Z £:6:;(f; — fg(O))v (15)
i=0

=0

obtained by applying """, &£, to (5). At leading order ir this becomes

0, 11O 4 V. (Z sieisiﬁ“) = Y&, (16)

i=0 =0

The multiple scales expansion of the time derivative in (9) enables us to répHE¥ by 9, 11V to sufficient accuracy, and
the latter expression may be evaluated in terms of the known quardjtiesnd 9, (pu) computed from the leading order
terms in (11). The left hand side of (16) then simplifies-téyp[Vu + (Vu)T], which is a Newtonian viscous stress. Thus the
collision matrix(2;; must be constrained so that the right hand side of (16) simplifiesto' >, g{if;l) = —Tn_ll_[(l).
The dynamic viscosity, = pv is related to the timescalg, by 1 = m6p.
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2.1. Incompressible lattice Boltzmann model
The most common lattice Boltzmann equation, with equilibria given by (13), solves the compressible, isothermal Navier—
Stokes equations in the form

Ohp+ V-(pu) = 0, (17a)
di(pu) + V-(puu + c2pl) = V-S + O(Ma® /Re). (17b)

The equation of state js= c2p, with constant sound speegd= 6'/2. The viscous stres$ = u[Vu + (Vu)T] is Newtonian,
with shear viscosity: and a nonzero bulk viscosity [11]. At low Mach numbeka = |u|/cs < 1, solutions of (17)
approximate solutions of the incompressilgle={ pg is constant) Navier—Stokes equations with erﬁc()Ma2).

Zouet al.[35] and He and Luo [20] proposed the alternative equilibria

FO =, {p + po (352. ‘u+ g(gi u)? — 2112)} , (18)

for which solutions of the lattice Boltzmann equation approximate the macroscopic equations [20]
cs20;P+V-u =0, (19a)
du+u-Vu=—-VP+vViu+ OMa?), (19b)

where P = ¢2p/po is the pressure, and = 11/p, the kinematic viscosity. Steady solutions of (19) approximate steady
solutions of the incompressible Navier-Stokes equations@ttia®) error, one order in Mach number better than the usual
isothermal lattice Boltzmann equation [20]. However, for unsteady flows the compressibility error rénixin$), because

the difference between the two sets of equilibria in (13) and (18) is @iMa®), sincep = py + O(Ma?) andu = O(Ma).

In the numerical experiments reported below, the density variations are sufficiently small that there is very little difference
between the two schemes. In fact, the two schemes coincide exactly when linearized around a spatially uniform rest state as
in Sections 6 and 7.

3. MULTIPLE RELAXATION TIMES

The collision matrix(?;; appearing in (5) must satisfy many constraints in order to reproduce the isotropic Navier—Stokes
equations [4, 24, 33, 16]. The easiest way to speeifyis to transform from the; to an alternative set of variables, including
the hydrodynamic variables u, andIl, that should be eigenvectors of the collision matrix. Using the same variables as the
author’s earlier paper [12], we write

1 1 1 3
fi = w; <P+ 5(/711) &+ W(H —0pl) : (§;€; — 9')) + w;g; (4N+ ggz : J) ) (20)
wheref) = 1/3 in lattice units, and; = (1, -2, -2, -2, —2,4,4,4,4)". The two “ghost variables\ and J are given by
the moments

8 8
N = Zgifi, J = Zglnglv (21)
=0 =0

by analogy with (4). The nine variable$ are thus decomposed into two scalarand AV, two vectorsu and 7, and a
symmetric second rank tensbE. Moreover, the lattice vectors appearing in (20)£,;, &,&, — 01, g;, andg;§;, are all
orthogonal with respect to the weighted inner product with weightEL2]. The three ghost vectors andg; €, thus extend
the first three tensor Hermite polynomials,;, and¢,€, — 61, to an orthogonal basis f@&°. The use of tensor Hermite
polynomials is motivated by the work of He and Luo [21] who derived the equilibria in (13), and the weights in (14), for the
common isothermal lattice Boltzmann equation from the continuum Boltzmann equation via a truncated expansion in tensor
Hermite polynomials.

However, other choices are possible. Begtzl.[3, 4] used a different set of weights, in which the rest particles associated
with £, had the same weight as the particles associated with the non-diagonal vefpcities Our A andJ are analogous
to the variableg: andn used by Benzet al.[3, 4]. Lallemand and Luo [25] used yet another set of variables, as introduced
by d’Humieres [13], based on lattice vectors that are orthogonal with respect to the unwéigimeer product. The discrete
equilibria happen to have the elegant representation (20) in terms of tensor Hermite polynomials for the isothermal equation
of state withd = 1/3 in lattice units; but for general equations of state [12], and especially for varying temperatures, the
discrete equilibria do not coincide with truncated expansions in tensor Hermite polynomials.
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In terms of the variables in (20), the lattice Boltzmann equation (5) is equivalent to the coupled system

dip + V-(pu) = 0, (22a)

9 (pu) + V-IL = 0, (22b)

I+ V- (i .68 fl-> = —%(H — ), (22¢)

7at/\f +V-J = —%(N — N©), (22d)

T + V- (ZS: m&&ﬁ) = —%(J - T (22e)
Pt 5

No relaxation times appear in (22a) and (22b) because mass and momentum conservation ipgly that andu(®) =
u, so the first two right hand sides always vanish. The remaining three relaxation#tines, and, may be adjusted
independently.

The hydrodynamic variables u, IT are coupled to the ghost variabl&§and J by the two terms expressed as sums in
(22c) and (22e). The combinations suclyggs &, may be expressed in terms of the nine basis vectors as [12]

2
9ilin&in =2 (&iy&iy — L) + 390 9i&izSiy = 4&i&iy» (23a)

1
§izbizbiv = Cin §inCinGiy = gfz‘y + égifz‘zﬁ (23b)

and their permutations im andy. In particularg appears in the nonequilibrium stress via (23b) and (22c), for instance

i /1 1 1 1
> Ginbinliyfi= <3£iy + 6915@,) fi=guy + Jy (24)
1=0 1=0
The complete closed system of equationsgon, IT, N/, andJ may be found in Ref. [12].

Equation (22c) for the symmetric stress tenEbmay be further decomposed into separate equations for the trace (which
is a scalar) and the remaining traceless part. The relaxatiorrijfioe the tracdl,, + II,,, of IT determines a bulk viscosity
that may be different from the shear viscosity determined by the relaxationrtifoe the traceless part df [25, 14, 11].

This decomposition of the ning into six quantities: three scalars, two vectors, and a symmetric traceless rank 2 tensor is
now irreducible, meaning that no further decomposition would remain invariant under rotation of the coordinates;; Thus

as determined by transforming equations (22a-e) back tg;thariables, is determined uniquely by the four free parameters
Tay Ty T, @ANAT;.

4. NUMERICAL IMPLEMENTATION

The discrete Boltzmann equation (5) is usually implemented computationally as the fully discrete system, or lattice Boltz-
mann equation

Filx+ &AL+ AL) = Fi(x,1) = — (7,660 = 17 x1). (25)

ij

-1
AtQ (1 + ;Atﬂ)

where thef, are defined by

T t) = file 1) + 5 851625 (£, = 100x,1)) (26)

The term in square brackets in (25) should be interpreted as the compdangwmisthe fully discrete collision matrix =
AtQ(1+ £ AtQ)~1. In the BGK approximation witlf;; = 7~14;;, (25) reduces to

At

fi(x+ &ALt + AL) — fi(x,1) = T AR

(?i (Xv t) - fi(o) (Xv t)) ’ (27)

which coincides with (2) above. The transformation frgirto £, in (26) then coincides with that introduced by lgeal.
[22, 19].
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Equation (25) and its BGK form (27) may be derived by integrating the discrete Boltzmann equation (5) along a character-
istic for time At. Approximating the integral of the collison term on the right hand side using the trapezium rule gives

1
JiOeHE AL AN~ fi(x, ) = 5 A, [ i+ &AL E+ AL — O (x+ €A1 T+ AL + f(x,1) — f7(x, t)] FO(A).
(28)
This equation is not suitable as it stands for a timestepping scheme becaysathinet + At also appear on the right
hand side; both explicitly, and implicitly through the dependencg; %?f(x + &,At, t + At) on thef; via p andu. However,
equation (28) is algebraically identical to the fully explicit equation (25) under the change of variables defined by (26). The
solvability conditions (10) imply that the substitution (26) leaves the density and momentum unchanged,

= Z?m p = Z&z?m (29)

i=0 =0

SO thefi(o) may be computed directly from thg, making thef; redundant. In other words, thg at timet + At are given
explicitly in terms of quantities known at timeby equation (25), while th¢; at timet + At would have to be found by
solving the system (28) of algebraic equations [22, 19].

In the general case, the right hand side of (25) would be evaluated by projecting onto the lattice vectors assocjated with
pu, II, N, and J as given in the last section. These lattice eigenvectors define a basis inAutfizland (1 + JAt£2) !
are both diagonal, so the matiiX; in (25) becomes simplt /(7 + 1 At) multiplying each eigenvectox as in (27). For
instance, a collision operator that changes only the relaxationstinier the ghost variabléy” may be implemented as

Filx+ &t t+ A = Fi(x.1) = —fgm (Fitxt) = 1, t)) (30)

Al At (0)
_<TN+At/2 T+At/2> Wigiy Zgﬂ(y —J; (X,t))~

SinceN(©) = ZJ 0gjf(o)(x t) = 0 for the equilibria given above, it is only necessary to comp\ite- Z] 093 [ (x,1).
This would typically be implemented in the same loop that compuitasdu from thef] in order to evaluate the equilibria

O

4.1. Reducing round-off error
For small Mach numbers the density is almost unifopms po + O(Ma®), and the macroscopic fluid velocity is small,
= O(Ma). The two sets of distribution functions appearing in (25) are therefore both almost equal to the rest state equilibria
pow;. In other words f;, = pow; + O(Ma) and ¥ = pow; + O(Ma), so the differencegf, — £* is only O(Ma). The
loss of numerical precision arising from computlng the difference between two nearly equal quantities may be reduced by
analytically subtracting out theyw; contribution tof and f,, and evolving only the differencg;, — pow;, as proposed by
Skordos [30]. The macroscopic variabjeandu may be reconstructed as

p=po+ Z(? pow;), pu= Z &(fi — pow;). (31)

Without this rearrangement, the convergence of 2@ simulations shown in Fig. 4 was visibly affected by numerical
rounding error in IEEE 64 bit (16 digit) floating point arithmetic. The results presented below were verified by comparisons
between solutions obtained using different platforms and compilers, and with a few solutions computed using IEEE 128 bit
arithmetic.

5. DOUBLY-PERIODIC SHEAR LAYERS

Minion and Brown [28] studied the performance of various numerical schemes in under-resolved simulations of the 2D
incompressible Navier—Stokes equations. Their initial conditions corresponded to a pair of perturbed shear layers,

_ {tanhwy —1/4), y<1/2,
tanh(k(3/4 —vy)), y>1/2, (32)
uy = 0sin(2m(xz + 1/4)),
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FIG. 3.  Vorticity during the roll up of a perturbed doubly-periodic shear layer. The left figure shows the initial conditions from (32), while the right
figure shows the rolled up shear layerstat 1. This solution was computed with the BGK collision operator for Mach nurdlier= +/3/2000 and
Reynolds numbeRe = 1000 on a2562 lattice.

10° 10° 10"

Ma
FIG. 4. Divergence of vorticity at = 1.0 asMa — 0 with the multiple relaxation time (MRT) collision operator. Results are showiiRfoe= 1000
on 642, 1282, and256° lattices. The differencéw is between the solution for given Mach number and the incompressible limit obtained from the BGK
solution on each lattice by Richardson extrapolation. The compressibility error for the BGK solution error de€dyda2s, with no visible difference
between the three lattices. For the MRT collision operator, the error begins to increase again for sufficiently small Mach numbers. For high resolutions the
error diverges approximately &(Ma~1).

in the doubly periodic domaifi < z,y < 1. The parametek controls the width of the shear layers, ahthe magnitude

of the initial perturbation. The shear layers roll up due to a Kelvin—Helmholtz instability excited ly(fHeperturbation in

uy. The simulations presented below useé- 20, § = 0.05, and Reynolds numbers #6000 and5000. Typical plots of the
vorticity w = Jdyuy — Oyu, fort = 0.0 andt = 1.0 are shown in Fig. 3. All the vorticity fields shown in this paper were
computed from the velocities, andw, at lattice points by spectrally accurate differentiation using the fast Fourier transform
library FFTW [15]. These comparatively thick shear layers show no sign of forming the spurious vortices found by Minion
and Brown [28] withx = 80 on a1282 grid atRe = 10000.

Figure 4 shows thé, norm of the error in the vorticity|| Aw||2, due to a finite Mach number for various Mach numbers
down t0v/3/2000 ~ 8.6 x 10~4. The comparison solution for the incompressiblea(— 0) limit was obtained by Richardson
extrapolation from solutions witha = 1/3/2000 and Ma = +/3/4000 using the BGK collision operator, assuming an
O(Ma?) dependence of the error. This assumption is verified byMhe slope of the compressibility error shown in Fig. 4.
Moreover, the contour plots adkw in Fig. 5 show an essentially identical spatial pattern in the compressibility error at four
different Mach numbers. The compressibility error is largest where the streamlines are curved, so the centrifugal force must
be balanced by a pressure gradient, and vanishes in the middle of the shear layers where the streamlines are nearly straight.

The dotted lines in Fig. 4 show the results of computations with a multiple relaxation time (MRT) collision operator. The
relaxation time for the scalar ghost variatNewas chosen to be, = %At, while all other relaxation times were equal and
determined by the viscosity. This value fay gives the most rapid decay of towards zero in a spatially uniform state, as
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FIG.5. Convergence of vorticity at = 1.0 asMa — 0 with the BGK collision operator. The differeneg®w between the solution for a given Mach
number and the incompressible limit, as obtained by Richardson extrapolation from solutions at the two Mach Byi2ee® and+/3/4000, decays
like O(Ma?) asMa — 0. All computations were performed witRe = 1000 on a2562 lattice. Notice that the spatial patterns are very similar in all four
plots, although the amplitudes decrease proportionalM#3 as shown by the labels on the color bars.
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FIG. 6. Divergence of vorticity at = 1.0 asMa — 0 with the multiple relaxation time (MRT) collision operator. The differenke between the
solution for a given Mach number and the incompressible limit, as obtained by Richardson extrapolation from solutions at the two Mack/Byatirs
and+/3/4000, does not converge ada — 0. All computations were performed witRe = 1000 on a2562 lattice. For the largest Mach numbew
resembles the spatial patterns in Fig. 5. For smaller Mach numbers (upper panels) the pattern is distinctly differdat |avigest around the shear layers,
and the amplitude begins to increase again, as shown by the labels on the color bars.
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10° 107 10"
Ma

FIG. 7. Divergence of vorticity at = 1.0 asMa — 0 with the multiple relaxation time (MRT) collision operator. Results are showirfor= 5000
on 642, 1282, and2562 lattices. The errors are systematically larger than in Fig. 4Rfer= 1000, which is plotted with the same axes. As before, the
differenceAw is between the solution for given Mach number and the incompressible limit obtained from the BGK solution on each lattice by Richardson
extrapolation. The compressibility error for the BGK solution error decay3(@da?), with no visible difference between the three lattices. For the MRT
collision operator, the error begins to increase again for sufficiently small Mach numbers. For high resolutions the error diverges approxifidtely'as
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u = (LY%) f (x- 2y)

X

FIG. 8. Sketch of the inclined jet, the form of solution considered in (33), corresponding to unidirectional Poiseuille-type flow inclined at an angle of
tan—1(1/2) &~ 27" to the horizontal axis.

recommended by Higueet al.[24] and Succi [32]. Lallemand and Luo [25] toak slightly smaller thar%At, so the decay
rateyy = At/(ry + At/2) is slightly greater than one.

For this MRT collision operator, the vorticity on a fixed lattice at a fixed Reynolds number no longer converges to an
incompressible limit as the Mach number tends to zero. Instead, the error begins to increase again for sufficiently small Mach
numbers. The growth rate is approximatélgMa '), with the actual exponent tending closerto on finer lattices. Figure 6
shows the error in vorticity at various Mach numbers with the above MRT collision operator. For the largest Mach number
shown,Ma = +/3/125 ~ 0.014, the error looks very similar to the compressibility error with the BGK approximation as
shown in Fig. 5. In particular, the compressibility error in the vorticity is concentrated where the streamlines are curved,
and vanishes where they are straight. However, for smaller Mach numbers the error in the vorticity with the MRT collision
operator looks noticeably different. It is concentrated around the shear layers, where the BGK compressibility error was
small, and is small near the two vortices where the BGK compressibility error was largest. The same behavior occurs with
Re = 5000, although the errors are systematically larger, as shown in Fig. 7.

For the smallest Mach number shovivia = 1/3,/1000 ~ 0.0017, the greatest deviation of the density from its mean value
po = 1 was2 x 1079, and the maximum density deviation between the BGK and MRT computations was even smaller, less
than2 x 1011, Itis therefore not surprising that the results of computations using the pseudo-incompressible equilibria from
(18) were visually indistinguishable from those using the more common isothermal equilibria from (13). In particular, the
pseudo-incompressible computations suffered from the same divergence of the vorticity in théalimit0.

6. LINEAR THEORY FOR AN INCLINED JET

The previous computations become expensive in the small Mach number limit, béti@dse ') timesteps are required to
reach a fixed multiple of an eddy turnover time. Fortunately, the observed divergence at small Mach number also occurs in a
linearized system, for which each timestep is equivalent to a multiplication by a time-invariant matrix. Thus the computation
is equivalent to computing the(Ma ") power of a matrix, which may be achievedirilog Ma ') operations by successive
squaring [17], or in principle iD(1) operations by diagonalising the matrix.

Moreover, the discrepancies visible in Fig. 6 around the almost straight shear layers suggest that a unidirectional flow
resembling Poiseuille flow may be sufficient. No unexpected behavior occurs unidirectional flows aligned with the lattice, or
aligned at45° to the lattice. This is consistent with the discrepancies plotted in Fig. 6, in which the error appears to vanish
where the shear layer is nearly horizontal. However, unidirectional flows inclined at other angles to the lattice, for instance
with slopel/2, do show unexpected behavior. This dependence on inclination is due to the anisotropic coupling between the
ghost and hydrodynamic variables through (22c) and (22e).

We therefore seek solutions of the form

fi6,8) = £ 4 hi(x — 29, 1), (33)

wherefi(o) denotes a uniform rest state. For suitable values ok liese solutions describe a small amplitude unidirectional
jet, with a velocity of the formu = (% + 1§)u(z — 2y), inclined at an angle ofan='(1/2) ~ 27" to the horizontal axis as
sketched in Fig. 8. Herg andy are unit vectors in the andy directions. Incompressibility requires the flow to be invariant
in the direction parallel ta, i.e.u - Vu = 0 as in Poiseuille flow, s and the other variables should be functions of the
perpendicular coordinate= = — 2y only. The( axis is indicated by the pale gray line in Fig. 8.
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FIG.9. Excessive decay of peak jet spaedtt = 1.0 asMa — 0 with the multiple relaxation time (MRT) collision operator. Results are shown for
Re = 2000 on lattices with32, 64, 128, and256 points. For moderate Mach numbers the erraD{gV2), consistent with second order spatial accuracy.
For sufficiently small Mach numbers the relative erfap — «)/uo begins to diverge a®(Ma~1), until it reaches a maximum of one when the jet speed
has decayed to zero. By contrast, the errors in the BGK solutions (dots) all t€na\8) limits asMa — 0.

Equation (33) may be further simplified by assuming a sinusoidal spatial variation, so that
Filx,t) = £+ hi(t)e’t= =), (34)

where theh; are now functions of time only. The coordinateandy should be restricted to integer multiples of the lattice
spacing,: = IAz andy = JAy. Substituting into the linearized fully discrete lattice Boltzmann equation (25), we obtain a
9 x 9 matrix equation for thé;,

hi(t + At) = M;;h;(t), (35)

where the matrixM with components\/;; implicitly depends orr, andr in turn depends on the Mach number. Suitable
initial conditions for an inclined jet are

ni(0) = Bu - £, = Bun(€ie + 360, (36)

with the fluid velocityu = % + %y being perpendicular to the direction of spatial variation, as sketched in Fig. 8. We take the
jet to be of unit wavelength in the direction, so the: wavenumbek, = 2x. If the jet is allowed to decay viscously for unit
time its velocity should decrease by a factor

exp(—5k2/Re) = exp(—2072/Re). (37)

The factor of 5 in the exponent is due to the wavenumber iryttigection beingk, = 2k, from the spatial dependence in
(33), so the modulus of the wave vectotks = /5k, = 27/5.

Translating into lattice units, the unit macroscopic wavelength inctbeection may be divided intdV lattice intervals of
width Az = N—!. A particle traveling with unit lattice speed thus tak€gimesteps to cross the lattice, and a sound wave
takesy/3 N timesteps sincé = 2 = 1/3 in lattice units. Thus a unit macroscopic time interval, defined as the time the fluid
takes to travel a unit distance with unit macroscopic speed, correspon@s\igMa timesteps.

Figure 9 shows the fractional error in the jet speed, determined by projectihgdfier/3 N /Ma timesteps onto the lattice
vectorg;, + %giy, relative to the exact formula (37), for various Mach numbéesand numbers of lattice poinfs. For larger
Mach numbers the error is proportionalo2, consistent with the second order spatial accuracy of the scheme. This scaling
is confirmed by replotting the data using the variabégu, — u)/uo and N3Ma in Fig. 10, for which the data collapse
onto a single curve. However, for sufficiently small Mach numbers the error begins to diverge in propokten tevith the
multiple relaxation time (MRT) collision operator. Again, we usgd= 1/2 in lattice units, whiler, = 7 = v/3MaN/Re.

Figures 9 and 10 both show data for the MRT collision operator wherexnly 1/2 differs from the BGK collision
operator. Changing, to be the same as, caused very little difference. Other valuesrqfandr, also give similar results. In
fact, the behavior for varying, may also be collapsed onto a single curve by usindla/7, as the independent variable,
instead ofN3Ma as in Fig. 10. The factor a¥2 implies that the error at fixed Mach number is third order in space, consistent
with the error being due to Burnett terms in the Chapman—Enskog expansion [7, 34].
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FIG. 10. The above data may be collapsed using the variai®g.o — u)/up and N3Ma. Results are shown fde = 2000 on lattices with32, 64,
128, and256 points. The error increases proportionaMa.~! as indicated by the sloping line.

7. EIGENVALUE PROBLEM FOR THE INCLINED JET
The behavior of a fully discrete lattice Boltzmann equation such as (25) is more commonly analysed as an eigenvalue
problem [12, 24, 25, 26, 2, 10, 31], instead of as an initial value problem for specific initial conditions as above. Assuming an
exponential dependence in time for thewith growth rater, (35) becomes x 9 matrix eigenvalue problem with eigenvalue
A= eoAt’

e"Athi = Mijhj~ (38)

The constant$, are the eigenvector corresponding to the eigenvalukhis eigenvalue problem is not analytically tractable,
involving the roots of a ninth degree polynomial that does not readily factorize, but may be easily solved numerically by the
QR iteration algorithm [17, 1].

For the BGK collision operator, the eigenvaluesll tend to the unit circle as — 0 for fixed wavenumbek. In other
words, |A\| = 1 — O(7), which implies1 — |\| = O(Ma) at fixed Reynolds number, sinege= /3NMa/Re. The latter
relation is plotted as the two straight lines in Fig. 11. Thus the moduli of the eigenvalues of the NP/ Ma) arising
from takingO(Ma ") timesteps to cover a unit macroscopic time interval, tend to nonzero valueshiuthe 0 limit. This
result basically reflects the fact that, for any constant

(1- sMa)(l/Ma) — e ®asMa — 0, (39)

and the moduli of the eigenvalues of the matXMa) are all asymptotically of the formr| ~ 1 — s Ma + O(Ma?) as
Ma — 0.

By contrast, the moduli of all but one of the eigenvalues of the MRT collision operator with fixexthd/or, tend to
values strictly less than one in the— 0 limit, as shown by the dots in Fig. 11. The moduli of the corresponding eigenvalues
of the matrixM(V3N/Ma) therefore all tend to zero in the small Mach number limit. The exception is the one MRT eigenvalue
shown approaching the unit circle in Fig. 11. This eigenvalue is given approximately(forl /2 and7, = 7) by

A= —1+47(4—100k2/57 + O(k})) + O(?), (40)

wherer = /3NMa/Re is the collision time associated with the momentum fliix The corresponding eigenvalue of
M(V3N/Ma) therefore has a modulus given approximately by

(V3N/Ma) .
1A = [1 _ ﬁN% (4 _ wo}&)} — exp <4Ng(i3]§e57)) asMa — 0. (42)

Substitutingk,, = 27/N into the above,

—228N2 + 40072
[A| — ex

19 Re ) asMa — 0. (42)



INCOMPRESSIBLE MULTIPLE RELAXATION TIME LBE 15

T T T T T T
10 |- 0000000000000000000000000000000000000000000000000000000000000000000000000 -
-2
10° F .
©00000000000000000000000000000000000000000000000000000000° 02
.
q 00000000000000000000000000000000000000000000000000°°°°°°°
1l
u
d 4
3 -
= 10 - .
E
[2]
=
c
]
Q
5} -6
E 10 - -
&
=3
=<
| 868688888888868886868888888
— -8
10 - -
-10
0 r MRT |
BGK
1 1 1
-10 -8 -6 -4 -2 0
10 10 10 10 10 10
Ma

FIG.11. The eigenvalues of the BGK collision operator (lines) convergence towards the unit tire|a [ — 0) asMa — 0. The three hydrodynamic
eigenvalues associated withandu coincide on the lower line, and the other six eigenvalues coincide on the upper line. All but one of the eigenvalues of
the MRT collision operator (plotted fary = At¢/2) tend to limits with moduli strictly less than one (dots approaching the horizontal). The exception is the
single eigenvalue computed in (40) that coincides with one eigenvalue of the BGK collision operator (superimposed diagonal dots and lines).

While this limit is not zero, it does become exponentially smalNais increased. Thus the jet speeds plotted in Fig. 9 do not
quite tend to zero, because a finite fraction of the initial conditions project onto the eigenmode associated with the eigenvalue
A above that does tend to a finite limit, but they do become exponentially small as the grid is reéiresl\ is increased).

For N = 64 andRe = 2000 the limiting value of the nonzero eigenvalueMs — 0 is A\ ~ 2.4 x 101,

Although the matrice$/ are all non-normal, meaning thetM™ £ MTM, none of the eigenvalues are significantly ill-
conditioned, in the sense that the cosines of the angles between left and right eigenvectors are never close to zero [17]. Thus no
unusual behavior associated with ill-conditioned eigenvalues of non-normal matrices occurs. Moreover, the eigenvalues are
all distinct in the complex plane, although their moduli often coincide, as in Fig. 11 where there are three distinct eigenvalues
with one modulus (lower diagonal line) for the BGK collision operator, and six distinct eigenvalues with a larger modulus
(upper diagonal line).

8. INTRODUCING GHOST REYNOLDS NUMBERS

The convergence difficulties described above may be avoided by associating fixed “ghost Reynolds n&qbend’
R, with the non-hydrodynamic modes, and scaling the non-hydrodynamic relaxationtimesy/3NMa/R, and7, =
\/§NMa/R4, with the Mach number in the same way as the stress relaxation time. Solutions of the resulting lattice Boltzmann
equation do then converge to an incompressible limivias— 0. Moreover, the compressibility error for a given Mach
number appears to be almost independent pfand R ;, even whenk, = 1 andRe = 1000, provided the compressibility
error is measured with respect to the incompressible limit computed with theRBani&,, andR,. In other words, the rate
of convergence to an incompressible limit is almost independent of the ghost Reynolds numbers, the data collapsing onto
single lines in the analogues of figures 4 and 7, but the limiting solutions themselves depend on the ghost Reynolds numbers.
These incompressible limiting solutions in turn converge to a universal limit, the true solution for given Mach number and
(hydrodynamic) Reynolds number that is independei® pand R ,, as the lattice is refined. This convergence is fourth order
in space, as illustrated in Fig. 12. The spatial convergence rate is one order higher than that shown in Fig. 10 for solutions with
the unmodified multiple relaxation time collision operators at fixed Mach number, due to the extra fagtarndfiplying the
collision time in the formulary, = v/3NMa/R,. Returning to the numerical experiments illustrated in Fig. 1, similar gains
in stability to those achieved by setting= At/2 may be obtained by setting, = 100, while R, = Re = 30000.
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FIG. 12.  Vortex rollup solutions computed with Mach numbBei = +/3/1000, hydrodynamic Reynolds numb&e = 1000, and ghost Reynolds
numberRy = 1,10, 100, 500 all converge with fourth order accuracy towards the BGK solutiBr (= Re = 1000) under refinement of the lattice. The
other ghost Reynolds number was heldgt = 1000.

9. CONCLUSION

Most lattice Boltzmann equations contain more variables than are necessary to recover the Navier—Stokes equations. These
additional degrees of freedom appear as non-hydrodynamic or “ghost” variables. The common BGK collision operator may
be generalised so that relaxation times for the ghost variables may be adjusted independently of the stress relaxation time that
controls the viscosity. Since the ghost variables do not appear in the Chapman—Enskog expansion at Navier—Stokes order,
changing the ghost variable relaxation times might be expected to leave the hydrodynamic variables unaffected.

However, on any finite lattice at a finite Reynolds number, there is a small but finite coupling between the hydrodynamic and
ghost variables, as expressed by the Burnett and higher order terms in the Chapman—Enskog expansion [7, 34]. The strength
of this coupling is set by the Knudsen numbers associated with the various modes, and thus by the coefficierandr;.

For small Mach numberQ(Mafl) timesteps are needed to reach a given macroscopic time, for instance a fixed multiple of
an eddy turnover time. The timescalg associated with the viscous stress is scaled t@fda), and so correctly produces
anO(1) effect afterO(Ma™') timesteps. If the coefficients, andr, are not also scaled in proportion to the Mach number,

as proposed in section 8, they may causQaMafl) divergence of the hydrodynamic variables away from the correct small
Mach number limit though the accumulation of many numerically small, but Mach number independent, errors.

The necessary scaling of the relaxation times with Mach number may be achieved by introducing ghost Reynolds numbers
as described in section 8. Using ghost Reynolds numbers that are small compared with the hydrodynamic Reynolds numbers,
for instanceRe = 30000 and R, = 100, to set the non-hydrodynamic relaxation times yields significant stability advantages
over simulations performed with the BGK collision operator, without sacrificing the existence of an incompressible limit.
Although many of the errors calculated in this paper are still numerically small, this is only because the solutions contain
many lattice points across each feature. The errors become much larger for features close to the lattice scale, as in Fig. 7,
where the Knudsen numbers responsible for cross-coupling between hydrodynamic and ghost variables become much larger.

Finally, the analysis and numerical experiments in this paper are based on the common two dimensional nine speed lattice,
but the conclusions should hold for general lattices whenever there is some coupling between hydrodynamic and ghost vari-
ables. In particular, the conclusions should hold for the larger lattices that use two or more different speeds per direction to
simulate fully thermal gas dynamics with a spatially varying temperature. The number of hydrodynamic variables increases
in these thermal lattice Boltzmann equations to include an independent heat flux vector, but the total number of variables
usually increases even more to ensure isotropy. There is therefore additional scope for instabilities associated with the non-
hydrodynamic modes to limit the accessible range of Reynold numbers, which may explain why thermal lattice Boltzmann
equations have generally proved less successful than their isothermal predecessors [27].
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