Hybrid modelling of individual movement and
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Abstract Mathematical models of dispersal in biological systemsoftien written
in terms of partial differential equations (PDEs) which cése the time evolution
of population-level variables (concentrations, densjtié& more detailed modelling
approach is given by individual-based (agent-based) msadleich describe the be-
haviour of each organism. In recent years, an intermediatgeiting methodology
— hybrid modelling — has been applied to a number of bioldgigatems. These
hybrid models couple an individual-based description dsnimals with a PDE-
model of their environment. In this chapter, we overviewtiyimodels in the litera-
ture with the focus on the mathematical challenges of thidetimg approach. The
detailed analysis is presented using the example of cheimptahere cells move
according to extracellular chemicals that can be alteretheyells themselves. In
this case, individual-based models of cells are coupletl RDEs for extracellu-
lar chemical signals. Travelling waves in these hybrid n®dee investigated. In
particular, we show that in contrary to the PDEs, hybrid cbtxis models only
develop a transient travelling wave.

1 Introduction

There are two fundamentally different approaches to thénemaatical modelling

of systems of interacting individuals (cells, animals) iolbgy. If the number of

individuals is large, one often uses a continuum populageel approach, which
yields partial differential equations (PDESs) for the spiyidistributed densities of
individuals [35]. The advantage of PDE-based modellingigl-developed mathe-
matical theory and a number of existing numerical solvergklvban be used to effi-
ciently simulate the system behaviour. However, continapproximation becomes
inaccurate if smaller groups of individuals are studied] agent-based (individual-
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based) models become the method of choice [10, 44]. Exancplede found in
zoological applications, like behaviour of fish schoolsdHiocks and locust groups
[9, 45]. The individual behaviour of the agents is modellediell as the interac-
tion (e.g. attraction or repulsion) between them [11]. A temof these agents are
then simulated on the computer and their collective behavanalysed. This ap-
proach allows for a more detailed description of the indrgildbehaviour and does
not discount various stochastic effects caused by a finitebeu of individuals. On
the other hand mathematical analysis is often hard to aetded simulations can
be computationally intensive.

Another problem with purely agent-based models is thatdhisllenging to in-
corporate influences the agents might have on their enviearThis is important
whenever agents interact indirectly by modifying theirgl@ing) environment. A
classical example is modelling chemotaxis where individedis modify (secrete,
consume) extracellular chemical signals which diffuseha éxtracellular space
[12, 18]. In this case, Aybrid modellingframework that seeks to combine the ad-
vantages of continuum and agent-based models is often Tisednain idea of this
modelling approach is to describe some species as a contiand some species as
a set of agents. For example, Dallon and Othmer [12] devdlage/brid model for
chemotaxis of slime mol®ictyostelium discoideunm which the cells are treated
as individuals in a continuum field of the chemoattractanicivievolves according
to a reaction-diffusion PDE. A similar hybrid modelling fn@work has also been
applied to chemotaxis of bacteria [13, 51] and leukocyt@3.[Zhe use of the hy-
brid approach allows for faster simulations than the puagignt-based model which
would treat extracellular chemicals as another set of agé&ntracellular signalling
molecules are much smaller and more abundant than cells.property is often
used to justify that extracellular chemicals can be desdrds a continuum [12].

The use of hybrid models is becoming more widespread edjyegith the grow-
ing computational power that allows to consider more comgjstems in this man-
ner, including modelling tumour growth [39] and forest dgmes [33]. In cancer bi-
ology, several hybrid cellular automaton models have beepqgsed in the literature
[40, 41]. For example, Smallbone et al. [41] coupled a twoatisional cellular au-
tomaton model (describing cells) with continuum (PDE-kls®dels) of glucose,
H™ and oxygen concentrations, building on the previous worRatel et al. [39]
and Alar®n et al. [3]. A similar hybrid approach has been used in a rermabother
studies in cancer biology [4, 21, 36]. A hybrid forest modé@hwrees modelled as
agents and a continuum approach used for oxygen and othesplt@ric gases is
presented in [33]. In economical research hybrid modelsisee to estimate prices
in the petrol market [25] and in general markets with a notfiaum spatial demand
of products [26, 27]. In these models the demand is descabedcontinuous func-
tion of space whereas the retailers are considered as agents

The term hybrid modelling is sometimes applied for modelsctvtuse both
individual-based and continuum description for the samesigll quantity. For ex-
ample, a “hybrid” model for the spread of an epidemic diséapeesented in [8]. It
initially considers infected individuals as agents, buitshes to a continuum model
when the number of infected people in an area rises aboveeshibld. Coupling
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reaction-diffusion models with a different level of detail different parts of the
computational domain is presented in [15, 19]. “Hybrid” retsdof this type are
useful because they can lead to computational savings. Vowia this chapter, we
will focus on hybrid models which describe some system camepts (e.g. cells
or animals) as individual agents and some components (g¢aynal chemicals) as
continuum fields. The choice which description is used fahespecies is made at
the beginning and will not change during the course of thaikition. We will sum-
marise the progress in hybrid models which satisfy this defin and clarify some
of the problems and difficulties that arise from their use.

The outline of this chapter is as follows. Section 2 will giweshort overview
of the PDE-based and agent-based modelling approache= lieéogeneral math-
ematical framework for hybrid models is introduced in Saet8. Hybrid models
can be considered as extensions of (purely) agent-basedlsnddherefore, their
computer implementation often forms an integral part of iedel. We will dis-
cuss it in detail in Section 4 where we describe the numesicalilation of hybrid
models drawing special attention to the different treatioéthe continuum and the
agent-based subsystems as well as the problem of matcharigidhparts. In order
to give a more practical insight into the topic we will perfoa case study of a hy-
brid chemotactic model in Section 5. This case study wib &#ls used to show some
qualitative and quantitative differences that can occuenvhsing a hybrid model
instead of the corresponding continuum model.

2 Continuum vs. agent-based models

Hybrid modelling is an intermediate approach between oomtin (PDE-based)
models and agent-based models of systems of interactingduéls. In this section
we briefly review these common modelling approaches in nnagtieal terms. We
will make use of our notation later in Section 3 when hybriddels are considered.
Continuum (mean-field) models give rules for the evolutibithe spatially de-
pendent concentration vector= ¢(x,t) wherex € Q C R™,m=1,2 or 3, and is
the simulation time. The components of the veaaan be densities of individu-
als (cells, animals) and concentrations of extracelluzmals. As the concentration
vectorc can change both with positioxnand timet, a general continuum model

takes the form )
c
ot = Z(c,x,t) XeQ, Q)
where.Z is an operator o, which in most practical cases will be a differential
or integral operator. To uniquely describe the time evolutf (1), one also has to

specify suitable initial and boundary conditions.

Example 1Keller-Segel model

Continuum modelling is used in many areas of mathematioalogy [35]. In
chemotaxis modelling (which will be the subject of Sectign & classical exam-
ple of (1) is the Keller-Segel model of chemotaxis [31]. H&PeC R and the vector
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chas two components, i.e= [c1,C2] = [n, S wheren= n(xt) is the density of cells
andS= S(x,t) is the concentration of the chemoattractant. The evolwgumation
(1) is a coupled system of two PDEs foandS:

on °n 9 2S

e nﬁ—ﬁ(nX(S)&) ) (2)
oS 22s

e DSW —k(Sn, 3)

whereD, andDs are diffusion constants of cells and chemoattractant ecsely.
The strength of chemotaxis is controlled by chemotactisisigity x(S) and there-
fore by the concentration of substraédavhich is consumed by cells with the rate
k(S).

The applicability of continuum modelling depends on the bemof particles in
the studied system. In Example 1, the interacting “pawicée unicellular micro-
scopic organismaj and molecules of chemical sign&)( As there are often more
signalling molecules than cells, the validity of mean-fiakkumptions is dictated
by the number of cells in the system. If the system only cessita few cells, it is
more accurate to use an individual-based approach whictirizdiuced in the next
section.

2.1 Agent-based modelling

In contrary to the continuum models the so-caléegnt-based modetseat every
particle as an individual that follows an inherent set oesulThis means in par-
ticular that individual behaviour and interactions betwelferent agents account
for the possibly complex behaviour of the system. Agenebasodels are com-
monly used for systems with a small number of individualg fbhlow non-trivial
behavioural rules, for example in modelling of collectiveiraal behaviour [11]
or human crowds in panic situations [23]. While continuumdels have a well-
developed mathematical theory, agent-based models awrgisoes written as com-
puter routines which are difficult to theoretically analy$ke literature also fails to
agree on a general definition of an agent. In this chapter,sgeaudefinition which
is slightly adopted from [48] and used in [20].

Definition 1. An agent is a system that uses a fixed set of rules based on aimmu
cation with other agents and information about the enviremninin order to change
its internal state and fulfil its design objective.

This definition, however, is only a formal description, whitow has to be put into
a more rigorous context. Following from Definition 1, the hehatical description
of an agent has to incorporate the behavioural rules of antagewell as the pos-
sibility of communication between them. Therefore, we assa finite numbeN
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of agents numbered from 1 . In generalN can depend on time, taking into ac-
count birth or death of agents. We define the current stata afant by its internal
state variablgi(t), i = 1,...,N, which can describe its position, velocity and inter-
nal memory. It is this internal state and its time evolutibattdescribes the rules
of an agent. Since these agents represent different in@ilddwe assume that other
agents generally have no means to access all internal stasébhes. In order to al-
low for communication between the agents, we define a settefread statesy;(t),
which are observable by other agents. The observable sigte®of every agent are
in principle available to every other agent, which is endurg creating the set of
external states?”. The general agent-based model following these definitioais
takes the form

yi(t+At) =fi(y;(t),t,At, 27), i=1,...,N, (4)
Wl(t):gl(yl(t))7 |=l,,N, (5)
%:{Wl,...,WN} . (6)

We can see that the evolution gfis given by the functiorf;, which notably de-
pends on the time steft. This general description can entail discretised versions
of ordinary differential equations (ODEs) as well as statitadifferential equa-
tions (SDEs). Additionally, agent-based systems that ohnge discretely can be
written in the form (4)—(6).

We understand the external states of an agent merely as arvabke represen-
tation of the internal states, which is wi(t) directly depends ow;(t) through the
functiong;. The distinction between observable and non-observahtessis often
used to represent internal memories that cannot be pedceyether agents.

Example 2 Animal behaviour
Agent-based models have been successfully used for thellingdef collective
animal behaviour [45]. Couzin et al. [11] showed that a reddy simplistic model
can yield complex collective behaviour and can be used toeiiigh schools and
bird flocks.

In this model, the internal states of an aggnire defined to be its position
xi € R™(m=2,3) and its velocityv; € R™. Since both the position and velocity
of an agent potentially influence the motion of other agelntsh are observable
and hencew; = yi = [x;,Vi] € R?™, which means thaj = Id. The update rules
fi, i =1,...,N, in this example are equivalent for each agent and incotpdhe
different rules for the different zones in the model (zonettfaction, orientation
and repulsion).

Example 3Chemotactic movement under a stationary signal

A simple agent-based model for chemotaxis in one dimensionbe written as
follows [24]: the internal statg;(t) of an agent is defined as its current position in
R. Additionally, we assume that the sigrig(x) is fixed and there is no interaction
between agents, hence no observable states are requitexhehls start at some
initial positionyp; € R and move according to the stochastic differential equation
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in(t)ZX(S)g—idt—F\/ZDnCNV, i=1,...,N, (7)

wherex(S) is the chemotactic sensitivity function introduced in Exdenl, Dy, is
the diffusion constant of the bacteria and @ the Wiener-process, also known as
Brownian motion [29]. We can discretise (7) to obtain an updale equivalent to
(4) as follows

W+ A =yi(t) + X(9 DAt + /2DoAte

whereé is a normally distributed random variable with zero meanamitivariance.
In the limit of infinitely many particles, this agent-basezbsdription is equivalent to
the PDE (2), which is written for the density of cells. Howevuéwe considered a
time-evolving signal which is consumed by cells as in Exanipla purely agent-
based model would have to simulate the trajectories of gfiadimolecules. This
would be computational intensive and a hybrid model whiamlsimes agent-based
simulations with PDEs can then be used to optimize compurtatiefficiency and
accuracy.

3 Hybrid modelling — theoretical framework

Because of their hybrid nature the general framework fos¢haodels necessarily
combines the two frameworks presented in Section 2. We defieetor of contin-
uous variableg(x,t) on a domain? c R™, m= 1,2 or 3. The update rule faris
again governed by an operat&f, which now also depends on the current states of
the agents. Thé&l agents are represented by their internal state varighlgsand
their set of observable states(t) defined in (5). To allow interactions between the
agents and the continuous variabteshe set of observable statés as defined in

(6) is used. The update rules for the system are

%:X(c,x,t,%), XeQ, (8)

yl(tJrAt):fl(yl(t)’t7At’%”C)’ i:]‘""’N’ (9)

where 2" is given in (6). In (8) we see that the agents can influencedhé&ruous
variablesc through the set of observable stat&s Similarly, the behaviour of the
agents can be altered by the continuous variables, as th@&ogenow also depends
onc. Figure 1 shows a graphical representation of the hybridghdidcontains the
N agents represented by the internal stgtes the left. Through the functiog) the
observable states; are generated which then influence the update of the continuo
variablesc as well as the agents’ behaviour themselves. We, howevesueter a
problem in this definition, as the continuous variables afindd for every time,
while the internal agent states are only defined for disdietes. To overcome this
problem we can consider (9) in the linZit — O, where it takes the general form of
an SDE
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dyi = fi7 (1), 4, 27, Q) dt+£7 (yi (1)1, 27, ) W,

whereff1> andfi<2> respectively represent the stochastic and the deterigipisit of
the SDE.

Fig. 1 Concept of a hybrid model. Arrows symbolise direction of influenc

Example 4Hybrid cellular automaton model for carcinogenesis

In [41] Smallbone et al. present a hybrid cellular automataalel for the formation
of cancer. This model uses reaction-diffusion equatioreatoulate the concentra-
tion of oxygen, glucose and hydrogen ions in the environnoérthe cells. The
concentrations of these chemicals therefore constitiectimtinuous variables
Each cell of the cellular automaton is represented by antagénthe internal state
yi € N defining which of the finite number of possible phenotypesdéiéat this
position has (including the “phenotype” empty). As thesemtypes are observ-
able by neighbouring cells, we hawg = y;. This cellular automaton model has a
generation-based update rule, which means that the stades only updated once
every time step. The rules of the model then represent theapitistic functionsf;

in equation (4), where the change depends on the currenoptpen the neighbour-
ing cells and the concentrations of the considered chemitdhe cell position.

Example 5Hybrid model for chemotaxis of Dictyostelium discoideum

Dallon and Othmer developed a hybrid model for the chemstaikDictyostelium
discoideun 12] that combines individual cell movement with a continacextra-
cellular concentration of cCAMP modelled by a PDE. The in&¢gtates of the agents
are the position of the individuai, as well as the variables representing the intra-
cellular processes. Only the position and one of the intiidee variables influence
the external field and therefore form the observable stateEhe update rulef are
given through ODEs for the internal dynamics and rules ofiomofor the position.
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3.1 A position-based hybrid model

So far, we have defined a general framework for a hybrid mdasl @llows for

a great freedom in the choice of internal and external swftélse agents. In the
next step we want to refine this framework for the more spenificlels used in
chemotaxis modelling [12, 17, 43]. In order to be able torinttet the agents as part

of a species situated inside the dom&n we need to introduce the notion of an
agent’s position i2. Moreover, we assume that all agents are equal for an ekterna
observer except for their position, or in other words theo$etbservable states of
the agentsy;(t) is the positiorx;(t) of the agents insid@, i.e.

w;i(t) =x(t).

This definition excludes Couzin et al. models for animal lvéha [11] as well
as cellular automaton models [41], but it is sufficient foe themotaxis example
studied in Section 5.

Because of the agents’ similarity, we no longer need to defingbstract se”,
but can instead define a density functignon Q through

p(;(x,t):iﬂx—xi(t)), XxeQ. (10)

When discussing numerical simulations of hybrid modelswiViesee that this def-
inition of ps is already a first step towards obtaining a continuous defgitction
for the agents. With this definition we can redefine the operat, which governs
the behaviour of the continuous variabteand (1) reads as follows

Jc

at *X(C,X,t,pé) .

For the evolution of the internal agent stayesve assume now that every agent can
only perceive information about the continuous varialdles its current position.
Hence, the operatdt no longer depends onon the whole domain, but only on
c(xi) and the first spatial derivative in this point, ife.i = 1,...,N, are functions
for all further considerations. Equation (9) thereforedraes

yi(t+A4t) =fi(yi,t,At, ps, c(xi,t), Ce(xi, 1)) . (11)

This special type of hybrid systems still allows for a widege of flexibility and
can therefore be used to model a variety of different prazseds Section 5 we study
position-based models for chemotaxis in more depth.
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3.2 Initial and boundary conditions

An important aspect of modelling is the incorporation ofialiand boundary condi-
tions. Hybrid models necessarily combine the conditioamfthe two different ap-
proaches. For the continuous variables one usually hastéai irmlue co(x), while
for the agents an initial distribution of their position aimfernal states is given,
which is then used to generate each agents’ position at tiarbeg of the simula-
tion. In some applications the agents can be born duringdhese of the simulation.
In this case, we have to ensure the appropriate initiadisadf its internal variables.
A similar idea of independent conditions for the continuumd ¢éhe agent-based
parts of the hybrid model is used for the boundary conditidree values of the
continuous variables on the boundary usually have to yaisequation of the type

“(c,x,t) =0, X€ea, (12)

where¥ is a general operator. In the most commonly used cases (I@)ces
certain values ort or its gradient on the boundary. For the agents the boundary
conditions are often given in a more descriptive manner.example, agents can
leave the domain through one end and automatically reajppethie other end. This
periodic boundary conditiomplies that the number of agents in the system is con-
served. Periodic boundaries are widely used because o&th®ilicity and because
they effectively shape an infinite domaReactive boundariesbsorb agents with a
probability p, while reflecting them with probability £ p [14]. If p= 0, one often
speaks of aeflecting boundarywhile for p =1 the condition is called aabsorbing
boundary

4 Hybrid modelling — numerical implementation

For similar reasons as in purely agent-based models ité&nafery hard to obtain
analytic results for hybrid models. This increases the irtgoee of numerical simu-
lations for gaining insight into the behaviour of the systédime mixture of different
modelling frameworks, however, renders the process ahgatp a numerical simu-
lation non-trivial. Each part of the model has to be congdaetifferently and a way
of matching the two parts has to be developed. In this seetediscuss a humeri-
cal framework and evaluate difficulties one has to overcomenimplementing a
hybrid model.

The general task for the numerical simulation of a hybrid eiaslto calculate
approximations for botk andy; at timest; = jAt, j =1,2,... given initial data for
each of these variables according to Section 3.2. We additipassume that the do-
main Q can (for the continuous part of the hybrid model) be adedyadpresented
by the pointg 4, ...,r_ € Q, which means that we seek to compute approximate val-
ues forc(tj,ry), j=1,2,...,1 =1,...,Landyi(tj),i = 1,...,N. In order to simplify
the notation, we introduce
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G = [c(tj,r1),....c(tj,ru)] j=0,1,....

Due to the different characters of the continuous and thataugesed subsystems,
different approaches have to be used for their numericatisols. For each of the
subsystems one tries to answer the question of how to gettfrao; 1 still guar-
anteeing an accurate approximation of the system. For thincous variables this
means, we seek a solver that generates the val@s pfising the value€,, .. .,C;
and the current distribution of the agepts-,tj) given by (10), which can be sym-
bolised as

Z
{QOa 7gjvp5(7tj)} '—d> QH»]_' (13)

In (13) we introduced the operatdfy, which is a discretised version of the contin-
uous operatorZ used in (8). In the most common case, whéfes a differential
operator,Zy could be a finite element or finite difference approximatibrzd Note
that in (13) we have made the implicit assumption that theesalsed for (8) only
takes the positions of the agents at titpmto account. For the agents equation (11)
is already given in a time-discrete way and can thereforeskd directly to update
the internal states.

The introduction of this general scheme raises some imrteegdiablems, which
we will discuss in the remainder of this section. The firsticlifity are the differing
spatial resolutions for the two subsystems, which we addreSection 4.1. Other
problems like time stepping, choices of solvers and the émnfte of stochastic ef-
fects are presented in Section 4.2.

4.1 Spatial matching in numerical ssmulations

A spatial matching between the continuous variables anddkets is required dur-
ing a numerical simulation of a hybrid system, because diffespatial resolutions
are applied. The agents can be positioned at an arbitrant pw@ide the domain
Q, while the data forc is only calculated at the points. This triggers a two-way
matching problem, as one has to generate estimates for &m @igtribution at the
pointsr; as well as for the continuous variablesverywhere insid€.

First, let us consider estimating the agent density distidn throughouiQ and
especially at the points, which is necessary for the update relation (13). So the
general mapping we are trying to achieve is

N
po() = 3 5(x—x) 5 p(x) €CO(Q).

The requirements for the estimated density funcpdx) can alter for different ap-
plications, but here we require it to be at least a contindanstion. One way to
achieve such a mapping is the so-calketinel density estimatiof#6]. In general
the kernel density estimation can be used to estimate thapility density function
of a random process, if one has been given a number of réafisaif this process.
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The name stems from the use of a kerKeék), which is typically a continuous,
symmetric and normalised function. Let us for simplicitgasie a one dimensional
random process, in which case these conditions take the form

K(x) € COR), K(—x)=K(X), /RK(x)dx:L (14)

Additionally, K(x) is often required to be non-negative in order to generatena no
negative estimate. Most commonly used kernels include ss&kau kernel and a
piecewise linear kernel with compact support. In practiceaed version oK is
used, which leads to the introduction of a bandwidth paranietVe define

-2 (2)

which still satisfies the conditions (14). With given pasitsxy, ..., Xy, an estimate
of the probability density function is then given by

N
P9 = 3 Kn(x—X) = Kn() P (x) (15)

Figure 2 shows an example of a kernel density estimation @ dormally dis-
tributed random variables using a Gaussian kernel witledifit bandwidthé. In
Figure 2(a) we can see that the choice of a very shmigads to a highly oscillating
estimate, while a very bilg can lead to the estimate being too wide as shown in Fig-
ure 2(c). An optimal choice for the parameleaind the kernel itself always depends
on the nature of the problem and the number of sanigles

% 0 B 5 % 0 i 5 % 0 B 5
X

(@ h=01 (b) h=0.25 (©)h=09

Fig. 2 Kernel density estimate fo¥ = 100 agents, which are placed according to a normal distri-
bution with different bandwidthk. Crosses along the x-axis represent the agents, the dashed line
is the underlying Gaussian probability density function aredglid line is the generated estimate

by (15).

The second spatial matching problem that occurs when simgla combined
continuous and agent-based system is the need to estireateltles of the contin-
uous variables (and possibly their derivatives) at an ratyitposition inside?. The
operator we are looking for can be symbolised through
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[CINEPN
(ri,e(r)),..., (rL,e(ry)) — &(x) € COQ).

Though similar to the operatd¥, we here have the advantage that we know the
positions of the pointsy, ..., r_beforehand and that we know they give an adequate
representation of the domaéa. With this additional information, one can argue that
the problem at hand represents an interpolation problem fhe grid points; onto

the whole domaim2. This result allows for the use of approaches from the well-
studied fields of interpolation and approximation theory][4n some cases the
interpolation regime is already implicitly incorporatedthe numerical solution of
the update equation for the continuous variables, for exaipne chooses to use

a finite element approach.

Example 6 Numerical realisation of Example 5

In Example 5 we presented a hybrid model for chemotaxis ofiesimold Dic-
tyostelium discoideurdeveloped by Dallon and Othmer [12]. To generate a discre-
tised operatorsy they used the particle-in-cell method [38]. For the kerrexigity
estimation¥ they use a piecewise linear kernel and for the interpolaifmerator®

a fifth order spline interpolation was employed.

4.2 Other aspects of numerical smulations

The spatial matching between the two parts is the biggesiawla challenge posed
by the use of a hybrid model. Here, we discuss some othergrabihat occur dur-
ing this process. The first problem is the choice of a solvén bar the continuous
variables and for the internal states of the agents. Oneltawse from a wide range
of standard approaches for both problems. The way the twis pag interwoven,
however, sets some restrictions. Itis, for example, alalwgtys impossible to use a
fully implicit solver for both parts, especially if the futiensf; for the internal agent
states contain random variables. Additionally, one hastwsider the accuracy of
the different solvers and should ideally try to match thesprevent unnecessary
computational effort that does not lead to more accuratdtses

The discrete nature of the agent-based parts automatin&dbduces stochastic
effects into the system. Various examples of these effeittbevdiscussed in Sec-
tion 5. It is important to consider these effects when chupiie time stepping and
the spatial resolution for the simulation. In particultiese choices will depend on
the number of agents in the system. It is generally possib&low different time
steps for different parts of the system, for example the tsgeould be simulated
with a finer time stepping than the continuous variables oe-viersa. For each part
of the system the time steps have to be chosen in a way thatesnan accurate
solution depending on the spatial resolution and the sdohagris used. In Section 5
we study one application area of hybrid systems in more ldetdianalyse the effect
of some of these choices on the system.
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5 Case study: Hybrid modelling of chemotaxis

In Section 3 we introduced a general framework for hybrid eledhat combine
agent-based models with mean-field equations and we nowentmate on one ap-
plication area for hybrid modelling: cell migration. In paular we focus on the
movement of cells induced by gradients in the concentratf@xtracellular chemi-
cals, a process that is known@semotaxisChemotaxis is one of the main forms of
cell migration and is used in a variety of cells, includingteaia cells [7]. Hybrid
models of chemotaxis have been successfully used in thatlite [12, 13, 22, 51].

The first notion of chemotaxis goes back to the late 19th cgnithen Engel-
mann and Pfeffer detected the process. In the late 1960s ifdier [1, 2] who per-
formed experiments with the bactefa coli that helped understanding and quan-
tifying the process and was later used as comparison fordHg mathematical
models. Adler placed a colony &:. coli at one end of a long thin pipe that was
filled with oxygen and an additional energy source. Throlghgdrocess of chemo-
taxis the colony started to move with a constant speed aveay the closed end
forming a narrow band of bacteria. The band was visible totlieed eye and Adler
was able to measure the speed with which it moved forward.

In the 1970s the first mathematical descriptions of chenioiagre formulated,
with the Keller-Segel model, which we will discuss in Sentf®.1, as one of the
early breakthroughs. A review of the impact this first modad lon the modelling
of chemotaxis is given in [28]. Section 5.2 will introduce ybhd version of this
model, which we will further investigate and analyse in &stb.3.

5.1 The Keller-Segel model

As mentioned above, Keller and Segel developed the firstenadtical model to de-
scribe the process of chemotaxis in 1971 [31]. The originadehconsiders both the
bacteria and the chemotactic substrate in a continuum, kmhiich therefore results
in a coupled system of two PDEs. The original form of the systaly considers
one spatial dimension and gives a way to compute the coratemtrof bacteria de-
noted byn(x,t) and the concentration of substr&et) through the PDEs (2)—(3),
introduced in Example 1. In equation (2) we can see that tha\beur of the bacte-
ria is governed by two independent effects and thereforestttke form of a general
advection-diffusion equation. The diffusion of the baizt@ccurs with the diffusion
constantD,,, while the advection is governed by the chemotactic seitgiti (S).
The substrate, as seen in (3), diffuses with the diffusiorstantDs and is consumed
by the bacteria with a consumption r&S) that depends on the concentration of
substrate itself.

In a follow-up to the paper [31], Keller and Segel showed tinader certain
conditions the developed system of partial differentiala@pns yields travelling
wave solutions [32]. In particular they were able to prodaitttravelling wave solu-
tions can only exist if (S) has a singularity at some critical valGgi;. For reasons
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of simplicity they concentrated on the simplest such funrix (S) = § with the
critical concentration a&; it = 0. In their analysis Keller and Segel made some ad-
ditional assumptions for the various parameter values anglisied (2)—(3) to the
nondimensionalised PDEs

an Jd (odn K0S

at = Hax (&‘”é&)’ (16)
JS

5 —n. a7

The nondimensionalised system is set up xog [0,1] with an initial value of
S(x,0) = 1 and no-flow boundary conditions. As initial distributiohtbe agents
we choosen(x,0) = d(x), which corresponds to the initial state of Adler’s experi-
ments where all bacteria were inserted at one end of theW&eonsider reflective
boundary conditions for both bacteria and extracellulgnal atx = 0 andx = 1.

In order to investigate the influence of the two dimensionferameterg andk
on the travelling wave, Figures 3—4 show the concentrationamdSatt = 0.5 for
various values oft andk. In Figure 3 we can see that the parameténfluences
the width of the wave while leaving its general shape untedcincreasingi leads
to a wider wave and a decrease in the maximum.&ccordingly, the gradient in
Sis higher for the narrower bands caused by smaller valugs @fs can be seen
in Figure 4, the parameter influences the general shape of the wave. In the case
k = 2 the travelling band of bacteria is symmetric, whilg aigger than two leads
to a wave that is steeper in the front (right) and falls sloinlyhe back (left) of the
wave. Choosing smaller than two causes an opposite effect with the wavegbein
bent backwards.
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Fig. 3 Travelling wave solution of the Keller-Segel model (16)—(17) different values of the

parametep, wherek = 2.
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Fig. 4 Travelling wave solution of the Keller-Segel model for differeatues of the parameter,
whereu = 1/30.

5.2 Hybrid models of chemotaxis

One of the assumptions made by Keller and Segel in theirr@ignodel is to con-
sider the bacteria as a continuum rather than explicithcides their individual
behaviour. For systems that do not satisfy this assumptbricdhchemotaxis mod-
els have been developed in the literature [12, 13, 22, 5Zhifnsection we present
three of them. The bacteria are modelled as agents withnganimbers of internal
states and their positiog € Q, as the only observable state. All three models con-
sider the substrate in a continuum limit and the PDE (17)gdke role of equation
(8) in our description of the hybrid modelling framework.

Model |

The first approach to design a hybrid version of the Kelleggebenodel, is to in-
terpret the evolution equation foras a Fokker-Planck equation for a number of
randomly moving particles similarly to the idea presentefxample 3. A chemo-
taxis model of this form was formulated by Stevens [43]. Trevement of each of
the agents is described by the stochastic differentialtemua

dx = %dﬁu/ﬂdw. (18)

K
S(xi)
The parameters used in (18) correspond to the ones in thengiomess Keller-

Segel equations (16)—(17). This particle-based desenif equation (16) shows
one of the weaknesses in the original Keller-Segel modeloAding to (18) an agent
can theoretically jump any given distance in one time steyplying that some of

them can move with a speed that is not achievable for bacteria
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Model Il

Driven by weaknesses of the first model, a different type nflcen walk, known
as velocity-jump process, seems a more realistic choicéh&bacterial behaviour.
The motion of bacteri&. coli consists of two phases [7]. During a run-phase the
bacterium moves with a constant speed straight into a chdisection. This run
lasts for a randomly distributed time before the bacterimes the tumble-phase
in which it chooses a new direction randomly [6]. As we aresidering a one-
dimensional model, there are only two possible directidmaation: to the left and
to the right. A right-moving agent continues to the rightédime that is given by an
exponentially distributed random variable before it sivds its direction. In order
to incorporate the bias of bacteria towards higher conagatrs of chemoattrac-
tants, Othmer et al. [37] introduced a biased velocity-jymngpcess. In this biased
random walk the duration for the run phase depends on infiasmgathered at the
current position of the individual. In particular, the mb@e[37] allows the agents
to directly measure the gradient of the substrate condantrat their current po-
sition. The run-phase then tends to be longer, if the conago increases in the
current direction of motion, while for a decreasing sigtiad turning probability is
increased.

The turning frequency is therefore adjusted according to the current movement
direction, the value and the gradient®fTo represent the direction of motion, the
velocity vi(t) = £siis introduced, whers denotes the constant speed. In terms of
the hybrid modelling framework introduced in Section 3, thiernal variable is
yi = [%,Vvi]. The agent-based description of the bacteria can be wiittére form

Xi(t+At) = x(t) +vi(t)dt,

_ [ — vi(t) with probability A *At
vi(t+At) = { vi(t) otherwise ’

where
At KSdS

=0F 350k
In a continuum limit this velocity-jump process is equivaléo the hyperbolic
chemotaxis equation [16]:
10°n on & 0 <dn KﬁS)
Y T = o | 3N |, (29)
2Ag Ot ot 2Apdx \ 9x Sox
wheren is the concentration of bacteria. This shows that chandiegtype of
random-walk used for the agents can influence the corregppedntinuum equa-
tion. Nevertheless (19) can be used to adjust the paramettere agent-based
model to match the parameters of the Keller-Segel modelhadarge time be-
haviour of (19) is given by the classical chemotaxis equeti®), where we have
u = s?/(2A0) [30]. Lui et al. [34] showed that coupling the hyperbolic oi@axis
equation (19) with (3) for the substrate also yields tramglivave solutions similar
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to the original Keller-Segel system. An investigation aétbase for a more general
dependence of the turning frequency is given in [50].

Model Il

More accurate descriptions of the individual behaviour aétbria incorporate the
sensing and processing of extracellular signals [5, 42hridymodels with descrip-
tions of these intracellular processes have been used byraid Othmer [12] as
well as Xue et al. [49]. Erban and Othmer [17, 18] used an agihta toy version of
the internal dynamics that includes two main features oktmesing process: a fast
excitation and a slower adaptation. We will use a simple rhaite one additional
internal variable; that acts as a memory and allows the agent to identify incrgas
or decreasing signal concentrations [17]. The model isdasea velocity-jump
process with a turning frequenay, which depends og. This internal variable is
chosen to follow the value of a sensing functig{®) with the adaptation time&,.
Thus, the model can be written in the hybrid form presente8ention 3, using
yi = [X,Vi,z] as follows:

Xi(t+At) = x(t) +vi(t)dt,
' [ — vi(t) with probabilityAAt,
vit+4t) = { vi(t) otherwise

9(Sxi()) —a(t) ,

Z(t+At) = z(t)+ t

t,
where
A=2X+2z—9X).

In the limit At — 0 andN — o this process can be described by the chemotaxis
equation
on & 0 (0n 2ta dgas) 7 (20)

dt  200x \ 9x 1+ 2Agty dSIxX

provided that is large ¢ > 1/Ao) and the gradient o8 is shallow [17]. Choices
for the parameters of this model can be made by matching (20)the classi-
cal chemotaxis equation (16), which especially indicateg ¢ is given through
dg/dS~ X(S).

In Figure 5(a) a simulation of the hybrid model of type Il isosvn. Simula-
tions of the other two models were also performed, with tssalmost identical to
the one seen in Figure 5(a). We simulate= 10* agents with the dimensionless
model parameters/l; = Ag = 1.5x 1073, s= 102, g(S) = 4.5 x 10~3log(S) and
At = 104, These parameters were chosen in such a way that they matghothal
parametergl = 1/30 andk = 2 used for the classical Keller-Segel model. On a first
impression, it looks as though the resulting agent distidouatt = 0.5 matches the
predicted concentration of the Keller-Segel system wedkegx for some stochastic
effects. In Figure 5(b), however, we show the agent distidioun the region behind
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the travelling band. Further analysis of this region showed here the extracel-
lular signal is completely exploited. Some agents are fethis zone and undergo
an unbiased random walk without a chemotactic signal toegtiém. This means
that these agents do not necessarily manage to catch upheittiavelling wave

again but instead stay in the exploited region. In the redeinf this section, we
study this effect, which we refer to asopoutin more detail. We will show that it
significantly influences the system dynamics for large times

10 wave direction 01
—_—
8 0.08
6 0.06,
< c
4 0.04
2 0.02|
0 0
0 02 04 06 08 1 0 0.05 0.1 0.15 0.2
X X

(@) (b)

Fig. 5 Numerical Simulation of the hybrid Keller-Segel model witheirtal dynamics (Model Iil).
Parameters afd = 10%, 1/ty = Ao = 1.5x 1073, s=10"2, g(S) = 4.5 x 10 3log(S), At = 10~*.

(a) Distribution of agents at time.® (solid line) and the results given by the Keller-Segel model
(16)—(17) (dashed line, which is almost indistinguishable frbendolid line).

(b) Histogram of agent positions in subinter{@&l0.2].

5.3 Analysis of the dropout

In Figure 5(b) we saw that the hybrid model, in contrast todtiginal Keller-Segel
model, creates a region behind the wave where the substiadeipletely exploited.
The main assumptions for a mean-field approach are violatts region, namely
the number of bacteria and the concentration of extraeeltuhterial are very small,
which renders a continuum approach here not applicableh&stic effects due to
the small number of bacteria then lead to the complete espion of S, which
causes the dropout of some of the agents. These agents cangey kense any
gradient in extracellular substrate and are therefore ngogompletely randomly,
which makes it very unlikely for them to become part of theéthng band again.
Due to the constant loss of agents, the velocity and the heighe wave will de-
crease as the wave moves along. Note that a complete exiploita these models
is only possible under the assumption tBatoes not diffuse, which was made by
Keller and Segel and is incorporated in the PDE (17). Thealibpffect is interest-
ing for us, because it shows a qualitative difference betvtbe hybrid model and
the original Keller-Segel model, as the hybrid model onbklgs transient travelling
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wave solutions. In this section we create measures for tiigadit in order to get
an estimate of the number of lost agents from the simulatddfeswill then move
on to analyse the effect of some system parameters on thewrdgnally, some
theoretical results about the loss of agents are presentecoanpared to numerical
results.

Dropout measures

In order to be able to quantify the dropout of agents from theetling wave, we
need to investigate certain conditions that render an aggedtopped out. A condi-
tion of this form allows us to define an index $ett) that contains the agents who
are currently part of the wave.

However, before defining and comparing different condgidor the dropout,
we investigate some global statistical values of the agentTde first measure to
indicate the fact that agents have dropped out is the pogifithe centre of the wave
c(t). From [32] we know that the theoretical wave speed of the imoedsionalised
Keller-Segel system is 1 and therefore the predicted positf the centre of the
wave iscyi(t) = t. In comparison to that the actual position of the wave can be
measured from the agents’ positions via

1 N
cat) = S (. @)

The problem with this option is that it includes dropped @érats for the calculation
of the wave centre, which can bias the calculation. To owvercthis problem, a
second option for finding the centre of the wave is given tgrou

cot) = %Z X (t), (22)

which implies that the found centre position depends on ltwéce for the index set

I". For short times (t) andcy(t) give similar results, but will differ for large times.
Using this wave centrey(t), we can calculate the variance of the agent positions as
an indicator for the width of the wave and therefore for thepdut. In Figure 6(a)
this variance is compared to the variance of the travelliagensolution found by
Keller and Segel, which iem s = (11u)?/3. Initially the measured variance increases
linearly towards the theoretical value, which is causedhegystart of the agents on
the boundaryx = 0. After the wave is fully developed, the variance startsige r
over the theoretical value, which indicates a significantiger wave and therefore
dropout of agents.

With these statistical values for the agent set we have niferelnt options to
define an agent as dropped out from the wave and therefordit® diee index set
I". The first option is to allow an agent to have a certain disgtarfoom the centre
of the wave. Agents with a distance bigger thraare therefore considered to be
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dropped out. Hence,
n=rnr)={ie{1,....,N}x((t)>cu(t)—r}. (23)

Because of the non-finite support of the travelling wave tsmtufor the original
Keller-Segel system, the measure defined in (23) is stratgfendent on, which
makes the choice af important. One should choosein a way that the solution
of the original Keller-Segel model only predicts a very shmaimber of dropout
agents. One way to pidakis to use a multiple of the theoretical standard deviation
of the wave.

A second option of defining an agent as dropped out is to usabthervation that
Sis exploited behind the wave. An agent is then considereé tirbpped out of the
wave if the value oS at its current position is 0. Thus,

F2=ra(t) = {i € {1,...,N}[S(x(t)) = 0} . (24)
Using the set$; andl, we can now define 2 dropout measuded; r) anddy(t) by
1 1
dl(t;r)zl—ﬁm(t;r)\, and dz(t)Zl—N“_z(t)‘ . (25)
Figure 6(b) shows plots of the behaviourdaft;r) andd,(t). We can see that after
the initial period of adjustment due to the start on the bauyg = 0, all measures

have an increasing trend with some fluctuations around &. Mkasurel; (t;0.15)
matches well wittd,(t), but has less fluctuations.
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Fig. 6 Simulation results of the variance and dropout for short timegrevthe same parameter
values as in Figure 5 are used.

(a) Varianceo (t) estimated from the simulation (solid line) and variance of tlaictary wave
given by the mean-field modei, s (dashed line).

(b) Dropout given by (25)d;(t;0.1) (dash-dotted line)d; (t; 0.15) (solid line),d;(t;0.2) (dotted
line) andd;(t) (dashed line).
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Large time behaviour

In this section we investigate the large time behaviour eftthvelling wave in the
hybrid chemotaxis Model Ill. We study the behaviour of theteda and the signal
in the half-line[0, «]. For large times the definitiortg (t) andcy(t) given by (21)—
(22) differ significantly because many agents drop behiedwave. Therefores(t)

is more meaningful to describe the centre of the wave in #éecHowever, a(t)
depends ori”, we can no longer usé = I; to find the agents that have dropped
out, becausé; depends on the definition of the centre of the wave. We thezefo
usedy(t) given by (25) as measure for the dropout in the analysis geldime
behaviour, where we are particularly interested in the sigudown of the wave.
Hence, we define the velocity of the wawg) through

V(t) _ Cz(t+AAT12 —Cg(t) , (26)

whereAT is chosen to be much larger thaihin order to minimise the fluctuations

in v(t). We simulateN = 10* agents with the same parameters as before. The results
of one simulation are shown in Figure 7. We see that afteb0 about 40% of the
agents have dropped out from the wave. The predicted slodomg of the wave

is demonstrated in Figure 7(b), where we plt) as a function of time. We use
AT = 0.1 in the definition (26). As the velocity shrinks with the nuentof agents

in the wave, we have(t) ~ 1— dx(t), which is also demonstrated in Figure 7(b).
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Fig. 7 Dropout and velocity of the travelling wave for large time, whigi@ same parameter values
as in Figure 5 are used.

(a) Dropoutd,(t) given by (25).

(b) Velocity of the waver(t) given by (26) (solid line) compared with-1d;(t) (circles).

Dropout in dependence orN and Ax

In the next step we use the derived measure (25) in order fgsenthe influence
of certain system parameters on the dropout. In particularare interested in the
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dependence of the dropout on the number of aginénd the gridsizeAx. The
variation of the number of agenisin the system is a way of comparing the hybrid
with the continuum model. One would expect that the dropogisgo 0 adN goes

to infinity. On the other hand th&x dependence is a problem of the hybrid model,
as one would ideally want the dropout to be independent ottwsen grid. We
performed a number of simulations for various valueNof200 simulations for
each value) andx (100 simulations for each value) and in each case measuged th
value ofd;(0.5;0.15). The results are plotted in Figure 8. In Figure 8(a) we plot

107

d,(0.5; 0.15)
b
JE——
JRP——
g
W//
/
/
pa—
- ———
e
R —

d,(0.5;0.15)

I
b

NI

=

o

-

/
s
/

ST A
A —

107

10° 10" 10 107
N AXx

@ (b)

Fig. 8 Dropoutd;(0.5;0.15) given by (25) as a function of (&) and (b)Ax. In each figure we
show results given by individual simulations (crosses), avevagees ofd; (0.5;0.15) estimated
from simulations (circles) and linear fits explained in the tessfted-line).

the average values afi (0.5;0.15) estimated from simulations as circles. The best
linear fit in the double logarithmic plot, shown as the dadlimes] has a gradient of
—0.53, which indicates that; ~ 1/+/N. This relationship can be explained through
the central limit theorem, which predicts that the noisehim $ystem should shrink
with v/N.

The plot in Figure 8(b) shows a more complicated dependéimdarger values
of Ax the dashed line with gradientl can be fitted indicating that a finer grid
leads to an increase in dropout, which seems slightly singriat first glance, as
one expects a finer grid to allow for a more accurate repratentof the original
PDE. This effect can, however, be explained by the lower remab agents per
gridpoint and therefore the higher noise expected at eadpajnt. AsAx decreases
the dropout seems to level off, meaning that the choice ofea find at this point
does not influence the dropout drastically. Bearing in mhrat tve ideally wanted
the dropout to be independent Ak, this levelling off effect seems to indicate the
region of choice forAx in order to get an accurate solution.

Theoretical analysis

More theoretical insight into the dropout effect can be wigd by considering a
simplified system, where the concentration of extracelludaterial S is a given
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function that does not change over time. A natural choiceHerfunctionS(x) is
the travelling wave solution found by Keller and Segel [32$ing the knowledge
of the exploited region behind the wave, we can adjust thistfan slightly to allow
for the analysis of the dropout effect. We therefore de$re be equal to 0 fox
smaller than some critical positiog and to take the form of the travelling wave
solution everywhere else. In this section we will use: 2, thus we put

-1
S(X){g+exp(—></u)) ; iix 27)

To be able to use a time-independent functionSare have to make adjustments to
the movement of the agents, as they would otherwise foll@nrtbreasing gradient
towards the right of the real axis. Therefore, we subtraetttpected wave speed of
1 from the movement velocity of the agents in order to keemthrea position that
is realistic for the travelling wave. In other words, we usepardinate system that
moves with the travelling wave solution. For example, foragient of Model | the
evolution equation becomes

dx = (u%dsd(:i) —1) dt + \/ﬁd\N

With the help of this simplified system we can now make furthealytic and sim-
ulative investigations into the effect of differexqton the quantity of the dropout. If
an agent enters the exploited regior: xc, two behaviours are considered. In the
first case, the agent would be considered dropped out andastaddl by the bound-
ary, so that it has no chance of becoming part of the wave aghmsecond case
allows the agent to randomly move around in the exploited ared therefore al-
lows the agent to enter the non-exploited region again. Bthr tases we performed
100 simulations for each of the considered values.aind measured the value of
d1(0.5;0.15) as defined before, this time using 0 as the mean position. Vérage
values ofd; (0.5;0.15) estimated from the simulations are shown in Figure 9 as cir-
cles. To analyse the case of an absorbing boundacy=at; we consider the system
in the limit N — oo, which is described by the following equation (compare ®))1

ot ax HMax\ox  "sux

on  on d (on 2dS

(0x de> ' (28)
The boundary condition on the left-hand boundary can betewitn the form
n(xc) = 0. Further conditions fox — o can be introduced. We look for a separable
solution of the form

n(x,t) =exp(—At)M(x),

whereA is a positive constant. Plugging this ansatz into (28) leads

!/
uM” + M’ — 2 (M%) +AM =0, (29)
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Fig. 9 Dropoutd; (0.5;0.15) defined by (25) as a function o for static signal given by (27)
where the same parameter values as in Figure 5 are used. In eachvigsiiew average values of

d1(0.5;0.15) estimated from 100 simulations (circles).
(a) Simulations where no comeback from= x; is allowed. The dashed line is a result of the

theoretic analysis given by (30).
(b) Simulations where dropout agents can return. The dashed|5@2 of the dropout predicted

by (30).

where primes denote derivatives with respect.tbor the ODE (29) a non-negative
solution is sought that satisfiéd(x;) = 0 andM(x) — 0 asx — «. The general
solution for (29) is

ZAHGXP(X?’%V) +(1+ y+2)\u)exp( ”V)

e (o) 1)

2Auexp(x32—1)+ (1-y- 2/\u)exp( )

*CZ )

(exp(%) +1)

wherey = /4A 1 + 1. The integration constan@ andC, have to be chosen to
satisfy the boundary conditions. Because of the nature @f é8 an eigenvalue
problem, only the quotient; /C, can be determined uniquely, which also means
that the conditioM (x) — 0 asx — o is satisfied for all value€,;,C, € R. Taking a
closer look at the limik — o, we can see that the direction of the approach changes
in dependence of, in particular, a non-negative solution can only be obtehifos

A smaller than a critical valug:(xc). This critical valueAc(Xc) is achieved for the
case whereC; /C, turns out to be 0. Applying the left-hand boundary condition
M(xc) = O for this case yields to the unique valugx.) given through

= 5)oren( ) s
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This valueAc(xc) can now be used to get a predicted value of the drogged(xc, t)
via

dpred(Xe,t) = 1 —exp(A (xc)t) - (30)

The functiondpred(Xc, 0.5) is plotted as the dashed line in Figure 9(a). We can see
that it matches well with the simulation results. The sligi¢restimation given by
dpred(Xc,0.5) can be explained through the time it takes before the firsttagstart
reaching the critical positior; from the starting position at= 0. For the situation
with comeback, we choose a valde= aAc(x;) to predict the dropout, where

is a constant. Matching this with the simulation resultskasas in Figure 9(b) we
found thata = 0.5, which indicates that about 50% of agents come back into the
wave after they have dropped out. This effect could be meddly using a reactive
boundary [14] instead of the free diffusion zone behind theev

6 Conclusion

In this chapter we reviewed the advances that have been matie field of hy-
brid modelling of collective behaviour. Hybrid models camdagent-based models
with mean-field concentration models and allow a more at¢ewescription of cer-
tain systems than the general mean-field approach. Comizapedely agent-based
models hybrid models have the advantage of a reduced cotigmaticomplexity
and a wider range of applicability. As hybrid models explycconsider individual
behaviour as well as interactions between individualtsistic effects are incor-
porated which can alter the behaviour from that of the cpwading continuum
model. This became especially clear during the studies bfithehemotaxis mod-
elsin Section 5. We showed that the hybrid models do not meduravelling wave
in the classical sense, as agents are dropping out behinebtle This effect leads
to a decrease in the number of agents in the wave, which aias slown the wave,
as demonstrated in Figure 7. We also discussed some of theepr® and difficul-
ties related to the use of hybrid models. In particular thetispmatching between
the discrete agents and the continuous variables has tas&leoed. We showed in
Figure 8 that the choice of the gridsize can have a signifiefie¢tt on the behaviour
of hybrid models and has to be handled with care.
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