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Abstract Two multiscale algorithms for stochastic simulations of reaction-diffusion processes are analysed.
They are applicable to systems which include regions with significantly different concentrations of molecules.
In both methods, a domain of interest is divided into two subsets where continuous-time Markov chain models
and stochastic partial differential equations (SPDEs) are used, respectively. In the first algorithm, Markov
chain (compartment-based) models are coupled with reaction-diffusion SPDEs by considering a pseudo-
compartment (also called an overlap or handshaking region) in the SPDE part of the computational domain
right next to the interface. In the second algorithm, no overlap region is used. Further extensions of both
schemes are presented, including the case of an adaptively chosen boundary between different modeling
approaches.
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1 Introduction

Stochastic models of well-mixed chemical systems are traditionally formulated in terms of continuous time
Markov chains, which can be simulated using the Gillespie stochastic simulation algorithm (SSA) [42] or its
equivalent formulations [12, 41, 60]. These algorithms provide statistically exact sample paths of stochastic
chemical models described by the corresponding chemical master equation (CME). However, they can be
computationally expensive for larger chemical systems, because they explicitly simulate each occurrence
of each chemical reaction. A number of approaches have been developed in the literature to decrease the
computational intensity of SSAs. Taking into account separation of time scales, chemical reaction networks
can be simplified by model reduction before they are simulated [51–54, 58]. The idea of model reduction
can also be used to develop computational methods which efficiently estimate quantities of interest from
stochastic simulations [10, 11, 13, 26]. Another approach is to describe the molecular populations in terms of
their concentrations that change continuously (rather than treating them as discrete random variables). This
can be achieved by the chemical Langevin equation, which is a stochastic differential equation (SDE) acting
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as a bridge between discrete SSAs and deterministic reaction rate equations [43, 61, 62]. Efficient algorithms
which make use of the SDE approximations have been developed for the simulation of chemical systems
especially when they include processes occurring on different time scales [15, 44, 46, 71]. More recently, the
SDE approximations have been extensively used to develop hybrid algorithms which use boths SSAs and
SDEs for different components of the studied systems [3, 19, 38, 65]. The chemical Fokker-Planck equation
corresponding to the chemical Langevin equation can also be used to efficiently estimate quantities of interest
from stochastic models [14, 16, 27, 64].

In this paper, we consider spatially-distributed (reaction-diffusion) models which can be described in
terms of the reaction-diffusion master equation (RDME) [25]. A spatial domain is discretized into compart-
ments (which are assumed to be well-mixed) and diffusion is modelled as a jump process between neighbour-
ing compartments [24,48,56]. In the literature, the RDME approach has been adapted to model and simulate
spatially-distributed systems using uniform meshes (equivalently, subvolumes or compartments) [22, 63, 75],
nonuniform meshes [8] or complex geometries [49]. The resulting compartment-based model can be simu-
lated by the Gillespie SSA. Compartment-based reaction-diffusion approaches have been used to model sev-
eral intracellular processes, including Min oscillations in E. coli [5, 31], ribosome biogenesis [20, 21], actin
dynamics in filopodia [30, 80] and pattern formation in morphogen signaling pathways [55]. They have also
been implemented in a number of software packages including MesoRD [47], URDME [23], STEPS [78],
SmartCell [4], Lattice Microbes [68] and Smoldyn [69]. As in the case of the simulation of well-mixed sys-
tems, the Langevin approach provides an approximation of the compartment-based model which can reduce
the computational intensity of simulations. Spatial Langevin approaches [9, 40, 50] and stochastic partial
differential equations (SPDEs) [1, 2, 6, 18, 57] have been suggested to model stochastic reaction-diffusion
systems. A hybrid method has also been introduced using the Langevin approximation for diffusion coupled
with the compartment-based model for reactions [66].

In the thermodynamic limit (of large populations), compartment-based models lead to reaction-diffusion
partial differential equations (PDEs) which are written in terms of spatio-temporal concentrations of chemical
species. This property can be exploited to design multiscale (hybrid) algorithms which use the compartment-
based Markov chain model in a subset of the simulated system and apply reaction-diffusion PDEs in other
parts [32, 45, 50, 76, 79]. Other hybrid methods have also been developed in the literature including methods
which couple more detailed Brownian dynamics (molecular-based) approaches with the compartment-based
method [17, 33, 34, 59] or with reaction-diffusion PDEs [7, 36, 73].

In this paper, we analyze two multiscale algorithms which couple compartment-based models with suit-
ably discretized SPDEs. They can be used when a large number of molecules of some species are located in
parts of the computational domain. In the region with a small number of molecules, we use a compartment-
based model written as a continuous-time Markov chain. In other regions, we use SPDEs derived from the
Markov process. The goal of this multiscale methodology is to get an approximation of the spatio-temporal
statistics which we would obtain by running the underlying Markov chain model in the entire computational
domain. The paper is organized as follows. In Section 2, we present the derivation of the SPDE description
from the compartment-based model. In Section 3, two multiscale schemes are derived. An illustrative ex-
ample with a static boundary between the SPDE and Markov chain subdomains is studied in Section 4. The
algorithm is extended to a time-dependent interface in Section 5. In Section 6, we discuss an example with
multiple species.

2 From continuous-time Markov jump processes to stochastic partial differential equations

We consider a system of N chemically reacting species S1, S2, . . . , SN , which are diffusing (with diffu-
sion constants Di, i = 1,2, . . . ,N) in the bounded domain Ω ⊂ R3. We use a compartment-based stochastic
reaction-diffusion model [25], i.e. we divide the domain Ω into K compartments Ck, k = 1,2, . . . ,K, and
model the diffusion as a jump process between neighbouring compartments. In order to simplify the analy-
sis, we consider that Ω is an elongated pseudo-one-dimensional domain Ω = [0,Kh]× [0,hy]× [0,hz], where
h,hy,hz > 0, as shown in Figure 1(a). Compartments are rectangular cuboids with the volume hhyhz where
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Fig. 1 (a) A schematic illustration of the elongated domain Ω for K = 9. (b) A schematic illustration of the multiscale setup.

Ck = [(k−1)h,kh]× [0,hy]× [0,hz] for k = 1,2, . . . ,K. Let Zk
i (t), i = 1,2 . . . ,N, k = 1,2, . . . ,K, be the number

of molecules of the i-th chemical species in the k-th compartment at time t. Then Zk(t) is an N-dimensional
column vector with each component representing the number of molecules of the corresponding species in
the k-th compartment at time t. We define

Z(t) =
(
Z1(t)T,Z2(t)T, . . . ,ZK(t)T)T

,

which is a KN-dimensional column vector and T denotes the transpose of a vector. We assume that the
chemical system is subject to M chemical reactions with ζζζ j, j = 1,2, . . . ,M, being the corresponding N-

dimensional stoichiometric vector. Let ζζζ
k
j, j = 1,2 . . . ,M, k = 1,2, . . . ,K, be a KN-dimensional stoichiometric

vector which gives a net molecule change during each occurrence of the j-th reaction in the k-th compartment.
Let νννk

−,i (resp. νννk
+,i), i = 1,2, . . . ,N, k = 1,2, . . . ,K be a KN-dimensional stoichiometric vector which gives

a net molecule change during diffusion of the i-th species from the k-th compartment to the (k−1)-th (resp.
(k+1)-th) compartment. Let

λ
k
j : [0,∞)N → [0,∞), j = 1,2 . . . ,M, k = 1,2, . . . ,K,

be the propensity function of the j-th chemical reaction in the k-th compartment, i.e. λ k
j (Zk(t))dt is the

probability that the j-th reaction occurs in the k-th compartment during the time [t, t + dt) given that the
current state at time t is Zk(t). We denote by Rk

j(t), j = 1,2 . . . ,M, k = 1,2, . . . ,K, a random process which
counts the number of times the j-th reaction occurs in the k-th compartment up to time t. Then,

Rk
j(t) = Y k

j

(∫ t

0
λ

k
j (Z

k(s))ds
)
, (2.1)

where Y k
j are independent unit Poisson processes. We define Rk

−,i(t) (resp. Rk
+,i(t)), i = 1,2, . . . ,N, k =

1,2, . . . ,K, random processes counting the numbers of times that one molecule of the i-th species in the
k-th compartment diffuses to the (k− 1)-th compartment (resp. to the (k+ 1)-th compartment) up to time t.
Then,

Rk
±,i(t) = Y k

±,i

(∫ t

0

Di

h2 Zk
i (s)ds

)
, (2.2)

where Y k
±,i are independent unit Poisson processes. The governing equation for the state vector Z(t) is

Z(t) = Z(0)+
K

∑
k=1

M

∑
j=1

Rk
j(t)ζζζ

k
j +

K

∑
k=2

N

∑
i=1

Rk
−,i(t)ννν

k
−,i +

K−1

∑
k=1

N

∑
i=1

Rk
+,i(t)ννν

k
+,i. (2.3)
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When the propensities are large [62], the counting processes in Equations (2.1)–(2.2) can be approximated as

Rk
j(t) ≈

∫ t

0
λ

k
j (Z

k(s))ds+
∫ t

0

√
λ k

j (Zk(s))dW k
j (s),

Rk
±,i(t) ≈

∫ t

0

Di

h2 Zk
i (s)ds+

∫ t

0

√
Di

h2 Zk
i (s)dW k

±,i(s),

where W k
j and W k

±,i are standard Brownian motions. Using νννk
+,i =−ννν

k+1
−,i for k = 1,2, . . . ,K−1 and changing

the index (k+1)→ k in the last term of Equation (2.3), the governing equation (2.3) can be approximated by
the following SDE [43, 62]

Z(t) = Z(0)+
K

∑
k=1

M

∑
j=1

(∫ t

0
λ

k
j (Z

k(s))ds+
∫ t

0

√
λ k

j (Zk(s))dW k
j (s)

)
ζζζ

k
j (2.4)

+
K

∑
k=2

N

∑
i=1

{∫ t

0

Di

h2

(
Zk

i (s)−Zk−1
i (s)

)
ds+

∫ t

0

√
Di

h2 Zk
i (s)dW k

−,i(s)−
∫ t

0

√
Di

h2 Zk−1
i (s)dW k−1

+,i (s)

}
ννν

k
−,i.

Since W k
−,i and W k−1

+,i terms always appear together in Equation (2.4), and since the sum of independent
normal random variables is normally distributed, Equation (2.4) can be rewritten as

Z(t) = Z(0)+
K

∑
k=1

M

∑
j=1

(∫ t

0
λ

k
j (Z

k(s))ds+
∫ t

0

√
λ k

j (Zk(s))dW k
j (s)

)
ζζζ

k
j

+
K

∑
k=2

N

∑
i=1

{∫ t

0

Di

h2

(
Zk

i (s)−Zk−1
i (s)

)
ds+

∫ t

0

√
Di

h2

(
Zk

i (s)+Zk−1
i (s)

)
dW k−1

i (s)

}
ννν

k
−,i,

(2.5)

where W k−1
i is a standard Brownian motion. Let Vh = hhyhz be the volume of each compartment, and define

c(t) = Z(t)/Vh as a concentration vector for species at time t. Define

λ̂
k,h
j (ck(t)) =

λ k
j (Zk(t))

Vh
, where ck(t) =

Zk(t)
Vh

.

Dividing Equation (2.5) by Vh, we get

c(t) = c(0)+
K

∑
k=1

M

∑
j=1

(∫ t

0
λ̂

k,h
j (ck(s))ds+

∫ t

0

1√
Vh

√
λ̂

k,h
j (ck(s))dW k

j (s)
)

ζζζ
k
j

+
K

∑
k=2

N

∑
i=1

{∫ t

0

Di

h2

(
ck

i (s)− ck−1
i (s)

)
ds+

∫ t

0

1√
Vh

√
Di

h2

(
ck

i (s)+ ck−1
i (s)

)
dW k−1

i (s)

}
ννν

k
−,i,

(2.6)

where ck
i (t) = Zk

i (t)/Vh. The second part of Equation (2.6) is consistent with the discretized Langevin scheme
for a diffusion equation, as studied in [1]. We rewrite Equation (2.6) using the fact that reaction happens
among species in the same compartment and that diffusion occurs between neighbouring compartments.
Differentiating Equation (2.6), the concentration of the chemical species in the k-th compartment satisfies

dck(t) =
M

∑
j=1

(
λ̂

k,h
j (ck(t))dt +

1√
Vh

√
λ̂

k,h
j (ck(t))dW k

j (t)
)

ζζζ j

+
D
h2

{(
ck+1(t)− ck(t)

)
χ{k 6=K}−

(
ck(t)− ck−1(t)

)
χ{k 6=1}

}
dt

+
1√
Vh

1
h

{
dWk(t)

√
D(ck+1(t)+ ck(t))χ{k 6=K}−dWk−1(t)

√
D(ck(t)+ ck−1(t))χ{k 6=1}

}
,

(2.7)
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where Wk(t) are N×N diagonal matrices with W k
i (t) on its diagonal for i = 1,2, . . . ,N, k = 1,2, . . . ,K− 1

and χ{·} is an indicator function. In Equation (2.7), ζζζ j is an N-dimensional stoichiometric vector of the j-th
reaction for j = 1,2, . . . ,M, and D is a N×N diagonal matrix which has diffusion constants of individual
species on its diagonal, i.e.

D =


D1 0 . . . 0
0 D2 . . . 0
...

...
. . . 0

0 0 . . . DN

 .
We approximate white noise processes in Equation (2.7) using spatio-temporal white noise processes as

1√
h

dW k
j (t)

dt
≈ η j(x, t),

1√
h

dWk(t)
dt

≈ ξξξ (x, t),

where η j(x, t), j = 1,2, . . . ,M, are spatio-temporal white noise processes [77], i.e.∫ x′+∆x

x′

∫ t ′+∆ t

t ′
η j(x, t)dxdt, x′ ∈ [0,Kh], t ′ ∈ [0,∞),

is normally distributed with zero mean and variance ∆x∆ t. Matrices ξξξ (x, t) are diagonal N×N matrices where
diagonal entries are independent spatio-temporal white noise processes. Then Equation (2.7) is a solution of
a discretized version of a SPDE in space which can be formally written in the following form

∂c(x, t)
∂ t

=
M

∑
j=1

λ̂ j(c(x, t),x)ζζζ j +D
∂ 2c(x, t)

∂x2 +
M

∑
j=1

√
λ̂ j(c(x, t),x)

hyhz
ζζζ j η j(x, t)+

∂

∂x

[
ξξξ (x, t)

√
2Dc(x, t)

hyhz

]
,

(2.8)
where c(x, t) is a spatio-temporal concentration related to ck(t) by

1
h

∫ kh

(k−1)h
c(x′, t)dx′ ≈ ck(t).

The reaction term λ̂ j : [0,∞)N× [0,Kh]→ [0,∞) in Equation (2.8) is related to λ̂
k,h
j by

1
h

∫ kh

(k−1)h
λ̂ j(c(x′, t),x′)dx′≈ λ̂

k,h
j (ck(t)).

Note that Equations (2.6)-(2.7) are discretized versions of Equation (2.8), but the compartment-based model
in (2.3) breaks down as h→ 0 as discussed in Section 2.2 of [23]. The SPDE in Equation (2.8) is consistent
to the ones in the previous work (Equation (1) in [57] and Equation (3.24) in [18]). For more details, see
derivations of the SPDE for diffusion in Section 3.1 of [18] and the general version (Equations (8.2.54)-
(8.2.56)) in Sections 8.1-8.2 of [39].

3 Multiscale algorithms combining compartment-based models with SPDEs

In this section, we present a multiscale approach which uses both SPDEs and Markov chain models. We
develop two algorithms, denoted Scheme 1 and Scheme 2 in what follows, which are applied to illustrative
examples in Sections 4, 5 and 6. Considering the same set up as in Section 2, we study a system of N
chemically reacting species S1, S2, . . . , SN , which are diffusing (with diffusion constants Di, i = 1,2, . . . ,N)
in an elongated domain Ω = [0,L]× [0,hy]× [0,hz], where L=Kh, given in Figure 1. The domain Ω is divided
into K compartments (rectangular cuboids) with Ck = [(k−1)h,kh]× [0,hy]× [0,hz] for k = 1,2, . . . ,K.

The main goal of this paper is to replace the Markov chain description in a part of the computational
domain by the corresponding SPDEs. Let us consider that we use the SPDE in Equation (2.8) in the domain
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(a) (b)

Fig. 2 Schematic diagrams of (a) Scheme 1 and (b) Scheme 2 describing molecular transfer between Ωs and Ωm. Note that the size of
a virtual compartment in Ωs is h in panel (a).

Ωs = [0, I]× [0,hy]× [0,hz] where I = Ksh and K > Ks ∈N; i.e. we consider that the first Ks compartments are
described by a suitable discretization of the SPDE in Equation (2.8), see Figure 1(b). We only use the Markov
chain model for the remaining Km = K−Ks compartments, i.e. in subdomain Ωm = [I,L]× [0,hy]× [0,hz]. In
this section, we develop an appropriate boundary condition on the interface I between Ωs and Ωm.

In order to design the numerical scheme, the SPDE in Equation (2.8) needs to be appropriately discretized.
We denote by ∆x the mesh size used in the discretization of the SPDE. There are two important cases: (i)
∆x > h and (ii) ∆x≤ h. In this section, we focus on case (ii), because we are interested in coupling the SPDE
in Equation (2.8) with Markov chain models. The case (i) is important when one uses discretized SPDEs to
design efficient multiscale schemes, but this introduces additional discretization errors. We will discuss case
(i) in Section 7. In Ωs, each compartment of size h is discretized into α grid points (α ∈ N) with each grid
size equal to ∆x. In the remaining part of the computational domain Ωm, the compartment-based model is
used. The state of the system of the multiscale model is described by vectors Xk(t), k = 1,2, . . . ,Ksα +Km.
The vector Xk(t) for k = 1,2, . . . ,Ksα represents species ‘numbers’ in the mesh interval [(k− 1)∆x,k∆x] in
the SPDE region Ωs, i.e. it is related to spatio-temporal concentration c(x, t) used in the SPDE description by

Xk(t)≈ hyhz

∫ k∆x

(k−1)∆x
c(x, t)dx.

The vector XKsα+k(t) for k = 1,2, . . . ,Km represents species numbers in CKs+k = [I +(k−1)h, I + kh] in the
Markov chain region Ωm, i.e. it is related to the state vector Zk(t) used in the Markov chain description by
XKsα+k(t) = ZKs+k(t).

We consider two different schemes to describe transfer of molecules near the interface I coupling dis-
cretized SPDEs and the Markov chain model, as shown in Figure 2. Without loss of generality, both schemes
are introduced for diffusion, because the description of reactions does not influence the transfer of molecules
across the interface I. In Scheme 1, we assume that there is a virtual compartment, CKs = [I− h, I], in Ωs,
where the molecules are partially treated using a compartment-based approach. Such overlap (handshaking)
regions are common in many multiscale methodologies, including coupling molecular dynamics with Brown-
ian dynamics simulations [28,29], Brownian dynamics with PDEs [36], or in atomistic to continuum coupling
methods [67]. We define a state vector

X(t) =
(
X1(t)T,X2(t)T, . . . ,XKsα+Km(t)T)T

,
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which is a (Ksα +Km)N-dimensional column vector. Scheme 1 is described using the following evolution
equation for state vector X(t):

X(t) = X(0)+
Ksα

∑
k=2

N

∑
i=1

{∫ t

0

Di

∆x2

(
Xk

i (s)−Xk−1
i (s)

)
ds

+
∫ t

0

√
Di

∆x2

(
Xk

i (s)+Xk−1
i (s)

)
χ{Xk

i (s)+Xk−1
i (s)≥0} dW k−1

i (s)

}
ννν

k
−,i

+
K

∑
k=Ksα+2

N

∑
i=1

Y k
−,i

(∫ t

0

Di

h2 Xk
i (s)ds

)
ννν

k
−,i +

K−1

∑
k=Ksα+1

N

∑
i=1

Y k
+,i

(∫ t

0

Di

h2 Xk
i (s)ds

)
ννν

k
+,i

+
α

∑
`=1

N

∑
i=1

Y Ksα+1
−,i

(∫ t

0

Di

h2 XKsα+1
i (s)ds

)
I `
−,i(t)ηηη

`
−,i︸ ︷︷ ︸

Markov chain→ SPDE

(3.1)

+
α

∑
`=1

N

∑
i=1

Y Ksα

+,i

(∫ t

0

Di

h2

α

∑
j=1

X (Ks−1)α+ j
i (s)χ{

∑
α
j=1 X(Ks−1)α+ j

i (s)≥1
} ds

)
I `

+,i(t)ηηη
`
+,i︸ ︷︷ ︸

SPDE→Markov chain

,

where the first term on the right hand side represents diffusion in Ωs (compare with Equation (2.5) replacing h
by ∆x). Note that the indicator function χ{Xk

i (s)+Xk−1
i (s)≥0} is used to make sure the term inside the square root

not being negative. Here the symbols νννk
±,i describe (Ksα +Km)N-dimensional stoichiometric vectors. The

second and third terms represent diffusion in the compartment-based region, Ωm, where Y k
±,i are independent

unit Poisson processes (compare with Equation (2.2)). The last two terms represent transition of a molecule
from Ωm to Ωs and from Ωs to Ωm, respectively. A molecule in Ωm in the boundary compartment, CKs+1,
jumps to the SPDE domain with a rate Di/h2. A molecule which jumps is placed to one of the mesh points in
the overlap compartment, CKs . To describe this process in Equation (3.1), we have defined indicator functions

I `
±,i(t) = χ{U±,i(t)∈[I−h+(`−1)∆x,I−h+`∆x]}, for `= 1,2, . . . ,α,

where U±,i(t) are independent uniform variables for each t and i. Stoichiometric vectors, ηηη`
±,i for ` =

1,2, . . . ,α , i = 1,2, . . . ,N, give changes due to the diffusion of the i-th species between the `-th SPDE dis-
cretization point in CKs and the compartment CKs+1 across the interface I. Transition of a molecule from Ωs
to Ωm is described by the last term of Equation (3.1) using time-changed Poisson processes. A molecule,
anywhere in the overlap compartment CKs , can be transferred with a rate Di/h2. The corresponding molecule
is then randomly subtracted from one of α discretization grid points which are in CKs . Note that the molec-
ular copy number, ∑

α
j=1 X (Ks−1)α+ j

i (s), in the last term of Equation (3.1) can be non-integer value due to the

non-integer concentration in CKs . To prevent X (Ks−1)α+ j
i (s) being negative due to the molecular transfer from

Ωs to Ωm, another indicator function is used in the last term of Equation (3.1) to set the propensity as zero if
the total molecular copy number in CKs is less than 1.
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Scheme 2 is described in terms of two unknown parameters, denoted Ψ1 and Ψ2, by the following evolu-
tion equation for the state vector X(t):

X(t) = X(0)+
Ksα

∑
k=2

N

∑
i=1

{∫ t

0

Di

∆x2

(
Xk

i (s)−Xk−1
i (s)

)
ds

+
∫ t

0

√
Di

∆x2

(
Xk

i (s)+Xk−1
i (s)

)
χ{Xk

i (s)+Xk−1
i (s)≥0} dW k−1

i (s)

}
ννν

k
−,i

+
K

∑
k=Ksα+2

N

∑
i=1

Y k
−,i

(∫ t

0

Di

h2 Xk
i (s)ds

)
ννν

k
−,i +

K−1

∑
k=Ksα+1

N

∑
i=1

Y k
+,i

(∫ t

0

Di

h2 Xk
i (s)ds

)
ννν

k
+,i (3.2)

+
N

∑
i=1

Y Ksα+1
−,i

(∫ t

0
Ψ1

Di

h2 XKsα+1
i (s)ds

)
ννν

Ksα+1
−,i︸ ︷︷ ︸

Markov chain→ SPDE

+
N

∑
i=1

Y Ksα

+,i

(∫ t

0
Ψ2

Di

∆x2 XKsα

i (s)χ{
XKsα

i (s)≥1
} ds
)

ννν
Ksα

+,i︸ ︷︷ ︸
SPDE→Markov chain

.

The first three terms in Equation (3.2) are identical to those in Equations (3.1). The fourth and fifth terms de-
scribe molecular transfer between the last grid point in Ωs and the boundary compartment CKs+1. A molecule
in Ωm in the boundary compartment, CKs+1, jumps to the last grid point of the SPDE domain with rate
Ψ1Di/h2, and the transfer rate in the opposite direction is Ψ2Di/∆x2. Note that XKsα

i (s) in the fifth term of
Equation (3.2) can be non-integer value due to the non-integer concentration in Ωs. To prevent XKsα

i (s) being
negative due to the molecular transfer from Ωs to Ωm, we use an indicator function to set the propensity as
zero if the molecular copy number in the last grid point in Ωs is less than 1.

To determine parameters Ψ1 and Ψ2 of Scheme 2, we use the discretization of the 1-dimensional partial
differential equation for diffusion using a finite volume approximation [8]. It gives the jump coefficient of
the i-th species from the j-th compartment to the neighbouring j′-th compartment as Di/(h j|a j−a j′ |), where
h j is the length of the j-th compartment and a j and a j′ are the centers of the j-th and j′-th compartments,
respectively. Considering the size of the domain allowed for molecule transfer across the interface in Scheme
2, we set |a j−a j′ |= (∆x+h)/2. We take h j = ∆x for the jump coefficient from Ωs to Ωm and h j = h for the
jump coefficient from Ωm to Ωs. Then, we match the jump coefficients to the rate constants for jump across
the interface given in Equation (3.2) to derive the following formula for the parameters of Scheme 2

Ψ1 =
2h

∆x+h
and Ψ2 =

2∆x
∆x+h

.

The multiscale algorithm for Scheme 1 for the case of diffusion only is given in Table 1. We denote a
propensity of diffusion of the i-th species in the (Ks + k)-th compartment in Ωm to the left (resp. right) as
ak
−,i(t) = Di/h2XKsα+k

i (t), for k = 1,2, . . . ,Km, (resp. ak
+,i(t) = Di/h2XKsα+k

i (t), for k = 1,2, . . . ,Km−1) for
i = 1,2, . . . ,N. This definition also includes the propensity of a diffusive jump of the i-th species from the
Markov chain domain, given as a1

−,i(t). We denote a propensity of diffusive jump of the i-th species from the
SPDE domain by

a0
+,i(t) =

Di

h2

α

∑
j=1

X (Ks−1)α+ j
i (t).

Then, we define total propensity in Ωm

a0 =
N

∑
i=1

Km

∑
k=1

ak
−,i +

N

∑
i=1

Km−1

∑
k=0

ak
+,i. (3.3)

Total propensity a0 is used in steps [A] and [B] in the pseudocode in Table 1 to select time when the next
event occurs in Ωm. The pseudocode denotes the time of the next update in each subdomain as ts and tm, and
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[A] Set t = 0 and ts = ∆ t. Initialize species numbers, X(0), in Ωm and Ωs. Then, generate random numbers
r1 and r2 uniformly distributed in (0,1). Set τ so that τ =−a−1

0 log(r1), where a0 is defined in Equation
(3.3). Set the next time when the diffusion occurs in Ωm as tm = τ .

[B] If tm ≤ ts,

• Set t = tm.
• Use r2 to determine which diffusive jump occurs. Each diffusive jump to the left (resp. to the right)

has the probability ak
−,i/a0 (resp. ak

+,i/a0) to occur.
• If the selected diffusive jump only includes internal compartments in Ωm, update species numbers in

the corresponding compartments.
• If the diffusion occurs across the interface from Ωm to Ωs, update the species number in CKs by

transferring one molecules from CKs+1 to the corresponding grid point in Ωs.
• If the diffusion occurs across the interface from Ωs to Ωm, update the species number in CKs+1 by

adding one molecule and subtracting one from the corresponding grid point in Ωs.
• Generate random numbers r1 and r2 uniformly distributed in (0,1). Set τ so that τ =−a−1

0 log(r1),
where a0 is defined in Equation (3.3). Set the next time when the diffusion occurs in Ωm as tm = t+τ .

[C] If ts ≤ tm,
• Set t = ts.
• Use Equation (3.4) to update the SPDE part of the system from t to t +∆ t.
• Set the next time of the update of the SPDE part as ts = t +∆ t.

[D] Repeat steps [B]–[C] until the simulation ends.

Table 1 Pseudocode for the multiscale reaction-diffusion algorithm with Scheme 1 applied to simulation of diffusion.

the current time as t. In step [B], we update the compartment-based part of the system. In step [C], we update
the SPDE part of the system by

X(t +∆ t) = X(t)+
Ksα

∑
k=2

N

∑
i=1

{
Di

∆x2

(
Xk

i (t)−Xk−1
i (t)

)
∆ t +

√
Di∆ t
∆x2

(
Xk

i (t)+Xk−1
i (t)

)
ζ

k−1
i

}
ννν

k
−,i, (3.4)

where ζ
k−1
i are independent normally distributed random numbers with zero mean and unit variance.

4 Application: static boundary

In this section, we apply the multiscale approach to examples in which we know a priori the position of
the boundary I between Ωs and Ωm. Generalization to a more complicated case with a moving boundary is
presented in Section 5.

4.1 A morphogen gradient model

We consider a morphogen gradient model in Ω = [0,L]× [0,hy]× [0,hz]. It consists of one chemical species
S, i.e. Zk(t) is a scalar describing the number of molecules of S in Ck. The state of the Markov chain model
is described by the K-dimensional column vector Z(t) =

(
Z1(t),Z2(t), . . . ,ZK(t)

)T. Morphogen is subject
to diffusion which is described by Equation (2.2). There are also two reactions in the system. Morphogen,
S, is produced in the first compartment with rate J, i.e. the propensity is λ 1

1
(
Z1
)
= J. Morphogen degrades

everywhere with rate δ , i.e. with propensity λ k
2
(
Zk
)
= δZk for k = 1,2, . . . ,K. In all stochastic simulations of
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Notations Description Values
L Length of the domain 20 µm
D Diffusion coefficient 0.8 µm2 s−1

δ Degradation rate 0.05s−1

J Production rate 25 µm−2 s−1

∆x Spatial discretization in Ωs 0.2 µm
h Spatial discretization in Ωm 1 µm
hy, hz Spatial discretization in y and z directions 1 µm
∆ t Time discretization for SPDE 0.0005s

Table 2 Parameter values in the morphogen gradient model studied in Section 4.1.

the morphogen gradient model, we assume that 500 morphogen molecules are initially uniformly distributed
in the half of the domain, Ωs = [0,L/2]× [0,hy]× [0,hz]. The parameters are given in Table 2.

Denoting c(x, t) the morphogen density at point x and time t, the deterministic model can be written as
PDE

∂c
∂ t

= D
∂ 2c
∂x2 −δ c, with boundary conditions −D

∂c
∂x

∣∣∣∣
x=0

= J, D
∂c
∂x

∣∣∣∣
x=L

= 0,

where D is the diffusion constant of S. We apply the multiscale approach using both schemes developed
in Section 3. Since the morphogen is produced at the left end, the morphogen has a decreasing gradient
as it goes towards L. Therefore, we split the spatial domain in half, and set the left half as Ωs and the
right half as Ωm, i.e. I = L/2. The (Ksα +Km)-dimensional state vector of the multiscale model is denoted
X(t) =

(
X1(t),X2(t), . . . ,XKsα+Km(t)

)T. Note that morphogens are produced only in the first discretization
mesh point with size ∆x in Ωs. In Figure 3, we simulate the morphogen gradient model using Scheme 1 of the
multiscale algorithm. We calculate 104 realizations of the sample paths of the stochastic process, and present
mean and standard deviations of the morphogen numbers in Ω at different times, t = 0,2,5,20s. Morphogen
numbers in α grid points of Ωs are summed so that they can be compared to the numbers in the underlying
Markov chain model. We compare the results with mean and standard deviations of the morphogen numbers
which we calculate analytically using matrix analysis for reaction-diffusion Markov chain models [37, 56].
In Figure 3, morphogen numbers in Ωs (resp. in Ωm) are expressed as green bars (resp. blue bars). Error bars
represent one standard deviations from the mean number of morphogens in each compartment. Mean and
standard deviations of the morphogen numbers from the analytic solution are drawn as a red line and blue
dotted lines. The results using the multiscale algorithm match perfectly to the ones from the exact solution.

In Figure 4, we present relative errors of the means and standard deviations of the number of molecules
between the Markov chain model and multiscale model. The analytic solution is used for the statistics of the
Markov chain model, and both schemes are applied numerically for the multiscale approaches. Errors are
defined as

em(k) =


1−

E
[
∑

α
`=1 X (k−1)α+`

]
E[Zk]

,

1−
E
[
Xk+K(α−1)/2

]
E[Zk]

,

ev(k) =


1−

σ

[
∑

α
`=1 X (k−1)α+`

]
σ [Zk]

, for k = 1,2, . . . ,
K
2
,

1−
σ

[
Xk+K(α−1)/2

]
σ [Zk]

, for k =
K
2
+1, . . . ,K,

(4.1)

where E[·] and σ [·] represent a mean and standard deviation. In Figure 4(a), red and green lines represent
em(k) and ev(k) at time t = 50s using Scheme 1, respectively, and blue and purple lines are for Scheme 2.
We observe that the relative errors in Equation (4.1) are less than 4% in the entire simulation domain. In
Figure 4(b), we compare the maximum absolute values of the relative errors defined in Equation (4.1) with
α = 1, 5, 10, 25 and fixed compartment size h where α = h/∆x. In both schemes, the relative errors are in
a range of less than 4% except for the case when α = 25 with Scheme 2. The relative errors in the mean
and standard deviation become significantly larger when we apply the multiscale algorithm using Scheme
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Fig. 3 Comparison between mean numbers of morphogens and their standard deviations from the mean using the analytic solution (red
lines and blue dotted lines) and Scheme 1 (green bars and blue bars for the means in Ωs and Ωm, respectively, and error bars for the
standard deviations).

2 with α = 25. In this case, the mean in CKs+1 gets larger than the mean in CKs which shows a bias in the
method for larger values of α (the exact mean number of molecules decreases along the x-axis). We provide
an explanation of this phenomenon in the next section.

4.2 A diffusion model with two compartments

In Section 4.1, we have observed that the error of Scheme 2 increases when we decrease the ratio of the
numerical discretization in Ωs and the compartment size. When α = 25, the mean number of molecules of
the morphogen does not have a decreasing gradient across the interface I in Scheme 2. Therefore, we set a
two-compartment model with diffusion to see what causes this numerical error. The setting is similar to the
one in Section 4.1, but we set J = δ = 0 so that there is no flux or degradation of the morphogen. Set L = 2h
and I = h (= 1 µm) so that Ωs = [0,h]× [0,hy]× [0,hz] and Ωm = [h,2h]× [0,hy]× [0,hz]. Then, each region
consists of one compartment, Ks = Km = 1, and X(t) is an (α +1)-dimensional vector.

In Figure 5(a), we present simulation results of the two-compartment model using Scheme 1 (red line)
and Scheme 2 (green line) with α = 10, 20, 30, 40, 50 and compare them to the simulation result of the
Markov chain model using the Gillespie SSA (purple line). The Markov chain model has α + 1 numerical
grid points where the first α ones are with size ∆x = h/α and the last one with size h. Diffusion of molecules
is simulated by jumps from grid points to their nearest neighbours, i.e. the numerical meshes in the Markov
chain model are coupled by diffusion in the same way as it is done in Scheme 2. Applying both multiscale
algorithms and the Gillespie SSA, we compare the mean morphogen numbers in the second compartment
computed from 100 realizations of simulation. Using 50 molecules in total, the exact value of the mean
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(a) (b)

Fig. 4 (a) Errors em(k) and ev(k) given by Equation (4.1) are computed at time 50s. (b) The maximum absolute values of the errors
em(k) and ev(k) given by Equation (4.1) are computed at time 50s with a static boundary and different values of α . The maximum
value of the errors is taken over all region, Ω . Red and green lines are relative errors of the means and standard deviations between the
analytic solution of the Markov chain model and Scheme 1. Blue and purple lines are relative errors between the Markov chain model
and Scheme 2.

(a) (b)

Fig. 5 (a) The mean number of morphogens in C2 at time t = 50s. Different simulation methods are compared with α = 10, 20, 30, 40,
50 (with a static boundary): the Gillespie SSA with multigrid discretization (α grid points with size ∆x and one grid point with size h),
Scheme 1, Scheme 2, and Scheme 2 with no noise due to diffusion in Ωs. (b) The probability distribution of the normalized morphogen
number in C1 with Scheme 2. The probability distributions are computed for X `(t)/∆x, ` = 1,2, . . . ,α and compared among the cases
with α = 10, 50 (with a static boundary) at time t = 0.01, 50s. Initially, 50 molecules are located in Ωs in panels (a) and (b).

numbers of molecules in Ck, k = 1,2, is 25. Notice that Scheme 1 and the Gillespie SSA with two mesh sizes
correctly approximate the means. However, Scheme 2 overestimates the mean morphogen number in C2 as α

gets large. To understand where the numerical error arises, we also simulate Scheme 2 without the noise term
in the SPDEs (marked as a blue line in Figure 5(a)), i.e. we remove the term with a square root in Equation
(3.2).

In Figure 5(a), we observe that the mean morphogen number in C2, E[Xα+1], is underestimated as α

increases when we use Scheme 2 without noise term in the SPDEs. Note that X `, `= 1,2, . . . ,α , always have
non-negative integer values due to no noise term in Equation (3.2). The molecular transfer from Ωs to Ωm
occurs when Xα ≥ 1. However, the frequency of this transfer is not sufficient as α gets large, which lowers
Xα+1. On the other hand, with noise terms included in Equations (3.1) and (3.2), there are more chances that
X ` < 0 for some ` = 1,2, . . . ,α due to large fluctuations with a small number of molecules as α gets large.
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[A’] Set t = 0, ts = ∆ t and k = 1. Initialize species numbers, X(0), in Ωm and Ωs, and the boundary lo-
cation, I(0). Then, generate random numbers r1 and r2 uniformly distributed in (0,1). Set τ so that
τ =−a−1

0 log(r1), where a0 is defined in Equation (3.3). Set the next time when the diffusion occurs in
Ωm as tm = τ .

[B’] Repeat steps [B]–[C] of algorithm in Table 1 until time k(nc∆ t).

[C’] Update position of interface I(t), if necessary, by

• If
α

∑
`=1

X (Ks−1)α+` < Qlower, set I(t) = I(t−nc∆ t)−h.

• If
α

∑
`=1

X (Ks−1)α+` ≥ Qlower and XKsα+1 > Qupper, set I(t) = I(t−nc∆ t)+h.

• Increase k, the number of updates performed in the interface position I(t), by 1.

[D’] Repeat steps [B’]–[C’] until the simulation ends.

Table 3 Pseudocode for the adaptive multiscale reaction-diffusion algorithm with Scheme 1 applied to simulation of diffusion.

Then, it is more frequent that Xα ≥ 1 due to the fact that ∑
α+1
`=1 X ` = 50 and X ` < 0 for some `= 1,2, . . . ,α .

More frequent molecular transfer from Ωs to Ωm causes overestimation of the mean morphogen number in
C2 in Scheme 2.

In Figure 5(b), we compare distributions of the morphogen numbers when α = 10 and 50. The distri-
butions are computed from 1000 realizations of simulation when t = 0.01s and 50s. Each distribution is
computed for all X `, `= 1,2, . . . ,α so that we can display an overall range of the morphogen number in each
discretization of Ωs. Each X ` is normalized by ∆x so that the distributions can be compared for different α’s.
The normalized mean morphogen number (density) in Ωs decreases significantly in both cases with α = 10
and 50 as time evolves. On the other hand, the variance of the morphogen density is much greater for α = 50
than for α = 10 at t = 0.01s due to the lower morphogen number in each discretization of Ωs. Therefore, we
conclude that the error in Scheme 2 strongly depends on the size of fluctuations close to the interface. On
the other hand, the molecular transfer from Ωs to Ωm is decided by ∑

α
`=1 X ` in Scheme 1. This setting makes

Scheme 1 more robust than Scheme 2 for large values of α since it helps to overcome the errors due to the
negative abundance.

5 Application: moving boundary

In some applications [70], it is difficult to decide a position of the interface I a priori. In this section, we
extend the presented algorithm to the case when the location of the interface I(t) between Ωs and Ωm moves
in time, based on the number of molecules in each location of the domain. The multiscale approach with the
adaptive interface is applied to the example introduced in Section 4.

The adaptive algorithm is described in Table 3. Following [70], we introduce two thresholds denoted
Qupper and Qlower (Qupper ≥ Qlower), and one integer parameter nc. We initialize the position of the interface
I(0) = 0 in step [A’], i.e. we initially model the whole domain using the detailed compartment-based ap-
proach. We run the original Scheme 1 until time nc∆ t. We check whether the interface I(t) should be moved
in step [C’]. If the number of molecules in the compartment next to the interface in Ωs is smaller than Qlower, a
compartment-based model is used in that region. On the other hand, if the number of molecules in the bound-
ary compartment next to interface I(t) in Ωm is larger than threshold Qupper, the corresponding compartment
is transferred to the SPDE region where the molecules are redistributed uniformly in α grid points. Due to
the uniform redistribution of the molecules, rapid changing of the interface I(t) introduces more errors. Note
that in Scheme 1 with a fixed boundary, one molecule has been chosen randomly from α discretizations of
CKs in Ωs and transferred to CKs+1 in Ωm. Similarly, we have taken one molecule from CKs+1 and transferred
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Fig. 6 Comparison between one realization of the number of morphogens using Scheme 1 with a moving interface, given in Table 3
(green bars and blue bars for the morphogen numbers in Ωs and Ωm, respectively) and the analytic solution of the mean (red dots). A
blue dotted line represents the location of the interface.

the molecule to the randomly chosen SPDE numerical domain in CKs . However, in the adaptive algorithm,
we modify the setting of Scheme 1 so that a molecule is taken uniformly from the entire region of CKs and
transferred to CKs+1, i.e. 1/α molecule is subtracted in all α SPDE grid points of CKs . Similarly when the
molecule is transferred from CKs+1 to CKs , 1/α molecule is added in all α grid points of CKs . Without this
modification of the setting in Scheme 1, the appropriate level of the morphogen gradient is not formed in the
next example.

The adaptive algorithm [A’]–[D’] is applied to the morphogen gradient model introduced in Section 4,
and the results are presented in Figure 6. We use Qlower = 15, Qupper = 25 and nc = 10. Other parameters
are given in Table 2. Our initial condition is Xk(0) = 0, for k = 1,2, . . . ,Ksα +Km, i.e. the system starts with
no molecules and the gradient is formed during the simulation. In Figure 6, one realization of the algorithm
in Table 3 at different times t = 0.5, 2, 10, 40s is presented. The green and blue bars represent the numbers
of molecules in the corresponding compartments in Ωs and Ωm, respectively. The blue dotted line represents
interface I(t) between two regions, and the red circles are the mean numbers of molecules obtained from the
analytic solution of the stochastic model. Our results show that the boundary between two regions is moving
to the right in time as the molecule numbers increase due to the production on the left.

In Figure 7(a) and 7(b), we simulate the adaptive algorithm with fixed thresholds for a range of values of
nc = 1, 10, 102, 103, 104, which are the numbers of time steps to check the criterion to move the interface I(t)
in step [C’]. Two sets of fixed thresholds are chosen, (Qlower,Qupper) = (15,25) in (a) and (Qlower,Qupper) =
(20,20) in (b). In Figure 7(c) and 7(d), we simulate the adaptive algorithm with fixed numbers of time steps,
nc, for different values of Qlower and Qupper, which are the threshold values to check before we move the
interface I(t) in step [C’]. We use the following pairs of the values for the thresholds: (Qlower,Qupper) =
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(a) (b)

(c) (d)

Fig. 7 The maximum absolute values of the relative errors in all locations at time 50s using the multiscale algorithms, with a mov-
ing boundary. Different values of nc = 1, 10, 102, 103, 104, are used with fixed thresholds (a) (Qlower,Qupper) = (15,25), and (b)
(Qlower,Qupper) = (20,20). Different threshold values (Qlower,Qupper) = (5,55), (10,40), (15,25), (20,20) are used with (c) nc = 1 and
(d) nc = 103. Red and green lines are the maximal relative errors of the means and standard deviations between the analytic solution of
the Markov chain model and Scheme 1. Blue and purple lines are maximal relative errors between the Markov chain model and Scheme
2.

(5,55), (10,40), (15,25), (20,20). Two fixed numbers of time steps are used, nc = 1 in (c) and nc = 1000
in (d). As shown in Figure 7(b) and 7(c), we observe that the maximum absolute values of the relative errors
increase as the number of time steps, nc, or the size of the threshold window, Qupper−Qlower, gets smaller.
This is because the small size of the number of time steps or the threshold window makes the interface
location change frequently, which causes additional errors. On the other hand, Figure 7(a) and 7(d) do not
show similar pattern since large size of the threshold window (Qupper −Qlower = 10) and the number of
time steps (nc = 103) prevents frequent movement of the interface location. Overall, Scheme 2 has slightly
smaller errors than Scheme 1. In Figure 7, the maximum absolute values of the relative errors are calculated
using 104 realizations of simulation using Scheme 1 or 2 for each value of nc and for each set of values of
(Qlower,Qupper) and using the analytic solution of the Markov chain model.

6 Applications: multiple species

In this section, we illustrate the applicability of the multiscale approach to chemical systems with multiple
species. Since different chemical species can have very different molecular distributions in the computational
domain, the partition of the computational domain into subdomains Ωs and Ωm can be species dependent.
We use the pom1p gradient model from Saunders et al. [72] to illustrate a multiscale approach, where each
species has a different partition into Ωs and Ωm depending on its molecular distribution. The model consists
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Notations Description Values
L Length of the Domain 14 µm
I1 Left boundary of Ωs 3.5 µm
I2 Right boundary of Ωs 10.5 µm
D1 Diffusion coefficient of S1 0.02 µm2 s−1

D2 Diffusion coefficient of S2 0.2 µm2 s−1

a1 Production parameter of S1 1.029s−1

a2 Production parameter of S2 0.441s−1

a3 Fragmentation rate of S1 0.26s−1

a4 Aggregation rate 0.049s−1

a5 Disassociation rate 0.035s−1

a6 Parameter of production 0.1089s−1

∆x Spatial discretization in Ωs 0.035 µm
h Compartment size in Ωm 0.35 µm
∆ t Time discretization for SPDE 0.0005s

Table 4 Parameter values in the two-state model for pom1p gradient.

of two species, slow-diffusing pom1p clusters, denoted S1, and fast-diffusing pom1p particles, denoted S2.
We use pseudo 1-dimensional domain Ω as in Figure 1, where L = 14 µm, which is divided into K = 40
compartments, Ck, k = 1,2, . . . ,K. Both S1 and S2 are produced in the whole computational domain with
space-dependent rates [72], i.e. with propensities

λ
k
1 (Z

k) = a1 exp

[
−a6

(
k− K +1

2

)2
]
, λ

k
2 (Z

k) = a2 exp

[
−a6

(
k− K +1

2

)2
]
,

where k = 1,2, . . . ,K, and a1, a2 and a6 are constants given in Table 4. In addition to production, species S1
and S2 are subject to the following reactions which take place in the whole domain

S1 −→ S2, S1 +S2 −→ S1 +S1, S2 −→∅,

with the corresponding propensities given by

λ
k
3 (Z

k) = a3Zk
1, λ

k
4 (Z

k) = a4Zk
1Zk

2, λ
k
5 (Z

k) = a5Zk
2,

where k = 1,2, . . . ,K, and a3, a4 and a5 are constants given in Table 4.
In Figure 8, we present an illustrative simulation of pom1p gradient model. We plot spatial distributions

of S1 and S2 at times t = 50s and t = 1000s. We observe that the spatial distribution of S1 contains a region
with high abundance of molecules in the center of the computational domain. The chemical species S2 has
low copy numbers in the entire domain. Therefore, we introduce the SPDE region in the middle of the domain
by (note that we fix K = 40 in this example)

Ωs =
30⋃

k=11

Ck,

where the coarse-graining is only applicable to S1 in Ωs. In particular, we have introduced two interfaces, I1
and I2 between Ωs and Ωm. Diffusion of chemical species S1 is simulated using the algorithm in Table 1. Sim-
ilarly, production of S1 is implemented using the SPDE and Markov chain model in Ωs and Ωm, respectively,
as we did in Equation (3.1). The chemical species S2 is simulated by the Markov chain model in the entire
domain, because the average number of molecules of S2 is relatively low. In particular, diffusion, production
and degradation of S2 are implemented as in the underlying Markov chain model. The only complications are
reactions

S1 −→ S2 and S1 +S2 −→ S1 +S1, (6.1)
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Fig. 8 Mean numbers of the molecules of slow-diffusing pom1p clusters and fast-diffusing pom1p particles, and their standard devi-
ations from the means at t = 50, 1000s computed from 104 realizations of simulation using the SSA and the multiscale algorithm with
Scheme 1.

because they include both species S1 and S2, which are in Ωs described by different modeling approaches.
We treat these reactions as time-changed Poisson processes in both subdomains Ωm and Ωs. Discretizing
each compartment, Ck, k = 11,12, . . . ,30, into α grid points, the state of S1 variable is described by vector,
X(t) = (X1,X2, . . . ,X20(α+1)) where X1,X2, . . . ,X10 (resp. X20α+11,X20α+12, . . . ,X20(α+1)) are the numbers
of molecules of S1 in the left (resp. right) part of Ωm. The values of SPDE description in compartment Ck,
k = 11,12, . . . ,30, are given by X10+(k−11)α+`, `= 1,2, . . . ,α . The state of S2 variable is described by vector,
Y(t) = (Y 1,Y 2, . . . ,Y 40) where Y k is the number of molecules of S2 in compartment Ck, k = 1,2, . . . ,K. The
propensity of the first reaction in (6.1) of the multiscale model is given by

λ
k
3 (X) =


a3Xk, for k = 1,2, . . . ,10,

a3

α

∑
`=1

X10+(k−11)α+`, in Ωs (i.e. for k=11,12,. . . ,30),

a3X20(α−1)+k, for k = 31,32, . . . ,40.

(6.2)

The propensity of the second reaction in (6.1) of the multiscale model is given by

λ
k
4 (X,Y k) =


a4XkY k, for k = 1,2, . . . ,10,

a4Y k
α

∑
`=1

X10+(k−11)α+`, in Ωs (i.e. for k=11,12,. . . ,30),

a4X20(α−1)+kY k, for k = 31,32, . . . ,40.

(6.3)

We simulate reactions in (6.1) as time-changed Poisson processes with propensities in Equations (6.2)–(6.3).
If the first of these reactions occurs in Ck, k = 11,12, . . . ,30, we subtract 1/α from each X10+(k−11)α+`,
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`= 1,2, . . . ,α , and we add one to Y k. If the second reaction in (6.1) occurs in Ck, k = 11,12, . . . ,30, we add
1/α to each X10+(k−11)α+`, ` = 1,2, . . . ,α , and we subtract one from Y k. Note that the conversion of S1 in
Ck, k = 11,12, . . . ,30, is applied equally to the entire α grid points of Ck rather than to one randomly chosen
grid point in Ck as we do for diffusion across the interfaces.

In Figure 8, green bars and blue bars represent the mean numbers of molecules of the pom1p clusters
and particles in Ωs and Ωm using the multiscale algorithm with Scheme 1. Error bars represent one standard
deviation from the mean in the multiscale approach. Red lines and blue dotted lines are the mean numbers
and their standard deviations from the means computed by the Gillespie SSA simulating the compartment-
based approach in the entire domain. Both statistics using the compartment-based approach and the multiscale
algorithm are computed from the 104 realizations of the simulations for each case.

7 Discussion

A Markov chain model (compartment-based model) has been widely used to describe the discrete nature of
the molecular copy numbers and inherent stochasticity in reaction-diffusion systems, but it can be computa-
tionally intensive. A possible approach to increase efficiency of simulations is to approximate a part of the
model by some coarse-grained methods. In this paper, we have introduced two multiscale algorithms coupling
the SPDEs and the Markov chain model, which provide good approximations to the solutions obtained by the
Markov chain model applied in the entire spatial domain. Two coupling methods of the Markov chain model
and the SPDEs across the interface have been studied. In this section, we compare the presented approach
with methods in the literature.

Several Langevin formulations have been introduced to model fluctuating hydrodynamics for chemically
reactive species [9] and stochastic reaction-diffusion systems [40, 50]. In particular, the spatial chemical
Langevin equation was applied to the Gray-Scott model, and its pattern formation was compared to the ones
obtained by the reaction-diffusion master equation and PDEs [40]. The spatial chemical Langevin equation
consists of a system of stochastic differential equations, and it corresponds to Equation (2.4) in Section 2.
On the other hand, several approaches using SPDEs [1, 2, 6, 18, 57] have been introduced to model stochastic
reaction-diffusion systems. In [6], the SPDE was derived for reaction-diffusion systems, and discretization
of PDEs and stochastic fields was discussed. Unlike Equation (2.5), the stochastic fields in the discretized
SPDEs account for fluctuations due to diffusion but not for reaction. In [57], the SPDE for reaction-diffusion
systems was derived which is consistent with Equation (2.8). In their formulation, diffusion was implemented
by the SPDE while the reaction was simulated using the exact or modified SSA.

In [79], two hybrid algorithms are suggested for coupling a compartment-based model and a PDE model
when the size of the PDE discretization is less than or equal to the compartment size. Both algorithms extend
the PDE approach to the systems with low copy numbers of molecules in a part of the computational domain.
The first algorithm considers the PDE solution as the probability density to find a particle within the region
and is applied to both cases of low and high copy numbers of molecules in the PDE region. The second algo-
rithm is a simplified and more efficient version of the first one when the PDE region involves the high copy
number of molecules. Like in this paper, both algorithms implement a pseudo-compartment with size h in the
PDE region where h represents the compartment size. The second algorithm in [79] is similar to Scheme 1 if
a discretized version of SPDEs replaces the PDEs. However, the interface between the two modeling regimes
is assumed to be fixed in [79]. In [45], a hybrid algorithm is introduced coupling a compartment-based model
and PDEs where the size of the PDE discretization is much finer than the compartment size. In the model,
an overlap region is defined with two interfaces (corresponding to the pseudo-compartment in Scheme 1)
where both modeling regimes are valid, and both cases with fixed and adaptive interfaces are considered. Un-
like our pseudo-compartment in Scheme 1, the overlap region can contain multiple compartments if needed.
On one interface between the compartment-based model and the overlap region, the population of the PDE
solution on the interface is matched to the average of the population in the neighbouring compartments. On
the other interface between the PDE region and the overlap region, flux on the interface was matched. The
hybrid algorithm in [45] approximates the mean population numbers in the compartment-based model if it
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was applied over the entire spatial region. The use of the overlap region allows matching the variance between
two models in the compartment-based region when the fixed interface is used. On the other hand, the goal
of Scheme 1 and Scheme 2 is to approximate the compartment-based model by employing the discretized
version of SPDEs in the region with high molecules. Therefore, we can match both the mean and variance
of the population numbers computed by our multiscale algorithms to those in the compartment-based model
if it was used in the whole spatial domain. This is done for both cases with a fixed or adaptive boundary.
Unlike the previous approaches in [45, 79], the presented multiscale algorithms can apply to systems with
multiple species as it is shown in Section 6 where each species has a different partition of the spatial domain
into subdomains where different models are used, depending on the spatial distribution of molecules of each
species. In [76], a hybrid algorithm is presented using a compartment-based model and PDEs, where the size
of the compartment and numerical discretization for the PDE model is equal.

In this paper, we have discussed the case when the mesh size of the numerical discretization of the SPDEs
is smaller (or equal) than the compartment size in the Markov chain model (h≥ ∆x). This case is useful when
we add inherent stochasticity in the PDE model where a fine spatial resolution of the PDE solution is required
to describe the solution of the SPDE. This case was also discussed in other hybrid algorithms coupling
the compartment-based model and the macroscopic PDEs [45, 79]. The other case, h < ∆x, discussed, for
example, in the hybrid algorithm coupling a random walk on a lattice and the PDE model [35], is helpful
when the PDE or SPDE model is used as a coarse-grained approximation of the compartment-based model.
Such approximation can be used in the region where spatial concentration gradients are not large, so they do
not require a fine resolution in space. Although we have focused on the case h≥ ∆x, the presented approach
can be extended to h<∆x as well. In fact, if h=∆x, both Scheme 1 and Scheme 2 will be the same. If h<∆x,
we may be able to consider an overlap region (like a pseudo-compartment) in the compartment-based region
to extend Scheme 1. The presented SPDE-based approach provides a bridge between the stochastic approach
(using the Markov chain compartment-based model) and the deterministic approach (using the macroscopic
PDEs) by incorporating a discretized version of SPDEs. The SPDEs can be utilized to build other hybrid
models, for example, by coupling them with macroscopic PDEs. Then some approaches used in the hybrid
algorithms coupling the compartment-based model with the PDEs [45, 74, 76, 79] will naturally apply to the
case with the SPDEs.
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