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Summary. Temporal integration of equations possessing continuous symmetries (e.g. systems with transla-
tional invariance associated with traveling solutions and scale invariance associated with self-similar solutions)
in a “co-evolving” frame (i.e. a frame which is co-traveling, co-collapsing or co-exploding with the evolving
solution) leads to improved accuracy because of the smaller time derivative in the new spatial frame. The
slower time behavior permits the use of projective and coarse projective integration with longer projective
steps in the computation of the time evolution of partial differential equations and multiscale systems, re-
spectively. These methods are also demonstrated to be effective for systems which only approximately or
asymptotically possess continuous symmetries. The ideas of projective integration in a co-evolving frame
are illustrated on the one-dimensional, translationally invariant Nagumo partial differential equation (PDE).
A corresponding kinetic Monte Carlo model, motivated from the Nagumo kinetics, is used to illustrate the
coarse-grained method. A simple, one-dimensional diffusion problem is used to illustrate the scale invariant
case. The efficiency of projective integration in the co-evolving frame for both the macroscopic diffusion PDE
and for a random-walker particle based model is again demonstrated.

1 Introduction

Projective and coarse projective integration have been recently proposed as effective methods for
the computation of long time behavior in complex multiscale problems [14, 17, 16, 23]. The main
idea is to use short bursts of appropriately initialized simulations to estimate the time derivative of
the quantities of interest and then use polynomial extrapolation to jump forward in time [18, 13].
When projective integration is applied to deterministic problems (governed by systems of differential
equations), one can show that it might significantly accelerate the computation of time evolution
for systems with large gaps in their eigenvalue spectrum [16]. By wrapping the same algorithm
around an inner atomistic and/or stochastic simulator, one can similarly accelerate coarse-grained
computations [14, 13, 18].

Many problems possess additional continuous symmetries [20, 25, 10, 5] which can give rise
to solutions which are traveling, exploding, collapsing or rotating in the domain of interest. In
principle, projective integration might be applied to such systems as well. However, we can improve
the efficiency of the method by taking the underlying symmetry into account. The key idea is to
perform the projective integration in a “co-evolving” frame [32].

Projective integration in a co-traveling frame is applied to the Nagumo equation [26, 28], a well-
studied system with translational invariance and traveling solutions. Projecting in a dynamically
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renormalized frame is similarly applied to systems characterized by scale invariance. The scale in-
variant system we study in this paper is one-dimensional diffusion. In both applications the existence
of continuous symmetries is exploited. We apply modified projective integration protocols that are
implemented in a dynamically co-evolving frame. We demonstrate that this modification improves
computational accuracy, allowing for large projective steps.

We also illustrate the coarse-grained version of projective integration in a co-traveling frame, for
a Stochastic Simulation Algorithm (SSA) [19] implementation of the Nagumo kinetics. The density
of reactant particles progressively forms a traveling wave front moving with a constant shape and
velocity. In a second application we study one-dimensional diffusion simulated by a large ensemble
of random walkers. The macroscopic behavior, described by the cumulative density function (CDF)
of the particle positions, features scale invariance. Projective integration is appropriately modified
to exploit this scale invariant character of the macroscopic behavior and increase the accuracy of
computations, again allowing for relatively large projective time steps.

The paper is organized as follows. In Section 2 we briefly summarize projective integration tech-
niques and discuss the general ideas of equation-free techniques [23], a computational framework
wrapped around microscopic (e.g. kinetic Monte Carlo) simulators. We then present our projective
and coarse projective integration scheme in a co-evolving frame and its application to problems
with translational invariance (Section 2.2) as well as scale invariance (Section 2.3). In Section 3 we
illustrate the efficiency of the method in a co-traveling frame for the Nagumo equation. We also
describe coarse projective integration for a kinetic Monte Carlo simulation of a reaction-diffusion
system based on Nagumo kinetics. In Section 4 we present results from the application of projective
integration to the scale invariant diffusion system, both for the macroscopic diffusion equation and
for a random-walker model in one spatial dimension. In Section 5 we propose a more general ap-
proach that can handle systems evolving in space and scale with an asymptotically invariant form,
and summarize our work in Section 6.

2 Projective and Coarse Projective Integration

Consider a system described by either a suitable macroscopic evolution equation or a stochastic,
individual-based model, and let M(t) be the macroscopic observable, for which a closed macroscopic
evolution equation exists. Depending on the problem, M(t) can be a single scalar, a vector or a
point in a suitable infinite-dimensional Banach space (e.g. a function of physical space). In our
illustrative numerical examples the macroscopic observable will be a (discretized) field of the density
of individuals.

The parameters of the forward Euler projective integration scheme are two time constants, ∆t
and T . Given the value of the macroscopic observable at time t, a suitable “inner” timestepper (e.g.
the stochastic simulator) is used to compute the system evolution until time t+∆t. Using the values
of M in the interval (t, t + ∆t) we estimate the time derivative of M and use it to estimate (project)
the value of the macroscopic observable M(t + ∆t + T ) using a Taylor expansion:

M(t + ∆t + T ) ≈ M(t + ∆t) + T
∂M

∂t

∣∣∣
(t+∆t)

. (2.1)

Hence, we compute M(t+∆t+T ) from the value of M(t) by running the inner integrator for time ∆t
only. Other, more sophisticated projective integration schemes can be readily constructed [18, 17, 24].

If the evolution equation for M(t) is explicitly available, it is straightforward to compute M(t+∆t)
from M(t) using a suitable discretization of this available evolution equation. However, if the only
information for the time evolution of the system comes from an individual-based, stochastic model,
then we have to use the idea of the coarse timestepper [23] as illustrated schematically in Fig.1. Given
a macroscopic variable M(t), we construct consistent microscopic initial conditions; we call this the
lifting procedure. Next, we evolve the system using the microscopic simulator (e.g. kinetic Monte
Carlo) for time ∆t. Now we compute M(t + αi∆t) from the microscopic data for various instances
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0 < α1 < · · · < αK = 1 (the restriction step). Having computed M at these instances, we use them
to estimate the time derivative of M and use (2.1) as in the deterministic case. The resulting method
is coarse projective integration.

   ∆
microscopic microscopic
realisation(t) realisation(t+  t)M(t) ∆M(t+  t)

 lifting restrictionmicroscopic
simulator

Fig. 1. Schematic of a coarse time stepper.

Some computational gain from projective or coarse projective integration can be expected pro-
vided we can choose ∆t ¿ T . A relatively large extrapolation step may save substantial computa-
tional time, considering the computational demands of a particle-level simulator. On the other hand,
large steps can lead to low accuracy in simulating the dynamics of the system, or even cause numer-
ical instabilities. We will discuss how one can obtain increased accuracy in projectively integrating
systems with solutions evolving along continuous symmetry groups. The key idea is to evolve the
solution (macroscopic observable) in a coordinate frame which tracks the evolution across space (for
problems with traveling solutions) and across scales (in problems with self-similar solutions).

2.1 Projective integration in a co-evolving frame

In many cases of interest, the long time macroscopic dynamics do not involve stationary solutions
but rather traveling, rotating, or scale invariant (e.g. self-similar) solutions [4]. Accuracy concerns in
the direct application of projective integration to problems with such solutions [31, 5] limit the pro-
jective time step T . Consider a traveling wave solution for a problem with translational invariance:
it is natural to study its evolution in a co-traveling frame, where the solution asymptotically appears
stationary (the traveling has been factored out). In the same sense, it is natural to study self-similar
solutions in a dynamically renormalized frame, where the scale evolution of the solution has been fac-
tored out. Recently, a template based approach has been developed for the investigation of problems
with translational invariance [32] (see also [5]) and has been extended to the study of self-similar
solutions [31, 3, 33]. If the description of the macroscopic dynamics involves scale invariant partial
differential equations (PDEs), template conditions can be applied to derive equations describing the
evolution in a dynamically renormalized framework. The steady state of the renormalized equations
correspond to self-similar solutions of the original problem and the similarity exponents can also be
conveniently computed [3]. This dynamic renormalization concept can also be applied to multiscale
system models where an explicit formulation for the macroscopic evolution equation is not available
[8, 9, 35, 22, 12].

In this paper, our goal is to study coarse projective integration for such multiscale atomistic
and/or stochastic problem models. To explain the idea of the co-evolving frame for such problems,
it is easier to start with a deterministic example. We consider the PDE written in the following form

∂M

∂t
= Lx (M) . (2.2)

Here, M ≡ M(x, t) ∈ B and Lx : B → B where B is a suitable Banach space of functions mapping
R to R and the subscript x denotes the independent space variable. We define the shift operator

SC : B → B and the rescaling operator RA,B : B → B by

SC(f) : x → f(x + C) and RA,B(f) : x → Bf
( x

A

)
(2.3)

for any A,B > 0 and C ∈ R. We distinguish two cases – projective integration in a co-traveling
frame in Section 2.2 and projective integration in a frame which scales with the solution in Section
2.3.
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The appropriateness of a co-evolving frame for projective integration is schematically illustrated
in Fig.2 for a constant shape traveling wave. Direct projective integration uses the computed wave
at different time instances to estimate its time derivative. For the instances shown in the Figure,
projection according to (2.1) produces manifestly wrong results for large T ; On the other hand,
projection with the same data in a co-evolving frame gives results with much higher accuracy for the
same time step T (i.e. for the same computational cost). This is because the time derivative is much
smaller (here practically zero) in the co-evolving frame.
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Fig. 2. (Schematic) Direct projective integration fails to produce the correct traveling shape at time t+∆t+T .
Projective integration in a co-evolving frame gives results with higher accuracy for the same time step.

2.2 Systems with translational invariance

Let the differential operator Lx in (2.2) satisfy the translational invariance property, i.e. the following
relation holds for every C ∈ R:

LxSC = SCLx. (2.4)

Let M(x, t) ∈ B be the solution of (2.2) and let C(t) be a differentiable function of time. We define

M̂(x, t) = SC(t)M(x, t), which means that M(x, t) = S
−C(t)M̂(x, t). (2.5)

Using (2.5) and (2.2), we obtain

∂M̂

∂t
= LxM̂ +

dC

dt

∂M̂

∂x
. (2.6)

If C(t) is given, then solving (2.6) provides the same information as (2.2). We have the freedom to
choose C(t); we will do it so as to naturally take into account the “traveling component” of the
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solution. To find an appropriate shift C(t), we impose an additional algebraic constraint (template
condition) [32, 5]. The purpose of this template condition is to determine a shift, C(t), such that
SC(t)M is as “independent of t as possible.” If M(x, t) were a constant shape traveling wave, then
C(t) would be the change in wave position with time and SC(t)M would be stationary. Hence we
need a way to measure how far the wave has moved so we can shift it back by that amount. One
can construct suitable templates in many ways. A seemingly natural way is to ask for the shift
that minimizes some norm of the difference between the shifted wave and some fixed waveform (the

“template”, T̃ (x) ):
∂

∂C
||SCM(x) − T̃ (x)|| = 0. (2.7)

That fixed waveform could be M(0, x), something believed to approximate the final solution, or, in
principle, anything else. An alternative is to use the centroid of the absolute value of the wave or
some other characteristic that identifies “where the wave is” and apply a shift to bring this feature
to a constant position in space. For a single-humped wave, one might consider using the location of
the wave maximum. However, if during a transient the wave develops a second maximum this would
clearly fail. The centroid of the absolute value is unique and easy to compute. If the wave is positive
(or of constant sign), such as a density measure, the centroid has the advantage of being a linear
of the wave shape that will be preserved under projective integration. We will formally write the
template condition as the algebraic equation:

~(M̂, T̃ ) = ~(SC(t)M, T̃ ) = 0, (2.8)

where ~ is a functional mapping B × B to R. This, together with (2.6) describe the dynamics of the

shifted solution M̂(x, t) as well as the dynamics of its shift, dC(t)/dt. Such template conditions arise
naturally in the computation of limit cycle solutions in autonomous dynamical systems, where they
are often also called “pinning” conditions [11, 5].

If the operator Lx is available explicitly, we can use (2.6) to estimate the time derivative of M̂ at
a given time t and (2.1) can be used to make the extrapolation in time for simple projective forward
Euler. To complete the projective algorithm in the co-evolving frame, we also must specify how the
shift, C(t), evolves during a projective time step. As in (2.1) we approximate the shift evolution by

C(t + ∆t + T ) ≈ C(t + ∆t) + T
dC

dt

∣∣∣∣∣
(t+∆t)

. (2.9)

Finally, the unshifted projected solution M(t + ∆t + T ) is computed, if required, from

M = S
−C(t+∆t+T )M̂. (2.10)

2.3 Systems with scale invariance

Consider a scale invariant problem where the differential operator L satisfies the property

LRA,B = AaBb−1RA,BL, (2.11)

i.e. there exist constants a and b such that the above relation holds for every A,B > 0. Equivalently

Lx

(
BM

( x

A

))
= BbAaLy (M(y)) where y =

x

A
(2.12)

where Lx and Ly denotes the action of the operator L on the coordinates x and y respectively. Note
that the system must also satisfy the translational invariance property (2.4); however, for simplicity,
we will assume that we do not have traveling solutions, but concentrate on self-similar ones. The
combination is considered in Section 5.
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We study solutions M(x, t) of (2.2); choosing scaling factors A (for space) and B (for the solution
amplitude) as well as a reparametrization of time τ(t) leads to the study of the rescaled solutions

M̂(y, τ) (see [3])

M(x, t) = B(τ)M̂

(
x

A(τ)
, τ(t)

)
. (2.13)

Equation (2.2) can be re-written in such a dynamically renormalized form as follows [31, 3]

(
1

B

dB

dτ
M̂ − 1

A

dA

dτ
y
∂M̂

∂y
+

∂M̂

∂τ

)
dτ

dt
= AaBb−1Ly

(
M̂(y)

)
. (2.14)

Motivated by the search for self-similar solutions we select the time reparametrization τ(t) as

dτ

dt
= AaBb−1 (2.15)

which leads to
∂M̂

∂τ
= Ly

(
M̂(y)

)
− 1

B

dB

dτ
M̂ +

1

A

dA

dτ
y
∂M̂

∂y
. (2.16)

For self-similar solutions 1
A

dA
dτ as well as 1

B
dB
dτ are constants whose particular values depend on M̂ .

In our renormalization algorithm M̂ is selected by our choice of template condition(s).
The main idea of projective integration in a co-evolving frame is to factor out the scale evolution,

so as to obtain a (rescaled) solution that evolves more slowly. As in the traveling case, we exploit the
template-based approach in order to compute solutions which are “as scale invariant as possible”. A
schematic description of the projective integration algorithm to scale invariant problems, is shown
in Fig.3.

To determine the evolution of the scale parameters A and B we need to apply template conditions
that control the spatial extent of the solution (A) as well as its amplitude (B). We could, for example,
minimize the distance between the rescaled current solution and a template function to determine
both A and B. Alternatively we could determine the amplitude by maintaining the constancy of
some norm of the solution - the L1-norm for a positive function would simply maintain the total
mass - while for the spatial extent we could keep a moment of a positive measure of the solution,
such as

∫
∞

−∞
|M̂(x, t)|x2dx, constant (assuming that this integral is well defined). In general, we need

two independent conditions to determine the two scale parameters; these will take the form of two
algebraic equations which are used along with (2.16) [3, 31, 8] to evolve the dynamically renormalized
problem. These two algebraic equations take the form

~A(M̂(y), T̃1) = 0 ⇐⇒ ~A

(
1

B
M(Ay), T̃1

)
= 0 (2.17)

~B(M̂(y), T̃2) = 0 ⇐⇒ ~B

(
1

B
M(Ay), T̃2

)
= 0 (2.18)

where T̃1, T̃2 are template functions. While there is considerable freedom in the choice of these
algebraic conditions, it is important that they yield a unique and computationally simple solution
for the scaling factors A and B.

We can apply projective integration to the rescaled solution M̂ in the original time frame t, or in
the rescaled time frame τ chosen above (or, for that matter, in any other convenient time variable).
Using τ , projective forward Euler is:

M̂(τproject) = M̂(τ2) + (τproject − τ2)
∂M̂

∂τ

∣∣∣∣∣
τ2

≈ M̂(τ2) + (τproject − τ2)
M̂(τ2) − M̂(τ1)

τ2 − τ1
(2.19)
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M(t) M(t+ t)

Reporting solutions

template 

conditions

M( 1 ), A( 1 ), B( 1 ) M( 2 ), A( 2 ), B( 2 )

Eq.(2.27)

2 - 1

given project

Eq.(2.19) Eq.(2.29) Eq.(2.30)

M( project ) A( project ) B( project )

Fig. 3. Schematic description of template based time projection for scale invariant problems.

where the rescaled times τ1, τ2 and τproject correspond to times t, t+∆t and t+∆t+T respectively.
In order to approximate numerically the right hand side of (2.19) we must determine the relation
between time t and the rescaled time τ .

We will assume that during the projection step the parameters

ξA =
1

A

dA

dτ
, ξB =

1

B

dB

dτ
(2.20)

remain constant (this is true for self-similar solutions, and is analogous to assuming that the velocity
is constant during a projection step for traveling problems). The evolution of the scale factors A,B
for a self-similar problem is of the form [3]:

A(t) ∼ |t − t∗|γ , B(t) ∼ |t − t∗|δ (2.21)

where t∗ is an appropriate (positive or negative) blow-up time, and γ, δ are the similarity exponents.
A typical example is the 1D Barenblatt solution, the self-similar solution to the porous medium
equation ut = (u2)xx [2, 3]. In this case, the similarity exponents are γ = 1/3 and δ = −1/3. If we
consider the case, where the blow-up time t∗ = 0 (the initial datum is a Dirac mass at the origin),
then the scale factor A can evolve as depicted in Fig.4(a). In Fig.4(b), one can see the linear evolution
of log A with respect to the rescaled time τ . It can be shown [3] that the relation between rescaled
time τ and time t has the form τ ∼ log t; log(B) behaves similarly. We thus expect better accuracy
when the projective scheme is based on exponential growth of the scale factors A and B.

During the projective step the evolution of A and B is described by:

A(τ) = A(τ1) exp(ξA(τ − τ1)) (2.22)
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Fig. 4. (a) Evolution of scale factor A as a function of time t for the self-similar solution of 1D porous
medium equation. The similarity exponent γ (see text for details) is equal to γ = 1/3. The blow-up time is
t∗ = 0. (b) Linear evolution of log A with respect to rescaled time τ (τ ∼ log t).

B(τ) = B(τ1) exp(ξB(τ − τ1)). (2.23)

The values A(t) ≡ A(τ1), B(t) ≡ B(τ1), A(t + ∆t) ≡ A(τ2), B(t + ∆t) ≡ B(τ2) obtained through the
application of the template conditions are used in the relation

ξA(τ2 − τ1) = log
A(τ2)

A(τ1)
= log

A(t + ∆t)

A(t)
= A∗ (2.24)

ξB(τ2 − τ1) = log
B(τ2)

B(τ1)
= log

B(t + ∆t)

B(t)
= B∗. (2.25)

We can now derive an expression between the rescaled time step τ2−τ1 and the time step ∆t. Namely
from (2.15) and (2.22) – (2.23), we get

A(τ1)
−aB(τ1)

1−b

−aξA + (1 − b)ξB

{
exp

[
− aξA(τ2 − τ1) + (1 − b)ξB(τ2 − τ1)

]
− 1

}
= ∆t. (2.26)

It is straightforward to evaluate the parameters ξA and ξB from (2.24) – (2.25) to obtain

A(τ1)
−aB(τ1)

1−b

−aA∗ + (1 − b)B∗

{
exp

[
− aA∗ + (1 − b)B∗

]
− 1

}
(τ2 − τ1) = ∆t. (2.27)

Then we compute the rescaled projection time τproject from

A(τ1)
−aB(τ1)

1−b

−aξA + (1 − b)ξB

{
exp

[
(−aξA + (1 − b)ξB)(τproject − τ1)

]
− 1

}
= T + ∆t. (2.28)

Finally, we can also obtain the projections of the scale factors A,B from (2.22),(2.23):

Aproject = A(τproject) = A(τ1) exp
[
ξA(τproject − τ1)

]
(2.29)

Bproject = B(τproject) = B(τ1) exp
[
ξB(τproject − τ1)

]
(2.30)

and, if desirable, recover the projection of full solution M(t + ∆t + T ) from the rescaling relation:

M(t + ∆t + T ) = BprojectM̂

(
x

Aproject
, τproject

)
. (2.31)
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3 Systems with translational invariance - A reaction-diffusion problem

In this section we demonstrate the efficiency of the proposed projective integration scheme in a co-
evolving frame for a reaction-diffusion system with translational invariance. Our stochastic model is
motivated by the Nagumo equation [26, 28, 5],

∂u

∂t
= D

∂2u

∂x2
+ u(1 − u)(u − α) (3.1)

where u denotes the reactant’s concentration, α is a kinetic parameter and D is the diffusion coeffi-
cient. We use D = 1 in what follows. We consider a large (effectively infinite) domain with zero flux
(Neummann) boundary conditions. The Nagumo equation is a a well known example of a parabolic
system that exhibits traveling waves and has an explicit wave solution u(x, t) = û(x − c) given by:

û(x) =

[
1 + exp

(
− x√

2

)]
−1

,
dc

dt
= −

√
2

(
1

2
− α

)
. (3.2)

Motivated by the Nagumo kinetics we construct a particle-based simulator, where a set of chemical
reaction steps as well as diffusion steps are incorporated. We consider the following set of reactions:

2N + H
k1−→←−

k
−1

3N (3.3)

N
k2−→ ∅. (3.4)

The reaction rate constant for the production of reactant N is k1 = 1+α, while the consumption
rate constants are respectively k−1 = 1 and k2 = α. The concentration of reactant H is assumed to
remain essentially constant and equal to 1 (H = 1).

A standard way to simulate a spatially homogeneous chemical system is the Gillespie SSA [19].
At each time step of the algorithm a pair of random numbers is generated in order to answer two
essential questions: when will the next event – chemical reaction – occur and which reaction will
it be? We incorporate in our system the effect of spatial diffusion too; N diffuses with a diffusion
coefficient, D.

The generalisation of Gillespie ideas to spatially distributed systems can be found in e.g. [34, 21].
Here, diffusion is treated as another set of “reaction steps” in the system. The domain of interest is
discretized into J lattice sites with constant distance h between them. We denote by Ni the number of
respective molecules at lattice site i. This means that we describe the state of the stochastic reaction-
diffusion system by a J-dimensional vector N =

[
N1, N2 . . . , NJ

]
, and the following reactions at each

time step are considered

2Ni + H
k1−→←−

k
−1

3Ni

Ni
k2−→ ∅





i = 1, . . . , J, (3.5)

Ni
d−→ Ni+1, i = 1, . . . , J − 1, (3.6)

Ni
d−→ Ni−1, i = 2, . . . , J. (3.7)

The set of reactions (3.5) implies that the reaction mechanism (3.3) – (3.4) is implemented at each
lattice site of the domain. Moreover, diffusion is introduced as a set of new reactions (3.6) – (3.7),
whose transition rates are denoted by d. The transition rates for d are connected to the macroscopic
diffusion coefficient, D, which at a certain limit (h ¿ 1), is given by the formula d = D/h2. The
augmented set of reactions (3.5) – (3.7), together with suitable boundary conditions, can thus be
simulated using Gillespie SSA.

We will start by projectively integrating the Nagumo partial differential equation, and then we
will illustrate the coarse variant of the method for the particle-based implementation of the scheme
(Gillespie algorithm).
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3.1 Nagumo Equation - PDE description

We first consider the deterministic description (PDE) of the Nagumo problem and illustrate the
accuracy improvement to the projective method from operating in a co-evolving frame. In our nu-
merical computations α = 0.01, so that velocity of the traveling wave is dc/dt ≈ −0.693 according to
(3.2). The (long) one-dimensional domain [−30, 30] is discretized into 601 equidistant nodes (i.e., the
distance between two successive nodes is δx = 0.1). The spatial partial derivatives are approximated
with central finite differences and the applied boundary conditions are of Neumnann type. The initial
condition is:

u(x, 0) =





0 for −30 < x ≤ 0,
x/10 for 0 < x ≤ 10,

1 for 10 < x ≤ 30.
(3.8)

The time step of the inner integrator (here a simple forward Euler) is δt = 10−4 to satisfy the
stability criterion 2δt < δx2.

A typical projective integration step requires the solutions u1, u2 at two distinct reporting times
t1, t2. To obtain the solution at projection time tproject, we simply apply the Taylor expansion (2.1).
We choose two reporting times t1 = 0.1 and t2 = 0.2 which correspond to 2 × 103 steps of the
inner integrator. A projection time tproject = 0.5 thus saves 3 × 103 inner integration steps. If we
use a projective method which ignores translational symmetry, the results are manifestly inaccurate.
Fig.5(a) compares the results of projective integration to those of full direct simulation; taking
translational invariance into account (see Fig.5(b)) clearly shows the improved accuracy.

−15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

x

direct simulation
projective scheme

u

t=15

−15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

x

direct simulation
modified projective

u

t=15

(a) (b)

Fig. 5. Nagumo example: Solution obtained from direct simulation and (a) non co-traveling, (b) co-traveling
projective integration at time t = 15 (see text).

The template condition used to obtain these results was:

∫ 30+c

−30+c

û(y)dy ≡
∫ 30

−30

u(x + c, t)dx =

∫ 30

−30

u(x, 0)dx, (3.9)

implying that the integral of the shifted solution remains constant and equal to the integral of the
initial condition in the domain of interest. Application of (3.9) at each reporting time t1, t2 produces
the “shifted” solutions û1, û2 and the corresponding shifts c1, c2. The projection of û is obtained
from

û(tproject) = û2 + (tproject − t2)
∂û

∂t

∣∣∣∣∣
t2

≈ û2 + (tproject − t2)
û2 − û1

t2 − t1
(3.10)
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and the projection of the shift c from

c(tproject) = c2 + (tproject − t2)
dc

dt

∣∣∣∣∣
t2

≈ c2 + (tproject − t2)
c2 − c1

t2 − t1
. (3.11)

Finally, the full projected solution, reconstructed in physical space x is recovered, if desired, applying
the inverse shift operator:

u(x, tproject) = û(x − c(tproject), tproject). (3.12)

The benefit of projecting in a co-traveling frame is more clearly depicted in Fig.6, where we plot
the error evolution (L2 norm of the difference between the solution obtained from direct simulation,
udirect and the solution computed from projective integration (co-traveling or not), uPI at the same
time, t), i.e.:

e(t) =

(∫ +30

−30

(udirect(x, t) − uPI(x, t))2dx

)1/2

. (3.13)

The error e(t) resulting from the non co-traveling projective method increases with time, while the
results of the application of the modified projective integration scheme appear highly accurate. The
increased accuracy of the modified method is due to the slow evolution (compared to the faster
evolution of the unshifted solution) (see Fig.7).

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

time t

e

projective

modified projective

Fig. 6. Error evolution for the non co-traveling and for the modified co-traveling projective integration in
Fig.5.

For the co-traveling computations the solution after some time appears stationary (Fig.8(a)); this
is (an approximation of) the stable Nagumo traveling wave. Its (constant) speed (Fig.8(b)) can be
approximated by

dc

dt
≈ c2 − c1

t2 − t1
. (3.14)

3.2 Coarse projective integration in a co-traveling frame - Kinetic Monte Carlo

simulation of a reaction-diffusion system

We now apply the same methodology to traveling problems for which the model simulations are
conducted at a microscopic (stochastic, particle) level.
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(a) (b)

Fig. 7. Time derivative of the computed Nagumo solution (a) û and (b) u up to t = 15. The relatively
high value of ut is the primary cause for low accuracy of the obtained results when projective integration is
applied in a stationary frame.

(a) (b)

Fig. 8. (a) The shifted solution û evolves towards a steady shape, the traveling wave of the Nagumo equation.
(b) The velocity converges to a constant value, dc/dt ≈ −0.69, which agrees with the theoretical value of
−0.693.

In our illustrative example the particle-based simulation is the Gillespie SSA presented in Section
3 applied to the same kinetic scheme. The one-dimensional domain of interest [−30, 30] is discretized
with J = 601 lattice sites. The distance, h, between two successive lattice sites is equal to, h =
60/600 = 0.1. The zero flux boundary conditions are incorporated applying a zero reaction rate for
the “reactions” (3.6) and (3.7) at sites i = J and i = 1 respectively, i.e. we do not allow the particles
at i = J to diffuse to the right and particles at i = 1 to diffuse to the left. At the deterministic limit
the reaction rate constants are k1 = 1 + α = 1.01, k−1 = 1 and k2 = α = 0.01. The macroscopic
diffusion coefficient, D = 1, corresponds to a diffusion rate constant d = 1/h2. In our computations,
we assume that the number of particles corresponding to dimensionless density, u = 1, is N0 = 1000.
The reaction parameters for the Gillespie code have been chosen consistently. The number of particles
at site i is denoted by Ni, i = 1, . . . , 601. The initial condition is:

Ni =





0 for 1 ≤ i ≤ 201,
100i for 202 ≤ i ≤ 401,
1000 for 402 ≤ i ≤ 601.

(3.15)
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The results obtained from the kinetic Monte Carlo simulation are illustrated in Fig.9, where one
can clearly see the formation of a (stochastic) traveling interface sweeping the one-dimensional do-
main. The stochastic simulation described above can be computationally intensive, especially if one
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Fig. 9. Gillespie-based time evolution of a reaction-diffusion system motivated by Nagumo kinetics

increases the number of particles. Such computations can be accelerated through a coarse projective
integration scheme; translational invariance at the coarse (concentration field) level should then be
taken under consideration for more accurate results.

We now describe the modified coarse projective integration scheme applied to the Nagumo
kinetics-motivated, kinetic Monte Carlo simulator. The SSA is performed on J = 601 lattice sites.
In order to obtain a less noisy distribution we estimate a smoothened distribution in n = 101 nodes,
using the local averaging operator

M1 =
1

4

k=4∑

k=1

Nk, Mi =
1

7

k=6i−3∑

k=6i−9

Nk, i = 2, · · · , 100, M101 =
1

4

k=601∑

k=598

Nk. (3.16)

We would like to approximate this distribution in Fourier form; due to the boundary conditions,
we consider the difference distribution f (in effect, the spatial derivative) defined as:

fj =

{
Mj − 0 for j = 1,

Mj − Mj−1 for j = 2, .., n
(3.17)

and its Fourier approximation [27], i.e.:

f(x) ≈ a0

2
+

k=K∑

k=1

(
ak cos

[
k

2πx

L

]
+ bk sin

[
k

2πx

L

])
(3.18)

where L is the domain length (L = 60). The coarse variables in our computations are the first K
Fourier coefficients of f . In the projective integration context we compute these Fourier coefficients at
two reporting times t1, t2, approximate their time derivatives at t2, and extrapolate to the projection
time tproject. Such a computation, does not take into account the translationally invariant character
of the problem, leading to low accuracy results for relatively large steps. Application of the coarse
projective scheme in a co-traveling frame can capture the dynamics of the same system with enhanced
accuracy, even for relatively large projecting horizons, T = tproject − t2.
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We denote the shifted version of f , with f̂ , i.e.:

f(x) = f̂(x − c). (3.19)

The Fourier coefficients âi, b̂i of f̂ are then given by:

âi = ai cos

[
i
2πc

L

]
+ bi sin

[
i
2πc

L

]
, b̂i = −ai sin

[
i
2πc

L

]
+ bi cos

[
i
2πc

L

]
. (3.20)

We apply the template condition

d

dc

∫ 30

−30

f̂(x)T̃ (x) dx = 0 ⇐⇒ d

dc

∫ 30

−30

f(x + c)T̃ (x) dx = 0 (3.21)

seeking maximum overlap between the shifted solution f̂ and a template function T̃ . Choosing the
trigonometric template function T̃ (x) = 1 − cos[2πx/L] reduces the template condition to:

dâ1

dc
= 0 =⇒ 2πc

L
= arctan

[
b1

a1

]
. (3.22)

The computation of the shifts c1, c2 at reporting times t1, t2, enables the determination of the
“shifted” Fourier coefficients âi, b̂i and their projection at time tproject:

âi(tproject) = âi(t2) + (tproject − t2)
âi(t2) − âi(t1)

t2 − t1
for i = 0, ...,K (3.23)

b̂i(tproject) = b̂i(t2) + (tproject − t2)
b̂i(t2) − b̂i(t1)

t2 − t1
for i = 1, ...,K. (3.24)

The projected f is then recovered by applying (3.18). The distribution M of particles at the n nodes
is then computed and the lifting procedure concludes by interpolating M to the J lattice sites of
the kinetic MonteCarlo time simulator through MATLAB’s intrinsic function interpft. When this
interpolation does not give an integer number of particles we round off. This gives us the projected
particle distribution in the co-evolving frame. The spatial position of this distribution is determined
by the projection of the shift, cproject, according to

cproject = c2 + (tproject − t2)
c2 − c1

t2 − t1
. (3.25)

Note that the projected solution does not necessarily exactly satisfy the template condition; we
circumvent this issue by calculating the b̂1(tproject) from (3.22) with c = cproject and a1 = a1(tproject).

The Fourier coefficients of the full, un-shifted solution, f are

ai(tproject) = âi(tproject) cos

[
i
2πcproject

L

]
− b̂i(tproject) sin

[
i
2πcproject

L

]
(3.26)

bi(tproject) = âi(tproject) sin

[
i
2πcproject

L

]
+ b̂i(tproject) cos

[
i
2πcproject

L

]
, (3.27)

from which the projected particle distribution at the j lattice sites can be obtained.
Results of this template-based projective scheme are presented in Fig.10, accurately capturing the

(coarse) dynamics of the kinetic Monte Carlo Nagumo simulator, even for relatively large projection
steps. The reporting times at each projective step were taken so that t2 − t1 = 0.25, the projection
horizon was tproject − t2 = 0.5 and the number of Fourier coefficients was K = 15. The coarse
variables of the problem (Fourier coefficients) become essentially constant in the co-traveling frame
(see Fig.11).
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Fig. 10. Nagumo problem. Particle distribution obtained from direct simulation and coarse projective inte-
gration (a) after t = 3 and (b) after t = 15.
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Fig. 11. Nagumo problem. Evolution of coarse variables ((a) 3rd Fourier coefficient a3 and (b) 4th Fourier
coefficient a4) in the co-traveling frame (stars) and in a constant frame (dots).

4 Projective and Coarse projective integration in a dynamically rescaled

frame: Diffusion

In this section we study a projective scheme modified for scale invariant systems, in particular systems
that possess self-similar solutions. Our illustrative example is simple one-dimensional diffusion, both
as a deterministic PDE and via a Monte Carlo-based simulation.

4.1 One-dimensional diffusion - PDE example

We study the simple mass diffusion equation

ut = uxx. (4.1)

It possesses well-known self-similar solutions; we will exploit this property, in order to perform
relatively large projective steps accurately. One can easily verify the scale invariant character of
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(4.1)

Lx

(
Bu

( x

A

))
= BA−2Ly (u(y)) where y =

x

A
. (4.2)

For our numerical computations we discretize the one-dimensional domain x ∈ [−10, 10] in 1001
equidistant nodes (i.e., dx = 0.02). The dynamically renormalized diffusion equation (along the lines
of (2.16)) is

∂û

∂τ
= Ly (û(y)) − 1

B

dB

dτ
û +

1

A

dA

dτ
y
∂û

∂y
. (4.3)

The spatial derivatives are approximated with central finite differences and we consider zero flux
boundary conditions. The selected initial condition is

u(x, 0) =

{
0 for |x| > 1,
1 for |x| ≤ 1.

(4.4)

At each step of the projective integration scheme, we choose two reporting times t1, t2 and the
solutions there, u1, u2 respectively.

A co-evolving frame formulation requires rescaling of the computed solutions using

u(x, t) = B(τ)û

(
x

A(τ)
, τ(t)

)
(4.5)

as discussed in Section 2.3. We can evaluate both the rescaled solution, û, and the scale factors
A,B at each reporting time step by solving two template conditions. In this illustrative example the
template conditions chosen are

∫ +∞

−∞

û(y)T̃1(y)dy = 0 ⇐⇒
∫ +∞

−∞

1

B
u(Ay)T̃1(y)dy = 0 (4.6)

for the template function

T̃1(y) =

{
−1 for |y| > 1/2,
1 for |y| ≤ 1/2

(4.7)

and ∫ +∞

−∞

û(y)T̃2(y)dy = µ ⇐⇒
∫ +∞

−∞

1

B
u(Ay)T̃2(y)dy = µ, (4.8)

where µ is a constant and the second template function is chosen as T̃2(y) = 1. The template
condition (4.8) keeps the mass of the rescaled system constant, equal to the initial mass. Below we
present results in a co-evolving frame, for t2 − t1 = 0.1 and a projection step of tproject − t2 = 0.2
(thus economizing 10000 time steps of the inner Euler integrator). The evolution of û is depicted in
Fig.12; a stationary profile is approached after some “rescaled” time, τ ; this profile is a member of

the family of self-similar solutions of the diffusion equation. The scale parameters ξA = d log(A)
dτ and

ξB = d log(B)
dτ shown in the same figure also approach stationarity.

Comparison of the errors

e(t) =

∫ 10

−10

(udirect(x, t) − uPI(x, t))
2
dx (4.9)

for projective integration in a co-evolving frame with those for unmodified projective integration
(shown in Fig.13) illustrates the advantage of projecting in a dynamically renormalized frame; udirect

is the solution obtained from direct simulation of (4.1). The errors are computed for the reconstructed
solutions uPI .

Once more, the extra accuracy can be attributed to the slower evolution in the dynamically
renormalized frame (see Fig.14).
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Fig. 12. Projective integration in a co-evolving (co-collapsing) frame applied to the one-dimensional diffusion
PDE example. (a) Instances of the evolution of rescaled solution û obtained at different -rescaled- projection
times τproject. The rescaled solution û converges to a steady state profile, corresponding to a member of
the self-similar family solutions. The initial condition is also depicted in the figure. (b) Scale parameter

ξA = d log(A)
dτ

and ξB = d log(B)
dτ

values computed at each projective step according to the procedure described
in Section 2.3.
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Fig. 13. Comparison of error evolution for the simulations in Fig.12 when the projective integration and the
modified projective integration is applied. The modified projective integration algorithm application manages
to produce accurate results even at the early stages, where the solution still evolves towards its self-similar
shape.

4.2 Random walker simulation of one-dimensional diffusion - Coarse Projective

Integration

In this section we present “renormalized coarse projective integration” applied to a Monte Carlo
algorithm simulating diffusion in a population of 106 random walkers in one space dimension.

The macroscopic observable in this case is the cumulative distribution function (CDF) of the
particle positions denoted by f . The domain of interest [−10, 10] is discretized into 1001 equally
spaced nodes (dx = 0.02). The CDF is then determined as a function of the discretized spatial
domain {x1, ..., x1001}. Each particle, i, is described by its position Xi. The Monte Carlo time step
is δt = 0.0001 and during each time step each particle will randomly move left or right with equal
probability by an increment δX =

√
2δt.
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(a) (b)

Fig. 14. One-dimensional diffusion equation. (a)“Time” derivative of rescaled solution û at τ2-reporting
times, using the (4.6) and (4.8) template conditions. (b) Time derivative of u as obtained from the application
of the original projective integration scheme at t2-reporting times. The relatively high values of time derivative
ut is the main reason for the failure of the method to capture the correct dynamics of (4.1).

Denoting CDF at mesh point xi as fi, the probability density function of particles is evaluated
by

Ni−1/2 =
fi − fi−1

xi − xi−1
(4.10)

where Ni−1/2 is the macroscopic density of particles at the midpoint [xi−1 + xi]/2. Lifting – i.e.
construction of a microscopic state consistent with density (4.10) – is done as follows. The particles
are placed in space so that their density piecewise linearly interpolates the midpoint values (see
Fig.15).

Fig. 15. The piecewise linear distribution of density N corresponds to a microscopic realization of particle
positions. The distribution N is evaluated as the spatial derivative of the CDF.

We assume that an evolution equation for the CDF of particle positions f(x) exists:

∂f

∂t
= Lx(f). (4.11)

Before applying the coarse projective scheme in a co-evolving framework we should test the scale
invariance of the unknown differential operator Lx and extract its scaling exponents. In our compu-
tations there is no amplitude scaling since f is a CDF. The operator should satisfy
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Lx

(
f

( x

A

))
= AaLy (f(y)) where y =

x

A
(4.12)

for any A. Despite the fact that the explicit formulation of Lx is unknown we can estimate its
action on test distribution f(x) through the computation of ∂f

∂t . We perform short computational
experiments to estimate the action of operator Lx as follows:

(1) We select a test function ϕ0 and a positive constant A.

(2) We initialize the kinetic Monte Carlo simulator so that the CDF of particles is equal to
ϕ0 (using the lifting procedure in Fig.15). We run the kinetic Monte Carlo simulator for a
relatively short time interval (in macroscopic terms) δT . We obtain the new CDF ϕ1 and
estimate the time derivative of ϕ from the expression

∂ϕ

∂t
≈ ϕ1 − ϕ0

δT
. (4.13)

(3) We initialize the kinetic Monte Carlo simulator so that the CDF of particles is equal to
ϕ̂0(x) = ϕ0(x/A) (using the lifting procedure in Fig.15). We run the kinetic Monte Carlo
simulator for a short time interval δT . We obtain the new CDF ϕ̂1 and estimate the time
derivative of ϕ̂ similarly as in (4.13).

(4) We estimate the value of exponent a in (4.12) by minimizing the residual

R(a) =

∣∣∣∣
∣∣∣∣
∂ϕ̂

∂t

∣∣∣
Ax

− Aa ∂ϕ

∂t

∣∣∣
x

∣∣∣∣
∣∣∣∣
2

, (4.14)

where || · || denotes the standard Euclidean norm.

In this case we use:

ϕ0,i =
1

B(γ, δ)

∫ xi/20+1/2

0

ζγ−1(1 − ζ)δ−1dζ, (4.15)

where ϕ0,i is the value of test function ϕ0 at mesh point xi, B(γ, δ) is the Beta function with
parameters γ = 8 and δ = 10, δT = 0.01 and A = 1.15. The results are shown in Fig.16. The
procedure described above can be performed for different values of A and different test functions
ϕ0. The value of the exponent a minimizing the residual (4.14) was in all tested cases close to −2.

It confirms the operator’s Lx scale invariance property (∂ϕ̂
∂t

∣∣∣
Ax

almost coincides with Aa ∂ϕ
∂t

∣∣∣
x
). The

value of the scaling exponent a = −2 is used in the proposed co-evolving projective integration
scheme.

In our modified coarse projective scheme we evaluate the macroscopic observables at k = 2 distinct
reporting times t1, t2 with corresponding CDFs f1, f2. At each step of the projective integration
scheme the time step is t2 − t1 = 0.05; the projection step is tproject − t2 = 0.1. The initial CDF f0

at mesh point xi is given by

f0(xi) ≡ f0,i =





0 for 1 ≤ i ≤ 451,
[i − 451]/100 for 452 ≤ i ≤ 551,

1 for 552 ≤ i ≤ 1001.
(4.16)

Both the scale factor A and the rescaled solution f̂ , where

f̂(x) = f(Ax), (4.17)

are obtained from the application of the template condition:

f̂(ζ2) − f̂(ζ1) = ν =⇒ f(Aζ2) − f(Aζ1) = ν, (4.18)
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Fig. 16. (a) Time derivative of test function ϕ0 given by (4.15) (solid line) and the rescaled test function
ϕ̂0(x) = ϕ0(

x
A

) (dashed line); parameters of algorithm (1) – (4) are given in the text. (b) Testing the scale
invariance property of operator Lx (see (4.12)) scale invariance property. The value of scale exponent is
a = −1.97 ≈ −2.

where ζ1, ζ2 are given real numbers and ν is constant. This template condition, enforces a con-
stant number of particles in interval [ζ1, ζ2]. Let us note that the CDF is defined only at mesh
points {x1, ..., x1001}. Whenever template condition (4.18) requires values of f outside mesh points
{x1, ..., x1001}, we use linear interpolation. For our computations we chose ζ1 = −0.25 and ζ2 = 0.5,
while the constant ν is evaluated from the initial condition f0, i.e. f0(ζ2) − f0(ζ1) = ν.

As in the PDE diffusion example, we choose to evolve the rescaled CDF in rescaled space y and
time τ . The temporal Taylor expansion is performed in terms of τ ; we therefore need to evaluate the
τ1, τ2 and τproject values corresponding to t1, t2, tproject. The procedure was reported in Section 2.3;
note that here the B scaling is omitted since f is a CDF.

The numerical results are shown in Figures 17 and 18. In Fig.17 we present results of the first
five coarse projective steps applied to the rescaled CDF f̂ . The circle-marked lines correspond to
reporting τ1-times, the square-marked lines to reporting τ2-times and the triangle-marked lines to
projective τproject-times. In Fig.18 we plot the evolution of scale factor A both in terms of time t
and of rescaled time τ , as computed from the modified projective integration using the template
condition (4.18).

5 A general approach for problems with asymptotic or approximate scale

and translational invariance

In most real-world problems the issue of translation and rescaling must be handled simultaneously.
Even if the problem is self-similar, our choice of templates for normalizing may lead to an apparent
translation with time. For example, the viscous Burgers equation

ut = uux + κuxx (5.1)

has a self-similar solution
u(x, t) = t−1/2w(xt−1/2) (5.2)

where w(y) is not a symmetric function. Unfortunately if we choose the wrong origin in the y
coordinate, we will find that the evolving waveform is also traveling because we will actually be
looking at

u(x, t) = t−1/2w((x − x0)t
−1/2 + x0t

−1/2) (5.3)
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(a) (b)

Fig. 17. Random walker simulation of one-dimensional diffusion: (a) Coarse projective integration applied to
the CDF f̂ in the dynamically co-evolving frame. The lines marked with circles correspond to f̂(τ1) solutions,
the square-marked lines correspond to f̂(τ2) solutions and the lines marked with triangles correspond to f̂
obtained from projection at τproject. (b) Time derivative of f̂ evaluated at the 1st–5th projective steps of the
co-evolving projective integration algorithm.

(a) (b)

Fig. 18. Random walker simulation: Scale factor A values computed from template condition (4.18) during
the application of the modified projective integration algorithm. The circle points correspond to A-values
computed at (a) t1 – reporting times (b) τ1 – reporting times. The square points correspond to (a) t2 and
(b) τ2 = τ(t2) reporting times. The A values obtained at projection times tproject ((b) τproject) are marked
with triangles.

where the x0t
−1/2 looks like a translation with time.

Many problems are only asymptotically self-similar. For example the solution of

ut = (1 + u2)uxx (5.4)

asymptotically approaches the self-similar solution of the heat equation because as u decays the u2

term becomes asymptotically small. Other problems may be approximately self-similar. For example,
they may approximately satisfy a scaling relationship such as

Lx

(
Bf

( x

A

))
= BbAaLy (f (y)) [1 + O(ε(t))] (5.5)

where ε(t) is small and y = x/A.
Therefore, we want to look for time-dependent translations and rescalings that yield a slowly

varying waveform that can be integrated in time more accurately because of its smaller time deriva-
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tives. However, we cannot use the mechanism described in the previous sections, where we examined
“purely” scale invariant systems, because we do not know a and b and they may not be defined away
from the asymptotic limit.

As the integration proceeds, it generates successive values of the solution, u(x, t). Periodically we
need to apply three transformations to u(x, t) to get

û(y, t) =
1

B(t)
u(C(t) + A(t)y, t) (5.6)

with y = [x−C(t)]/A(t) to try to get a û(y, t) which is as independent of time t as possible. Motivated
by the approach for co-evolving systems that are exactly self-similar, we will also consider a trans-
formation of t to τ(t) in the expectation that A(τ) and B(τ) will evolve approximately exponentially
in τ so that linear projection of their logarithms will provide an accurate approximation.

Template conditions are needed to determine the three scalings in (5.6). If we had a moderately
good approximation to the final waveform, it would be tempting to ask that the scalings be chosen to
minimize the difference between û(y, t) and that approximate waveform. One might even choose the
scalings so as to minimize some norm of the time derivative. However, such conditions are nonlinear,
and nonlinear conditions cause a problem in the projective step. A projective step takes the form

ûproject = û2 +
tproject − t2

t2 − t1
[û2 − û1]. (5.7)

In other words, ûproject is a linear combination of û2 and û1. If û2 and û1 satisfy a linear template
condition, ûproject will also satisfy that condition automatically. That is not necessarily true for a
non-linear condition; after a projection step one would have to re-apply the condition.

Therefore, we choose linear conditions to determine the scalings. If the solution is non-negative -
as it will be for many physically based problems in which the variables we will use in the templates
are quantities such as density (represented at the microscopic level by numbers of particles) there
is a straightforward recipe. A shift can be determined by demanding that the center of gravity be
shifted to a fixed position, typically the origin. This is a trivial calculation. For example, for uniform
particles we simply average their positions. In a continuum model we ask that

0 =

∫
∞

−∞

yû(y)dy (5.8)

which means that

C =

∫
∞

−∞
xu(x)dx

∫
∞

−∞
u(x)dx

. (5.9)

The A scaling can be calculated by requiring that a certain fraction of the integral of û lies within

a specified interval, for example that
∫ 1

−1
û(y)dy = 0.5

∫
∞

−∞
û(y)dy, although it is computationally

easier to specify the second moment and require that

K =

∫
∞

−∞
y2û(y)dy

∫
∞

−∞
û(y)dy

(5.10)

which implies that

A2 =

∫
∞

−∞
x2u(x + C)dx

K
∫
∞

−∞
u(x)dx

. (5.11)

Note that the shift has been applied before the next moment is calculated. The amplitude scaling B
can be calculated by requiring that the total mass,

∫
∞

−∞

û(y)dy, (5.12)
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remain constant, say equal to µ, leading to

B =

∫
∞

−∞
u(x)dx

Aµ
. (5.13)

As the microscopic integration proceeds we calculate the values of A, B and C at selected times t0,
t1, t2, ... and the rescaled solution û(y, t0), û(y, t1), û(y, t2), · · · in the coarse variables. We can decide
whether it is appropriate to apply a projective step to the coarse solution based on the local behavior
of the coarse variables and the scaling values.

As we approach the region where the solution is close to self-similar, we need a way to compute
the transformation from t to τ so that we can use exponential projective integration in τ . We can
do this as follows. We assume a form like (5.5) in the PDE

ut = Lx(u) (5.14)

and assume a solution of the form

u(x, t) = B(τ)w

(
x

A(τ)
, τ

)
(5.15)

for some τ(t) and w(y, τ) which is slowly changing in τ . Then we get the equation

(
Bτ

B
w − Aτ

A
ywy + wτ

)
∂τ

∂t
= Bb−1AaLyw[1 + O(ε(t))]. (5.16)

We want to choose A(τ), B(τ), and τ(t) (which are completely at our choice) so that if there exists

an approximately self-similar solution, that is, a solution of

(b1w − a1ywy)
∂τ

∂t
= Bb−1AaLyw (5.17)

for some a1 and b1, w tends to it. We naturally choose τt = cBb−1Aa for some constant c and A
and B so that Aτ/A and Bτ/B are nearly constant and equal to a1 and b1 respectively. (In practice,
we will be choosing A and B to account for the observed growth in width and amplitudes of the
computed solution.)

If Aτ/A and Bτ/B are constant, then A(τ) = exp(a0 + a1τ) and B(τ) = exp(b0 + b1τ). Hence

∂t

∂τ
=

(
∂τ

∂t

)
−1

=
exp[−a(a0 + a1τ) − (b − 1)(b0 + b1τ)]

c
(5.18)

or

t = tc −
exp[−a0a − b0(b − 1)]

(a1a + b1(b − 1))c
exp[−(a1a + b1(b − 1))τ ]. (5.19)

Note that we have this exponential behavior for t(τ) regardless of the actual values of a and b. Since
the scale (and origin) of τ are arbitrary (we are picking them), we can rewrite this equation as

t = tc + β exp(τ). (5.20)

Suppose now that we perform a calculation starting at t0 and integrate to t1 and t2, computing
A(ti) and B(ti) as we proceed using template conditions. We can assume that τ0 = 0 since the origin
is arbitrary. We need to find τ1 and τ2. We have from (5.20)

(ti − t0)/β = exp(τi) − exp(τ0) (5.21)

or, using τ0 = 0
τi = log(1 + (ti − t0)/β). (5.22)
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Under the assumption that Aτ/A is constant we have

1

(τ1 − τ0)
log

(
A1

A0

)
=

1

(τ2 − τ0)
log

(
A2

A0

)
(5.23)

(and a similar relation for B). Using (5.23), (5.22) and t0 = τ0 = 0, we get

log

(
1 +

t1
β

)
log

(
A2

A0

)
= log

(
1 +

t2
β

)
log

(
A1

A0

)
. (5.24)

This can be solved for β and then we can use (5.22) to find the τi. In the projective step, a suit-
able representation of the rescaled solution, w can be projected in τ , and A and B are projected
exponentially in τ .

5.1 An asymptotically scale and translationally invariant PDE example.

Below, we present some representative results from the application of this general approach to the
equation:

ut = κ(1 + u2)uxx + uux with κ = 0.025 (5.25)

which asymptotically approaches the solution of the viscous Burgers equation, because as u decreases
the u2 term becomes asymptotically small. Both translations and rescalings have to be incorporated
for this problem as one can see from the time evolution of u in Fig.19. Three template conditions are
applied for the evaluation of the shift C, and the scale factors A, B at each reporting step, which
have the form of (5.9), (5.11) and (5.13) respectively. The constants K and µ appearing there are
computed from the initial condition, i.e.:

K =

∫
∞

−∞
x2u(x, 0)dx

∫
∞

−∞
u(x, 0)dx

(5.26)

and the initial mass:

µ =

∫
∞

−∞

u(x, 0)dx. (5.27)

The initial condition in our computations is u(x, 0) = exp(−x2). The applied boundary conditions
are of Neummann type, the one-dimensional computational domain [−10, 10] is discretized with 1001
nodes and the spatial derivatives of (5.25) are approximated with central finite differences.

The direct time integration is performed with an explicit Euler scheme, with dt = 10−5 ensuring
the stability of the integration for the given discretization. The three reporting times are chosen so
as ∆t = 0.1, while the projective step is taken to be T = 0.2. At the initial stages of the integration,
the solution is far from its asymptotically self-similar shape solution and it is trivial to show that
(5.25) is not scale invariant, at least for large enough values of u. In this case we can project linearly
in time the shift factor C the scale factors A,B and the renormalized solution û which is derived
from the rescaling equation û(y) = 1/Bu(Ay + C). When the solution approaches the self-similar
regime, then we can apply the transformation of t to τ and follow the procedure described in Sec.
5. The evolution of the factors A and B computed from direct simulations and from the 3-step,
template-based projective scheme are depicted in Fig.20. Finally, we illustrate the accuracy of this
method, presenting the solution computed from the direct simulation at time t = 9.9 and the one
derived from the projective method at the same time (see Fig.21).

6 Summary and Conclusions

In this paper we have illustrated projective and coarse projective integration in a co-evolving frame
for problems with continuous symmetries, and in particular for problems with (coarse) scale invari-
ance and (coarse) translational invariance. The system temporal evolution is observed in a traveling
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Fig. 19. Direct simulation of (5.25) with initial condition u(x, 0) = exp(−x2). The solution u(x, t) travels
both across scales and in space, forming a steep interface which moves to the left part of the one-dimensional
domain. Instances of u are presented at t = 0, 1, 3, 5, 7, 10.

and/or dynamically renormalized frame, in which transient solutions approaching traveling waves or
self-similar solutions appear slowly changing, and can be integrated more accurately because of the
smaller time derivatives. Larger extrapolation time steps can thus be applied without degrading the
accuracy of the projected solution. The simplest projective algorithm (projective forward Euler) was
illustrated; more sophisticated multistep and even implicit projective algorithms are also possible
(e.g. [18, 30, 24]). We have illustrated several representative examples of template (pinning) condi-
tions that are used to dynamically define the coevolving frame in which projective integration takes
place. Our model examples included both continuum and microscopic-based implementations. The
translationally invariant, co-traveling case was illustrated through the Nagumo reaction-diffusion
PDE [26, 28, 5] in one spatial dimension, as well as an SSA-based [19] stochastic implementation
of the Nagumo kinetics for coarse projective integration. The scale invariant case was illustrated
through simple one-dimensional diffusion: projective integration of the PDE version and coarse pro-
jective integration of a stochastic implementation involving a large ensemble of random walkers were
presented and the results compared with direct, full simulation. Finally, we described a more general
projective method designed for systems with asymptotic or even approximate invariance, and where
scale invariance and translational invariance co-exist.

The thrust of the paper was in describing and illustrating the methods, providing some evi-
dence and qualitative justification for the resulting computational savings. This constitutes only
the starting point for the numerical analysis of the algorithms, both for the deterministic and for
the stochastic cases, which is the subject of further research. It is worth reiterating that the tem-
plate based approach transforms traveling or self-similar problems into steady-state ones; traveling
wave speeds, “scale velocities” ξA, ξB and similarity exponents are simple and natural byproducts
of the approach. Accelerating the computation of coarse self-similar shapes and coarse similarity
exponents for microscopic/stochastic simulators can be useful in a variety of disciplines, ranging
from microhydrodynamics to core collapse in star clusters [35]. In the stochastic case, the accurate
and efficient estimation of time derivatives from stochastic simulations becomes a vital component
of the algorithm, and one must move beyond simple differencing and least squares estimators (like
the ones we used here) to maximum likelihood ones (see e.g. [1]). It is worth noting that -whether
in the deterministic or in the coarse-grained case- it is important to explore the relation between
modern adaptive mesh techniques used for the computation of self-similar solutions [7, 6, 29] with
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Fig. 20. Computed values of (a) shift factor C and scale factors (b) A, (c) B from the application of template
conditions (5.9), (5.11) and (5.13) respectively, to the solution u(x, t) of (5.25). The solid lines correspond to
results derived from direct simulation of (5.25). The C, A and B values, computed from the 3-step template
based projective method (see Section 5.1), are depicted by dotted lines.



Projective and Coarse Projective Integration for Problems with Continuous Symmetries 27

−6 −4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x

direct simulation
projective scheme

u

t=9.9

Fig. 21. Evolved solution u of (5.25) at time t = 9.9. The solid line represents the solution derived from
direct simulation and the dashed line corresponds to the solution computed by the 3-step template-based
projective scheme described in Section 5.1.

the template-based ones presented in [31, 5] and exploited here. The most important factor in the
success of coarse-grained projective integration (and of equation-free computation in general) is the
lifting step: the ability to construct ensembles of fine-scale realizations consistent with a given macro-
scopic description. For the problems discussed in this paper, the coarse observables in terms of which
the process was modeled allowed for a relatively easy and computationally inexpensive lifting. If
the coarse-grained model is cast in terms of different coarse-grained observables (e.g., particle pair
correlation functions) the lifting step may become much more difficult and expensive (see e.g. [36]).
Clearly, the cost of the lifting step (a very much problem-dependent feature) must be factored in
when evaluating the potential savings of coarse projective integration. We close by reiterating that
what we have presented is only a first step in the study of coarse-grained projective integration al-
gorithms for systems with (coarse) continuous symmetries; the potential benefits illustrated here for
two simple model problems argue that the algorithms both on the continuum front (e.g. projective
integration for differential-algebraic equations [15], relations to adaptive mesh algorithms) and on
the stochastic front (issues of lifting and estimation) warrant extensive further study.

Acknowledgements. This work was partially supported by the Federal Fellowship Foundation
of Greece and the NTUA through the Basic Research Program “Protagoras” (MEK, AGB), by the
Biotechnology and Biological Sciences Research Council and Linacre College, University of Oxford
(RE), by the U.S. Department of Energy, DARPA and a Guggenheim Fellowship (IGK).

References

1. Y. Aı̈t-Sahalia, Maximum-likelihood estimation of discretely-sampled diffusions: A closed-form approxi-
mation approach, Econometrica 70 (2002), 223–262.

2. D. Aronson, The porous medium equation, Nonlinear Diffusion Problems, Lecture Notes in Mathematics,
vol. 1224, Springer-Verlag, 1986.

3. D. Aronson, S. Betelu, and I. Kevrekidis, Going with the flow: a Lagrangian approach to self-similar
dynamics and its consequences, PNAS submitted, available as arxiv.org/nlin/0111055, 2001.

4. G. Barenblatt, Scaling, self-similarity and intermediate asymptotics, Cambridge University Press, 1996.



28 Kavousanakis et.al.
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