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Abstract. The computer simulation of stochastic reaction-diffusion processes in biology is of-
ten done using either compartment-based (spatially discretized) simulations or molecular-based
(Brownian dynamics) approaches. Compartment-based approaches can yield quick and accurate
mesoscopic results but lack the level of detail that is characteristic of the more computationally
intensive molecular-based models. Often microscopic detail is only required in a small region
but currently the best way to achieve this detail is to use a resource intensive model over the
whole domain. We introduce the Two Regime Method (TRM) in which a molecular-based algo-
rithm is used in part of the computational domain and a compartment-based approach is used
elsewhere in the computational domain. We apply the TRM to two test problems including
a model from developmental biology. We thereby show that the TRM is accurate and subse-
quently may be used to inspect both mesoscopic and microscopic detail of reaction-diffusion
simulations according to the demands of the modeller.

Introduction

Stochastic spatio-temporal simulations have been successfully used in a number of biological ap-
plications, including models of morphogen gradients [1], MAPK pathway [2], signal trasduction
in E. Coli chemotaxis [3] and oscillation of Min proteins in cell division [4]. However, detailed
stochastic spatio-temporal models are often computationally intensive to simulate. This is one
of the reasons why whole cell simulation has been recognised as a “grand challenge of the 21st
century” [5]. In this paper, we address this problem using a modelling approach which has
computational complexity only in regions of interest.

Spatio-temporal biological processes are often modelled using deterministic reaction-diffusion
models which are written in the form of partial differential equations (PDEs) for concentrations
of biochemical species [6]. However, cellular or subcellular processes usually take place on very
small spatial scales. With such small scales it is not uncommon for populations of biochemical
species to be so small that deterministic (PDE-based) approaches are completely inappropri-
ate. Several stochastic reaction-diffusion models have been introduced in the literature. In
general, these models can be divided into two very distinct classes [7]. The first class of mod-
els is compartment-based which is characterized by a discretization of the spatial domain into
compartments [8]. At any particular time the best approximation to the localisation of any
individual molecule is the compartment that the molecule is in. Molecules that are in the
same compartment and are of the same species are completely indistinguishable. Molecules
are free to migrate in the form of discrete jumps from one compartment to another via dif-
fusion. Compartment-based modelling techniques are very popular and are used in a number
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Figure 1: Graphical representation of the TRM.

of available self-contained simulation packages, for example, MesoRD [9] and SmartCell [10].
Whilst compartment-based models do not specifically represent the true noisy trajectory of the
molecules, it has been shown that these models can provide accurate results by choosing the
mesh spacing carefully [11, 12]. The second class of models is based on Brownian dynamics
(molecular-based) simulation. The characterizing property of this method is that each molecule
has an exact location on a continuous domain. Molecule diffusion is simulated by calculation of
its noisy trajectory. There are a number of simulation packages that implement molecular-based
simulation, for example, Smoldyn [13, 14], MCell [15, 16] and GFRD [17].

Brownian dynamics simulation is popular because of its better representation of the micro-
scopic physics. However, if precise information about the trajectories of each molecule is not
important then the effort placed on tracking them is a waste of computational resources. As a
general rule, if concentrations are really small, tracking every molecule’s trajectory is achieve-
able but becomes less practical as concentrations increase, when compartment-based methods
(or even deterministic methods) are preferred. Often it is difficult to choose the most appro-
priate stochastic model when large spatial concentration variations, specific regions of interest
and /or small systems coupled to larger systems are involved. In each of these cases, it would be
ideal if a Brownian dynamics model may be used for localized regions of particular interest in
which accuracy and microscopic detail is important (such as near the biological cell membrane
[18]) and a compartment-based model may be used for other regions in which accuracy may be
traded for simulation efficiency.

In this paper, we propose a spatially hybrid model, the Two Regime Method (TRM), which
includes the best parts of each type of model and therefore optimizes simulation results. We
consider a domain §2 divided into two subsets: ¢, which is discretized into compartments,
and Q,7, where a molecular-based algorithm (Brownian dynamics) is used to follow trajectories
of individual molecules (2 = Q¢ U Q7). Specific algorithms that are used for each individual
model may vary; our goal is to define the set of rules that must be followed on the interface
I = 0Q¢c U 0 for accurate and efficient coupling of the two different modelling paradigms.
The situation is schematically illustrated in Figure 1. Here, the compartment-based part Q¢
is on the left and the molecular-based subdomain €2, is on the right. Before outlining the
implementation of the spatially hybrid algorithm, we first present a general overview of the two
different modelling paradigms used respectively in Q¢ and 23,.



Compartment-based modelling

The characterizing property of compartment-based stochastic models of reaction-diffusion pro-
cesses is the fact that the domain is discretized. Molecules do not have exact locations as they
do in Brownian dynamics simulations but rather they are only assigned to be located within
one of the compartments at a given moment in time. In particular, computer implementations
of compartment-based models only store and evolve numbers of molecules in compartments
(for each biochemical species). In what follows, we will consider the disretization of the com-
putational domain using the compartments of the same size. This means that, in the case
of three-dimensional simulations, compartments will be small cubes with the side equal to h.
Similarly, compartments will be squares with the side h (resp. intervals of length h) for two-
dimensional (resp. one-dimensional) models. In each case, diffusion is modelled by allowing
jumps of molecules between neighboring compartments with rate D/h? where D is the diffusion
constant [22].

Compartment-based models postulate that chemical reactions only occur if the reactant
molecules are in the same compartment [9]. Let us consider a general system of N chemical
species which are subject to M chemical reactions in a domain Q¢ which is discretized into
K compartments. Then compartment-based models assign a propensity function oy ;(t), i =
1,2,...,M,j=1,2,..., K, to each chemical reaction in each compartment. Here, the product
«; j(t) dt is the probability that the i-th chemical reaction occurs in the j-th compartment during
the infinitesimally small time interval [t, ¢ 4 dt]. The propensity «; ;(t) depends on the number
of available reactants in the compartment, the kinetic rate constant and the compartment
size h [7]. In a similar way, one can assign the propensity of diffusive jumps from the j-th
compartment, j = 1,2,..., K, to its neighboring compartments to be «; ;(t) = D/h?, where
i=M+1,...,M +d; and d; is the number of available compartments adjacent to the j-th
compartment. In this way, the reaction events and the diffusive jumps are both contained in
the propensity «; ;.

Since a real diffusing molecule’s trajectory is continuous, if a molecule leaves a compartment
it enters a neighboring compartment. This necessarily places a constraint on the time step in
which the system is updated. Commonly, there are two separate ways of simulating molecule
migration from compartment to compartment. The first is by designation of the time step
At [19]. We will call this approach time-driven. This is a less accurate but simpler method
of simulation. Regardless of how small the time step is, there will be a non-zero probability
for molecules to move more than one compartment which leads to inaccuracies in the results.
However, accuracy is assured so long as the probability for a single molecule to move just
one compartment, DAt/h?, is small (which makes the probability for two compartment jumps
negligible). Further restrictions on the time step might also be provided by fast chemical
reactions.

A more common approach to compartment-based modelling is given by event-driven algo-
rithms which simulate the evolution of the system by picking the time step that corresponds to
the next diffusive jump or reaction event [20, 21]. Examples include the Gilespie algorithm [20],
Next Reaction Method [21] and Next Subvolume Method [9]. In the Next Reaction Method,
the time t 4 7; ; for each reaction and diffusion jump is computed putatively by
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where 75 j is a uniformly distributed random number in (0,1). In particular, if the compartment
size h is reduced, then the propensities D/h? of the molecules to migrate between compartments
increases which causes the time step between diffusive events to decrease in turn. Thus, in both




time-driven and event-driven algorithms, the time step and the compartment size are inherently
linked (either by the constraint of small jumping probabilities or by correlation between the
randomly selected time step and the compartment size).

Molecular-based modelling

Computer implementations of molecular-based models in the literature store and evolve the
positions of all biomolecules of interest [13]. The trajectories of large biomolecules (proteins)
are computed through Brownian dynamics [23]. This is done by the inclusion of a random motion
term which models the effect of solvent molecules on the biomolecules of interest without the
need to simulate each solvent molecule individually. In the time-driven algorithms, the position
x;(t + At) of the i-th molecule at time ¢ + At is computed from its position x;(¢) at time ¢ by

x;(t + At) = x(t) + V2DAt ¢, (2)

where ¢ = [(z, (y, (;] is a vector of three normally distributed random numbers with zero mean
and unit variance. Chemical reactions are then performed at each time step according to the
probability of each reaction. Probabilites of bimolecular reactions also depend on the distance of
possible reactants [13, 7]. Molecules that migrate over domain boundaries are treated depending
on whether they are reflective, absorbing or reactive boundaries [18].

A time-driven Brownian model is simple to implement but may not be efficient. Prescribing
a time step At to an arbitrary simulation can be difficult because if the concentration is too
small then many time steps will be calculated before any interactions or interesting features may
take place. Sometimes event-driven algorithms are prefered for Brownian dynamical models.
An example is the GFRD method [17] which chooses a time step based on the current system
configuration. It makes use of the fact that a single particle and two particle problems can
be solved analytically using Green’s functions, and selects the time step in such a way that
the system evolution can be approximated as a collection of two particle (or single particle)
problems.

The Two Regime method

The Two Regime method (TRM) is a spatially hybrid model for stochastic reaction-diffusion
processes which uses a two-part domain €. One part, Q¢, is discretized into compartments
and the other, Q/, is a molecular-based subdomain (2 = Q¢ U Q). The interface between
the subdomains is denoted I = Q¢ U 9. The algorithm is graphically presented in Figure
1. Some details of the implementation of TRM are dependent on the choice of algorithms
governing each individual regime, i.e. whether we use a time-driven or event-driven approach
in Q¢ and Q7. In this section, we focus on the most common case. Other cases are discussed
in the Discussion section.

Commonly, compartment-based stochastic reaction-diffusion models are implemented using
an event-driven algorithm [9] whilst molecular-based stochastic reaction-diffusion models are
implemented using a time-driven approach [13]. We therefore present the TRM which integrates
an event-driven compartment-based reaction-diffusion regime (Next Reaction Method [21]) and
a time-driven molecular-based reaction-diffusion regime (for example, that used by Smoldyn
[13]). The algorithm is summarized in Table 1. Molecules in both Q¢ and €, are simulated
according to the rules defined by their particular algorithm. Therefore, when initializing in the
step (i), molecules are placed according to compartment in ¢ and according to coordinate in
Qar. The propensity for particles to migrate from compartments adjacent to the interface I into



Table 1. The Two Regime Method for stochastic reaction-diffusion simulation

(1) Initialize numbers of molecules in compartments in Q¢ and positions of molecules
which are in ;.

(ii) Choose At the time between updates of the molecular-based regime (M-events) in
Q. Use Eq. 1 to calculate 7; 5, the putative times at which the next reaction or
migratory events (C-events) will take place in ¢ (or are initiated in €. for jumps
over the interface I). Set tpy = At and t¢ = min(r; ;) where the minimum is taken
overalli=1,2,...,.M +djand j=1,2,..., K.

(iii) If t¢ < tps, then the next C-event occurs:

e Update current time ¢ := t¢.

e Change the number of particles in Q¢ to reflect the specific C-event that has
occured. If this event is one in which a particle leaves €2¢ bound for €2, then
compute its initial position in 2j; according to the method described in the text
(using Eq. 4) and remove it from the corresponding compartment adjacent to the
interface I. Calculate the next putative time for the current C-event by Eq. 1.

e For all propensity functions «;; that are changed as a result of the C-event,
determine the putative times of the corresponding event by Eq. 6. Set to =
min(rm).

(iv) If tpr < te, then the next M-event occurs:

e Update current time t := tj,.

e Change the locations of all molecules in s according to Eq. 2.

e Initialize all molecules which migrated from Q¢ to Qs during previous C-events
at locations computed in the step (iii), using Eq. 4.

Perform all reaction events in Q.

e Absorb all particles that interact with the interface I from Qj; (excluding those
just initiated) into the closest compartment in Q¢. The particles moving accross
the interface are selected with the help of Eq. 5.

e Tor all propensity functions «;; that are changed as a result of the M-event
determine the putative times of the corresponding C-event by Eq. 6. Set t¢ =
min(7; ;) if needed.

(v) Repeat steps (iii) and (iv) until the desired end of the simulation.

Qs is given by ®1D/h? per molecule, where ®; is the change in the propensity of migration
(from that of an internal migratory event) that is included to make the molecular flux over the
interface I consistent with diffusion. We have determined ®; to be (see Supplemental Material)

o= 3)
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where At is the fixed time increment defined for updating the molecules in 23;. We use Eq. 1
to find the putative times ¢ + 7; ; for the next reaction/migration events in Qc. We call these
events as C-events. They include the jumps from Q¢ to Q3 which have propensities equal to
@, D/h? multiplied by the number of molecules in the corresponding compartment. Therefore,
we define d; to be the number of available directions in which a molecule may jump including
a jump over the interface I. In the step (ii), we also initialize the time of the next update of

molecules in Qs as tyy = At (we call these events as M -events).
The algorithm then proceeds by repeating steps (iii) and (iv) which compute C-events and
M-events, respectively. At each C-event, we track the reaction-migratory events that occur in
Qc. At each M-event, we update the entire system of particles in €23, by calculating the new



positions of particles in 2,7 using Eq. 2 and the reactions using the method prescribed by the
specific molecular-based algorithm [13, 23]. At each M-event, we also introduce new molecules
from Q¢ into Qs by placing them at a distance = from the interface I that is sampled from
the probability distribution f(x). These new molecules arise from those C-events which have
occurred since the previous M-event. We have determined that (see Supplemental Material)

10 = s (s ) (1)

where & > 0 is the distance from the boundary and erfe(z) = 2/y/7 [° exp(—t?)dt is the
complementary error function.

Furthermore, in the step (iv), we also identify all molecules which migrate from Qj; to Q¢
during an M-event. These include those molecules which have new locations calculated by Eq.
2 in Q¢. However, we also have to include some molecules which have their new locations
calculated by Eq. 2 in Qj5;. We postulate that every molecule has a probability P, to migrate
from Qpr to Q¢ during an M-event where

()

P,, = exp <_Axold Al’new) ’

D At

where Axgq is the distance of the molecule from the interface I before the M-event and Axyey 18
the calculated distance from the interface I at the current M-event. All molecules which migrate
from Qs to Q¢ are placed into the corresponding (nearest) compartment in Q¢. It is worth
noting that Eq. 5 is also used in some stochastic reaction-diffusion algorithms for the treatment
of boundary conditions [13, 18]. In the TRM, the boundary conditions are implemented for
each regime in the usual way, see, for example Ref. [18] where treatment of reflective, absorbing
and reactive boundaries is discussed.

For both C-events and M-events, when the propensity «; ; is changed due to a change in
(¢ we must recalculate the putative time ¢ + 7; ; for the next C-event to take place. Following
Gibson and Bruck [21], we update 7; ; as follows:

a2 (t)
Tii=14 —22 T, — 1t 6
= ey T ) )
where ozf}f(t) is the propensity before the event at time ¢ and oV (¢) is the propensity after
the event.

Mathematical justification of the TRM is given in the Supplemental Information. In order
to demonstrate the validity of the TRM, we will present results for two test problems for which
one can derive analytically the exact solution. We can therefore test our stochastic simulation
by increasing the number of realizations and observing convergence between the exact solution
and the stochastic simulation. The first test problem has been designed so that a large range of
different concentrations and fluxes will exist at some stage on and across the interface so that
theoretical agreement will provide more compelling validation of the algorithm in all possible
situations. In the second test problem, we have applied the TRM to a particular model of
protein concentration gradients in order to demonstrate the usefulness of the TRM to an existing
biological model [24].

Illustrative results: diffusion example

We will consider one-dimensional diffusion of Ny non-interacting molecules with diffusion con-
stant D = 1 in the domain © = [0,1]. In this example, all parameters are dimensionless. The



boundaries of the domain €2 are defined to be reflective. We assume that initially all molecules
are uniformly distributed in the subinterval [0,0.5]. Physically, this problem is nothing other
than the diffusion of molecules squashed into half a room being suddenly allowed to fill the
room. This problem can be stated as the following initial boundary value problem for the
(normalized) density o of molecules

do 0%

—=—,0 1 7
where o(z,0) = 2H(0.5 — x), 0,(0,t) = 0(1,t) = 0 and H is the Heaviside function. The
solution can be found by applying the separation of variables technique to Eq. 7 as

o=1—-4 Z (=1 C((; ((2;); 1m2) exp (—(2i — 1)2772t) . (8)
i=1

This solution will be used to test the validity of the TRM.

To apply the TRM, we divide €2 into the following compartment-based and molecular-based
parts: Q¢ = [0,0.5] and Qps = [0.5,1]. Therefore, the interface I is located at I = 9Q¢c N
00y = {0.5}. The compartment-based domain Q¢ is discretized into K = 20 compartments
(subintervals) of the length h = 0.025. The compartment-based model will give us the time
evolution of a vector of integers n = [ni,na,...,nk|, where n; is the number of molecules in
the ith compartment, ¢ = 1,2,..., K. Initially all Ny molecules are placed in Q¢ in random
compartments with equal probability. This constitutes the step (i) in Table 1. In the step (ii),
we choose the time step At as At = 1079, therefore ®; given by Eq. 3 is approximately 28.

Figure 2 is a plot of the distribution comparing the solution (Eq. 8) and the distribution
that is produced using our stochastic algorithm using an initial Ny = 2000 molecules at t = 0.1.
For comparitive purposes, the molecules in 2, are counted and compartmentalized so that we
can see their relative concentration to that of the compartments in Q. Whilst good agreement
is observed we require a more quantitative comparison. It has been established in the literature
that the algorithms that govern the internal processes of 23, and 2¢ are consistent with diffusion
and therefore we are most interested with the accuracy of the flux over the boundary. For this
reason we compare the total probability to find molecules in ¢ with that predicted by Eq.
8 (i.e. f00'5 o(z,t) dz). A comparison of a theoretical probability and simulation containing
Ny = 2000 molecules shows good agreement over time in Figure 3. Simulation of the TRM
with Ng = 30000 overlaps that of the theory in Figure 3. Thus, in Figure 4, we present a plot
of the error between the expected probability to find molecules in 2¢ and that of a simulation
with Ng = 30000 molecules over time to demonstrate there is no apparent time dependent error
that is associated with the algorithm, rather there is simple stochastic white noise around the
true expected probability. The test problem therefore provides very strong validation of the
proposed algorithm.

Illustrative results: a morphogen gradient model

In the second test problem, we simulate a model of a diffusing morphogen presented by Tostevin,
ten Wolde and Howard [24]. Consider a system of no molecules on the domain ©Q = [0, c0).
Morphogen molecules are produced at the origin at a rate J = 6.25 um~'s™! and diffuse with
a diffusion coefficient of D = 0.5 ym?s~!. We implement a zero flux boundary condition at the
origin. The molecules undergo a linear death rate of ;1 = 1 s~!. Intuitively, since molecules are
produced only at the origin and die as they diffuse away from the origin there will be a large
concentration of molecules near the origin which dissipate as x gets large. If a molecular-based
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Figure 2: Plot of the distribution of the diffusion example evaluated at ¢ = 0.1 according
to Eq. 8 (black line) and TRM (compartment molecule probability density shown in dark
compartment bars and free molecules counted into compartments and shown in white bars).
The compartmental separation is h = 0.025.
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Figure 3: Plot of total probability to find a particle bound to a compartment as a function
of time ( 00'5 o(z,t) dz) according to Eq. 8 (gray dashed line) and from simulation of 2000

molecules (solid black line) using the TRM for the diffusion example.

algorithm were to be used for this model, at small values of x, where there are characteristically
a lot of molecules, high computational effort will be needed whereas accurate and efficient
results are achieveable using a compartment-based model. However, using a compartment-based
algorithm for the entire model would mean necessarily truncating the domain and introducing
errors associated with small concentrations at large values of x. This type of problem is ideal
for the TRM since we would prefer to utilise the efficiency of a compartment-based model for
small z and the precision of a molecular-based model for large . We therefore simulate the
model using the TRM and place the interface at an arbitrarily chosen location (r = 1 pm).
Therefore, Q¢ = [0,1) and Qy; = [1,00). In the large J limit, we expect the concentration of
particles, o(z,t) to obey the PDE

gizDVQQ—ug—i—Jé(a:), x>0 (9)

where §(z) is the Dirac delta function. Whilst there is zero flux over the boundary the introduc-
tion of the point source term at x = 0 gives us a formal boundary condition of ¢,(0,t) = —J/D.
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Figure 4: Relative stochastic error of the total probability to find a particle bound to a compart-
ment ( 00 ? o(z,t) dz) between simulation of the diffusion example using the TRM with 30000
initial particles and the theoretical value calculated using Eq. 8, as a function of time.

The initial condition is g(z,0) = 0. The time dependent analytical solution is given by Ref. [25]

)\Jexp(—x/)\)[ 1 <2Dt//\—x>+

t) = 1— —erf
o(x,1) 5D erfe D

+_exp;2$/)\2> erfe <2D\t/il%r :C)] ’

where A = \/ D/ is the characteristic decay length. Using this analytic solution we can discuss
the accuracy of the TRM by combining 5000 simulations of this problem.

We chose the following parameters for our simulation results; At = 0.1 ms for the molecular-
based model and A = 0.05 pum for the compartment-based model. Figure 5 is a plot of the
distribution comparing the analytical solution (Eq. 10) and the distribution that is produced
using our stochastic algorithm averaged over 5000 realizations at time ¢ = 3 s. In order to test
that the interface properties of the TRM are accurate we compare fol o(x,t) dz computed by Eq.
10 to the total expected number of compartment-bound molecules over 5000 simulations and
floo o(x,t) dz to the total expected number of molecules in Q; over the same 5000 simulations.
The results are shown in Figure 6. The stochastic and analytic results are in clear agreement.

(10)

Discussion and conclusion

In this manuscript we have successfully interfaced a compartment-based model of diffusion to a
Brownian dynamics model of diffusion. We have derived and verified, for any process which has
diffusion as its dominant form of molecule mobility, very particular rules in which molecules may
freely migrate between a compartment-based regime and a free Brownian dynamics regime. The
ability to interchange the modelling approach in spatially specific areas allows greater control in
simulation and in particular allows a modeller to have the precision of a molecular-based regime
in regions where it is needed whilst having the computational efficiency of compartment-based
approaches where it is appropriate. In order to interface the two regimes one simply needs to
migrate particles between regimes according to the rules described in Table 1 and using the
coupling parameters given in Egs. 3 and 4. Their mathematical justification is given in the
Supplemental Material.

It is important to note that while we have focused on presenting the TRM using an event-
driven compartment-based regime and a time-driven molecular-based regime, it is possible to use
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Figure 5: Plot of the expected morphogen molecule count per compartment evaluated at t = 3 s
according to Eq. 10 (black line) and 200 realizations of the TRM simulation (compartment
molecule probability density shown in dark compartment bars and free molecules counted into
compartments and shown in white bars).
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Figure 6: Plot of total expected number of morphogen molecules found in both Q¢ and Q,f
as a function of time for the analytical solution according to Eq. 10 (solid lines) and TRM
simulation results averaged over 5000 realizations (dashed lines).
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any desired combination of compartment-based and molecular-based regimes. In the case where
algorithms in both Q¢ and Qps are event-driven (for example, using the GFRD [17] in Q/),
the parameters ®; and f(x) are the same. Care must be taken in this case. Molecule migration
from Q)7 to Q¢ occurs at the moment of first contact with the interface I. Furthermore,
Eqn. 3 implies that (in the case of an event driven algorithm) ®; is dependent on 7; ;, which
in turn determines the propensity for the diffusive events on interfacial compartments in Q¢
and therefore determine 7; ; itself. The putative time for the migration of a particle from the
boundary compartment in Q¢ to Q7 is calculated from some current time in the following way:

h? 1
0= In(=), 11
"9 = @, D n<r> ()

where np is the number of molecules in the compartment at the interface, r is a uniformly

distributed random number in (0,1). Notice from (3) that ®;,/7; = \/27%, a constant with

respect to 7; ;. Therefore we find 7; ; using the following formula

h2 1\N\>  7h?
L= — Inl = — In2 7. 12
T’J (nb(@l,/Tm)D n(r)) 4n§D e ( )

The illustrative algorithms which we presented were effectively one-dimensional, but the algo-
rithm naturally extends by symmetry into higher dimensions with flat interfaces. It still remains
to extend the work into curved higher dimensional interfaces and systems with advection as a
form of molecule mobility. Another important extension is to consider unstructured meshes [26]
and complex geometries [27]. The current algorithm has the potential to significantly increase
the accuracy and speed at which current stochastic reaction-diffusion simulations are imple-
mented by giving the simulator control over their modelling approaches in regions of interest.
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Supplemental Material — the Two Regime method for
optimizing stochastic reaction-diffusion simulations

In the supplemental material, we derive equations (3) and (4) from the manuscript, i.e. we derive
equations relating the TRM parameters ®; and f(x) and the parameters of compartment-based and
molecular-based models. This derivation will also make use of an auxiliary parameter ®5 (which does
not explicitly appear in the formulation of the TRM, because its value is determined to be equal to 2 in
all cases). We also justify equation (5) from the manuscript.

Without loss of generality, consider an interface at = 0. To the left of this interface a compartment-
based model is used with fixed compartment size h. To the right of the interface a molecular-based
algorithm is used, updated at fixed time increments of At. Our aim is to choose the parameters which
govern the transfer of molecules across the interface from one model to the other in such a way as to make
the interface “invisible” in the solution: the switch of models does not reflect anything in the underlying
physical processes, it is simply a mathematical construct to aid the simulation.

To determine these parameters we focus on the purely diffusive problem, since bulk reactions have no
affect on boundary conditions [18]. Then the exact description of the underlying physical problem is a set
N molecules undergoing Brownian motion. We write p(x, t) for the probability distribution function for
this process, so that p(z,t)dz gives the probability of finding a given molecule in the interval [z, x 4 dx]
at time ¢. In the purely diffusive case p(z,t) satisfies the diffusion equation.

The stochastic models we are using on either side of the interface at £ = 0 both provide an approx-
imation to p(x,t) (as h — 0 and At — 0). We need to choose the coupling parameters so that these
approximations join together smoothly, that is, they both give the same value of p(0,t) and p,(0,t),
where the subscript indicates partial differentiation.

We label the compartment « € [—kh, —kh+ h) by k and denote the probability of finding a molecule
in it by pg(t)h (so that pg(t) approximates the probability density function p(—kh + h/2,t) above). We
motivate our modification of the transition probabilities for compartment number one (adjacent to the
interface) by imagining that a molecule in it which attempts to jump to the right has a probability @4
of crossing onto the molecular-based side, and a probability of 1 — ®; of being reflected (in fact, ®; may
be greater than 1, so in the end we must think of it as altering the transition rates rather than as a
transmission probability). If the molecule is transmitted we have to decide where to place it: we suppose
that it is placed at a random position in z > 0 with probability distribution function f(z) (so that it
is placed in the interval [z, 2 + dz) with probability f(z)dx). Similarly we imagine that a molecule on
the molecular-based side z > 0 at time ¢t whose new position at time ¢ + At is in x < 0 is added to
compartment number 1 with probability @5, and reflected with probability 1 — @, (again, in the end we
will find that &5 = 2, so we will later have to change our interpretation of ®5).

If we denote by p(x, t) the probability density function of the discrete-time molecular-based algorithm,
then these transmission/reflection rules imply

2DAt DAt DAt
pr(t+ At) = (1 -

h2> pl(t) =+ ?PQ(t) + (1 - (I)1)?P1(t)

/1(/w;i2:§A p<_$52?2>dmd% (13)
pla,t +At) = ; \/A%{ p(_iD_Afy)Jr(l—@z)exp(Wﬂ dy

+ P2 (05 2). (14)

Note that if f(z) vanishes away from z = 0 then equation (14) reduces to the Fokker-Planck equation
for finite-time-step Brownian motion and thus to the diffusion equation in the limit At — 0. However,
in the vicinity of 2 = 0 there is a boundary layer of width O(v/At). We rescale (13) and (14) using
the (dimensionless) boundary layer coordinate n = x/v DAt. We also denote the probability density
and placement function in this boundary layer region by pinner(n,t) = p(VDAtn,t) and finner(n) =
VDAt f(VDAtn). Note the rescaling of f, which is necessary to satisfy the normalisation condition
fooo f(x)dx = 1 since (as we will see) f vanishes outside the boundary layer. Thus, in the boundary
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layer scalings, (13) and (14) become

pit+ A = <1 - M;;)DN) pat) + Dh—ftpz(t)
(I)QM/ / Pinner f t) (77—|—§) dn d¢, (15)
Pner (180 = /oOo Pinner (6, 1) (K(n — &) + (1 — o) K(n+&)) dé + @pla)ﬁnner(n)? (16)

where K(z) = (47)~ "2 exp(—22/4). Now in order for our two models to join smoothly we require on
the compartment-based side that

h _
_ _ 3h _
pa(t) ~ p(=3h/2,t) =p(0,t) — 7])

while, for the molecular-based side, we want no rapid variation in the boundary layer, so that

pinner(nat) ~ ﬁ(07t> + VDAt (77 + C) ]393(0,75) e (17)

pi(t) ~ p(=h/2,t) =p(0,1) -

We have allowed here for a small shift C' in where the molecular-based region “sees” the interface; we will
see that this extra degree of freedom is crucial. Equivalently we could have said that pg(¢) approximates
p(—kh+h/2—CvVDAt,t) rather than p(—kh+h/2,t): C is really a small phase shift between the spatial
coordinate in the two regions. Substituting these expansions into (15) and (16) and equating coefficients
of h% and h' (with h ~ /At as h, VAt — 0) gives

9 [SSEEReS B hd,
o= 2 [ R ane - 2 (18)
o0 oo 20,C
o — z—m&é A (€+CVK (n+8) dnds =2 — @y — (19)
. A (K(y— &)+ (L @) Ky +6)) de + Y22 P )
_ 1—%erf (2) VDAt (I)lfmner( ), (20)

1o = Am@+CHKW—O+ﬂ—¢ﬁKM+OﬁE—?ﬁmﬂm,

= n+C+ (2 D) ( _\/E — §erfc (g)) — %erfe (g) - %finner(n)’ (21)

where erfc(z) = 2//7 [ exp(—t?) dt is the complementary error function. From (18) we find

0] h

D, - VDAt (22)
Then (20) gives
finner(n) = gerfc (g) 5 (23)

corresponding to the unscaled

flz) = \/E erfe ( \/JTJ, (24)

which is denoted as equation (4) in the paper. The normalisation condition on f is automatically satisfied.
Substituting (23) and (19) into (21) gives

0 = (2—®) (e;ﬂl ~ Lerte (1) - @erfc (g)) :
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from which we find
Py = 2. (25)

Substituting (13) in (10), we derive the formula for ®; which is presented as equation (3) in the paper
Finally, substituting this value into (19) gives

h
C= VDA (26)

One interpretation of this value of C is that we should think of pg(t) as approximating p(—kh + h,t), so
that p1(t) approximates p(0,t) and not p(—h/2,t).

We introduced ®; and ®, as probabilities, and yet we have found ®5 to be greater than one (as
indeed, ®; may be). Thus we need to reinterpret their meaning. For ®;, from (15), we see that we
simply need to interpret

d1 DAL
B2
as the probability of a molecule in compartment number one jumping to the right. Thus ®; simply rep-
resents the relative increase in this propensity function for a boundary compartment over a compartment
in the bulk. For &, from (14), we see that the probability that a molecule at y > 0 at time ¢ lies at
x > 0 at time t + At is

1 —(z—y)? —(z+y)? 1 —(z —y)? —zy
———— |exp| ——=——— | —exp = exp l—exp| ==
VAT DAt 4DAt 4DAt VAr DAt 4DAt DAt

We can interpret this as implying that not only are those molecules which end the time step at x < 0

removed and placed in compartment number one, but each molecule which ends the time step at a
position z > 0 is removed with probability

P,, = exp (—%) .

which is labeled as equation (5) in the manuscript. As shown in [13], P, is the probability that the
particle trajectory crossed the interface x = 0 at some point during the time interval [¢t, ¢ + At) and then
returned to z > 0, so that ®3 = 2 corresponds in some sense to a maximally absorbent boundary.
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