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The force distribution of a tagged atom in a Lennard-Jones fluid in the canonical ensemble is studied with a focus on its

dependence on inherent physical parameters: number density (n) and temperature (T ). Utilising structural information

from molecular dynamics simulations of the Lennard-Jones fluid, explicit analytical expressions for the dependence of

standardised force moments on n and T are derived. Leading order behaviour of standardised moments of the force

distribution are obtained in the limiting cases of small density (n→ 0) and low temperature (T → 0), while the variations

in the standardised moments are probed for general n and T using molecular dynamics simulations. Clustering effects

are seen in molecular dynamics simulations and their effect on these standardised moments is discussed.

I. INTRODUCTION

Understanding the moments and measures of a distribution for

a fully atomistic molecular dynamics (MD) simulation allow

us to better fit coarser models that reproduce these1–3. It is of-

ten the case in model coarse graining that we wish to directly

reconcile the energy landscape of the fully atomistic system

to a more basic representation that allows us to maintain as

many physical properties of the system of interest, with as lit-

tle computational cost as possible4. Though, it is also natural

to match forces between the high and low resolution systems

in an effort to reproduce the force distribution which will in-

herently give rise to the energy landscape5–10.

Let F = [F1,F2,F3] denote a force on a tagged atom in a liq-

uid. Depending on the relative positions of other atoms, force

F can vary over a range of values and a detailed information

on F can be obtained by calculating properties of its equilib-

rium distribution, which we will call force distribution in this

manuscript. Considering an isotropic system, the equilibrium

distribution of each force coordinate is the same. We define

the standardised moment of the force distribution by averag-

ing over the k-th power of its first coordinate as

αk =

〈

Fk
1

〉

〈

F2
1

〉k/2
, (1)

where
〈

Fk
1

〉

is the k-th moment of the force distribution and αk

standardises the k-th moment by scaling it with the k-th power

of the standard deviation of the force distribution. In a simple

homogeneous fluid with radially symmetric interactions be-

tween particles, the force distribution will exhibit symmetry

around the origin and thus all odd standardised moments van-

ish, i.e. 0 = α1 = α3 = α5 = . . . . As α2 ≡ 1 by definition (1),

the first non-trivial standardised moment is kurtosis, denoted

α4, which provides a measure of spread that details how tailed

the force distribution is relative to a normal distribution11. In

this paper, we study how the force distribution depends on the

number density of a homogeneous many-body system, and the

temperature of the same system in a canonical ensemble. We
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will do this by studying the behaviour of the second moment

of the force distribution
〈

F2
1

〉

and standardised even moments

α4, α6, α8, . . . . If the force distribution was Gaussian, then

the even standardised moments would be

αk = (k−1)!! =
k/2

∏
i=1

(2i−1), for k = 2,4,6,8,10, . . . , (2)

and the second moment
〈

F2
1

〉

would be sufficient to

parametrize the force distribution. However, the force distri-

butions in simple liquids have been reported to deviate from

Gaussian distribution12–14. In particular, by comparing the re-

sults of our analysis with Gaussian moments in equation (2),

we can also quantify how non-Gaussian the real force distri-

bution is.

Much work has been done in the area of force distribu-

tions of many-body systems: with seminal work from Chan-

drasekhar15 that employed Markov’s theory of random flights

to give an expression for the force distribution of a many-body

system interacting through a 1/r gravitational potential. More

recent work has been done with the help of MD by Gabrielli

et al16, who derived an expression for the kurtosis of the force

distribution for a lattice system of atoms interacting through

the gravitational potential. Further, using the classical den-

sity functional theory, an expression for the probability dis-

tribution of force for a system interacting through an arbi-

trary weakly repulsive potential was derived by Rickayzen et

al17,18.

In this paper, we study the number density and tempera-

ture dependence of the force distribution for a many-body sys-

tem interacting through a Lennard-Jones 12-6 potential19,20,

which is ubiquitously used and has been shown to model ho-

mogeneous systems of interacting (Argon) atoms well21–23.

In Section III, an in depth investigation is given to the sim-

ple two-body system in one spatial dimension, which provides

the ideal platform to illustrate the underlying methods while

retaining interesting dynamical behaviour. From first princi-

ples we derive first-order partial differential equations (PDEs)

describing the dependence of the standardised moments of

the force distribution has on parameters. In doing so we fur-

ther derive an analytic expression for the partition function

of a two-body system that depends solely on the standardised

moments of the force distribution whereupon the expression

is exact in an asymptotic limit of the density going to zero
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(n → 0). Similarly, an expression is derived relating the av-

erage energy of the system to standardised moments of force

from the temperature dependent PDE. In parameter regimes

where long-range forces between atoms dominate, we use a

truncated Taylor series expansion to derive the leading order

behaviour of the kurtosis of the force distribution in the limit

n → 0. Finally, we utilise a Laplace integral approximation

to ascertain the leading order behaviour of the standardised

moments of force at low temperatures (T → 0). Results from

simple MD simulation are presented to provide evidence for

the efficacy of these methods and underlying assumptions.

This is followed by Section IV, where the natural idea that

long range force calculations dictate asymptotic behaviour is

extended from the 1D model to many-body systems of arbi-

trary size in three spatial dimensions. These systems exhibit

the physical properties of standard MD simulations: i.e. cubic

geometry with periodic boundary conditions that employ the

minimum image convention. In particular, we can analyze the

system by performing calculations on a central cubic cell. In

Section IV B, MD results are displayed for many-body sys-

tems. We present the dependence of the standardised force

moments on density, n, and temperature, T , and discuss the

parameters and integrator schemes utilised in producing the

results of MD simulations.

II. NOTATION

We consider a system of N identical atoms interacting via the

Lennard-Jones 12-6 potential19. This is a ubiquitous inter-

atomic pairwise potential; here the potential between atoms

labelled i, j = 1,2, . . . ,N positioned at qi,q j ∈ R
3 is given (in

reduced units24) by the expression

Ui j(ri j) = 4

(

1

r12
i j

− 1

r6
i j

)

, (3)

where ri j =
∣

∣qi −q j

∣

∣ is the distance between atoms. The

Lennard-Jones potential (3) between two atoms has a unique

minima obtained at ri j = r∗ = 21/6.

We employ the framework of statistical mechanics for this

closed many-body system and describe atom i = 1,2, . . . ,N
by phase space coordinates {qi,pi} ∈ R

6, were pi denotes the

momentum of the i-th atom. We work in the canonical en-

semble with temperature T ; the partition function therefore

becomes

ZN(T,V ) =
1

h3N N!

∫∫

Ωq×Ωp

exp[−βH(q,p)] d3q d3p , (4)

where V is the volume of our closed system, and q =
(q1,q2, . . . ,qN)

T and p = (p1,p2, . . . ,pN)
T are vectors con-

taining the positions and momenta of all atoms in the system.

Our integration domain is given by Ωq ×Ωp ⊂ R
3N ×R

3N .

This denotes the phase space of our system. For systems of

interest Ωp ≡ R
3N . The underlying geometry of the system

(and principle simulation cell) is a cubic box of size L > 0,

therefore Ωq ≡ (−L/2,L/2]× ·· ·× (−L/2,L/2]. The phase

space volume elements in equation (4) are denoted by

d3q =
N

∏
i=1

d3qi and d3p =
N

∏
i=1

d3pi. (5)

Throughout this work we make use of reduced units24, utilis-

ing Argon parameters25. In particular, all instances of T in this

work can be translated back to SI units with the transforma-

tion T → kBT where kB is the Boltzmann factor. Therefore,

in the partition function (4), we have β = 1/T and h is the

Planck constant (≈ 0.186 in reduced units). Finally, H(q,p)
is the classical Hamiltonian H(q,p) = K(p)+U(q) with ki-

netic energy K(p) = |p|2/2 (where the usual factor of mass is

unity under reduced units) and a general potential U(q). The

statistical average of a quantity X for this N-body system is

given by

〈X〉= 1

ZN h3N N!

∫∫

Ωq×Ωp

X exp[−βH(q,p)] d3q d3p , (6)

where the Boltzmann factor acts as a statistical weighting for

a configuration {q,p} ∈ R
6N , normalised such that 〈1〉= 1.

We label atoms so that the first one is the tagged atom. De-

noting the force on the tagged atom produced from the j-th

atom by F j = [Fj,1,Fj,2,Fj,3] ∈ R
3, for j = 2,3, . . . ,N, the to-

tal force F = [F1,F2,F3] on the tagged atom is

F =
N

∑
j=2

F j.

We define

fk =
∫

Ωq

(

N

∑
j=2

Fj,1

)k

exp[−β U(q)] d3q (7)

for k = 0,1,2, . . . . Then we have

fk

f0
=

〈(

N

∑
j=2

Fj,1

)k〉

= 〈Fk
1 〉.

Then the k-th standardised moment (1) is given by

αk =
f

k/2−1

0 fk

f
k/2

2

, (8)

where we are interested in cases k = 4,6,8, . . . .
In order to study how the force distribution depends on the

physical parameters of interest it is useful to identify how

changes in these parameters will manifest themselves in the

system. Indeed, we choose to work in the canonical ensemble

with a target temperature of T : this is accomplished with the

use of a thermostat which is discussed further in Section IV B

and Appendix B. It is more illuminating to see that if we have

a system with a fixed number of free interacting atoms N in a

cubic box of side L; the (reduced) number density is given by

n = N/L3. Therefore the approach we employ in this paper
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to ascertain how values of standardised moments depend on

number density, will be to keep the number of atoms fixed but

vary the box width L - this will manifest as a change in den-

sity n. Similarly one could keep the volume of the cubic box

the same and vary the number of atoms though this is a point

of discussion in Section IV B.

For the remainder of the paper we will study systems with

different spatial dimensions. The size of the system varies by

changing the number of particles N; we will use equation (8)

as a crucial initial point in each calculation. We will natu-

rally proceed by investigating systems of increasing complex-

ity; starting from a cartoon one-dimensional model and cul-

minating to a general many-body system of arbitrary size in

three spatial dimensions.

III. ONE ATOM IN A POTENTIAL WELL

We now go on to illustrate three approaches to obtain the de-

pendence of the force distribution on parameters n and T . It

is useful to note that, as we are now working in one spatial

dimension, density n is proportional to 1/L, i.e. we have

n ∝ 1/L. We will consider a simple system in one spatial

dimension consisting of two atoms interacting through the

Lennard-Jones potential (3) in interval [0,L] with periodic

boundary conditions. One of the atoms is considered to be

fixed at position q0 = L/2 ∈ [0,L] and the other atom is free

to move, therefore, we have N = 1 free atom. Its position

is denoted x ∈ [0,L]. Therefore, the inter-atomic distance is

r = |x − q0|. Using our simplified one-dimensional set up,

F1 = F and Ωq = (0,L), equation (7) reduces to

fk(L) =

L
∫

0

Fk(|x−q0|) exp[−β U(|x−q0|)]dx, (9)

which is the marginalised expected value of the k-th moment

of force F(x) = −dU/dx, where we have dropped subscripts

in the Lennard-Jones potential (3) and we write it as U(z) =
4(z−12 − z−6). Utilising the symmetry of the potential (and

therefore the force) we are left with

fk(L) = 2

L/2
∫

0

Fk(r) exp[−β U(r)]dr. (10)

In what follows, we will assume that we are in a regime where

the box width L satisfies L ≫ r∗, where r∗ = 21/6 minimizes

the Lennard-Jones potential U .

A. Differential equation for standardised moments

We consider a perturbation of the form L → L+δL. Using

equation (10) and considering terms to the order O(δL), we

obtain

fk(L+δL) = fk(L) + f ′k(L) δL + O
(

δL2
)

= fk(L) + Fk(L/2) exp[−β U(L/2)]δL + O
(

δL2
)

.

Using equation (8), we approximate αk(L+δL) by

αk(L)+αk(L)υk(L) exp[−β U(L/2)]δL+O
(

δL2
)

,

where our notation αk(L) highlights the dependence of the

standardised moments of force, αk, on L, and function υk(L)
is given by

υk(L) =
k−2

2 f0(L)
+

Fk(L/2)

fk(L)
− k F2(L/2)

2 f2(L)
. (11)

Taking the limit δL → 0, we obtain the derivative of the k-th

standardised moment of force, with respect to L, as

∂αk

∂L
(L) = υk(L) exp[−β U(L/2)]αk(L), (12)

where υk(L) are expressed in terms of integrals (10) as given

by equation (11).

B. Far-field integral approximation

To further analyze integrals (10), we introduce a cutoff c,

which satisfies that r∗ < c < L/2, where r∗ = 21/6 is a unique

maximum of exp[−β U(z)], which can be Taylor expanded as

β (1+4z−6+4z−12−16/3z−18+8z−24 . . .). Considering suf-

ficiently large L, we can choose the cutoff c, so that

∣

∣

∣

∣

∣

∣

f0(L)−2





c
∫

0

exp[−β U(r)]dr+β

L/2
∫

c

1+
4

r6
dr





∣

∣

∣

∣

∣

∣

≤ ε , (13)

where tolerance ε is chosen to be 10−4 in our illustrative com-

putations. This splitting allows us to numerically calculate the

bulk of the integral (10) as a constant independent of L and

then use the second term to give an analytic expression for αk

with dependence on L, and ultimately on n.

The range of values of T that are of typical use are chosen in

order to maintain the liquid state of Argon during simulation.

These are approximately temperatures in the interval 0.70 <
T < 0.73 under ambient conditions26. Therefore, as volume

is varied we are in a regime where β = O(1), for convenience

we set β = 1. Though given that the density of our system

changes between each simulation some systems will be in a

liquid phase and others in a gaseous phase, this is a point of

discussion in Section IV B.

Splitting the integration domain [0,L/2] of integral (10)

into [0,c] and [c,L/2], we use the exact form of the integrand

in [0,c] to obtain a ‘near-field’ contribution. Utilising an ap-

proximate form for the integrand given by the truncated Taylor

expansion f (z) in the domain [c,L/2] gives rise to a density

dependent ‘far-field’ contribution. Combining these we arrive

at the approximate form for f0(L). Using cutoff c = 2, equa-

tion (13) is satisfied with ε = 10−4. Therefore, upon numer-

ically calculating the bulk contribution for the integral with

domain [0,2], we get

f0(L) = 2

L/2
∫

0

exp[−β U(r)]dr = b0 +L+O
(

L−6
)

(14)
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with b0 = −0.71832, which depends on our choice of cut-

off c = 2. Similarly, we can calculate far-field integral ap-

proximations of integrals (10) for general values of k =
2,4,6,8,10,12. The integrand Fk(r) exp[−β U(r)] has max-

ima when r = r∗ = 21/6 or when kU ′′(r) = β (U ′(r))2. This

forms a cubic in r6 that can be solved. For the values of k

used in this work, this sometimes results in a global maxi-

mum, that always lies at a distance less than r < r∗ from the

origin. Therefore r∗ = 21/6 is the furthest maximum of the

integrand from the origin.

Splitting integral (10) into a near-field and far-field contri-

bution, using the general cutoff c = 2, we find

fk(L) = bk +O
(

L−7k
)

(15)

The near-field contributions, bk, generally increase vastly if

we increase the value of k, for example

b0 =−0.71832, b2 = 130.64 and b4 = 2.5727×105, (16)

while the dependence on L decreases more rapidly for larger

values of k. Therefore, the non-negligible density contribu-

tions to αk(L) in the low density limit come exclusively from

the normalisation f0(L) given by (14).

Substituting equations (14) and (15) in equation (8), we ob-

tain an expression for the general k-th standardised moment

of force

αk(L) =
b

k/2−1

0 bk

b
k/2

2

(

1+
L

b0
+O

(

L−6
)

)k/2−1

. (17)

Using the values of b0, b2 and b4 given by (16), we obtain

the dependence of the kurtosis of the force distribution on the

reduced number density n = 1/L in the dilute limit n → 0 as

α4 =−10.828+15.074n−1 +O
(

n6
)

. Figure 1 compares this

result with the results obtained by MD simulation of the one

atom system. We observe that MD is in good agreement with

the results obtained by formula (17).

C. Leading order behaviour for differential equation (12)

Since L/2 > r∗, the force F(L/2) monotonically decreases as

a function of L. When looking at leading order approxima-

tions in the low density limit n→ 0 (equivalent to limit L→∞)

to equation (12), we need to analyse υk(L). The second and

third term in equation (11) converge to zero more rapidly than

the first term as L → ∞, therefore the leading order behaviour

is given by the first term

υk(L)∼
k−2

2 f0(L)
as L → ∞. (18)

By utilising the far field integral approximation (14), we arrive

at f0(L) ∼ (b0 +L), where b0 = b0(c) is a constant term that

depends on cutoff parameter c. With this, our leading order

approximation of the k-th standardised moment, α0
k , obeys

∂α0
k

∂L
(L) =

k−2

2(b0 +L)
α0

k (L) .

0.1 0.15 0.2 0.25

50

100

150

200

FIG. 1. Plot of α4 as a function of n = 1/L for the illustrative

one-atom system. Results of MD simulations are compared with

α4 = −10.828+ 15.074n−1 obtained by using equation (17) with

b0, b2 and b4 given by (16) (blue dashed line). MD simulation re-

sults for temperature T = 1 utilising Langevin dynamics27 described

in equation (B1), with friction parameter γ = 0.1, are represented

by red dots. The MD simulation length was a total of 1.1×108 time

steps with the first 107 time steps used for initialisation.

Finally this gives us that

α0
k (L) =Ck (b0 +L)k/2−1 =Ck

(

b0 +n−1
)k/2−1

, (19)

where n = 1/L is the reduced number density and Ck is a con-

stant. Equation (19) gives the same leading order behaviour

n1−k/2 in the limit n → 0 as equation (17): the same behaviour

is also seen for the Lennard-Jones fluid in Section IV. Though

the method above is more generally applicable to include po-

tentials that monotonically decay as r−a as r → ∞ for a > 0.

We next make the observation that equation (4) in 1D can be

written as:

Z1(T,V ) =
1

h

L
∫

0

exp[−β U(q)] dq

∞
∫

−∞

exp

[

−β p2

2

]

dp , (20)

where the Planck factor of 1/h arises instead of 1/h3 due to

the fact that we are in one-dimensional physical space. Us-

ing (10), we obtain

f0(L) = hZ1(T,V )

√

β

2π
. (21)

Considering the low density limit n → 0 (i.e. L → ∞) in equa-

tion (12) and using (18) and (21), we obtain

Z1(T,V )∼ (k−2)
√

2π
√

h2 β

[

αk(L)

(

∂αk

∂L
(L)

)−1
]

, (22)

as L → ∞. In particular, we can obtain the partition func-

tion (20) in the dilute (low density) limit by using information
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FIG. 2. Approximation of the partition function Z1(T,V ) obtained

using the right hand side of equation (22) with k = 4 and values of

kurtosis (α4) estimated from MD simulation (blue dashed line). The

exact values obtained by (20) are plotted as the red dots.

about the moments of the force distribution. The accuracy of

equation (22) is illustrated in Figure 2, where we use k = 4.

We use MD simulations of a single atom, using a range of

simulation box widths L. We estimate the values of kurtosis of

the force distribution, its derivative with respect of L and use

the right hand side of equation (22) to estimate the Z1(T,V ).
Considering L ≥ 10, the result is within 5% error when com-

pared with the exact result (20), while for larger values of box

width L the error decreases to around 1%, confirming that the

formula (22) is valid in the asymptotic limit L → ∞.

D. Temperature dependence of standardised moments

One can perform a similar analysis as in Section III A, viewing

the moments αk = αk(T ) as a function of temperature T =
1/β . To do that, we consider the moment definition (10) as a

function of temperature T , namely, we define

fk(T ) = 2

L/2
∫

0

Fk(r) exp

[

−U(r)

T

]

dr. (23)

Considering small perturbations of these functions with re-

spect to T → T +δT , while fixing the domain length L, and

collecting terms up to first order in δT , we obtain

∂αk

∂T
(T ) = νk(T )αk(T ) , (24)

where

νk(T ) =

(

k

2
−1

)

f ′0(T )
f0(T )

+
f ′k(T )

fk(T )
−
(

k

2

)

f ′2(T )
f2(T )

. (25)

Combining equations (24) and (25) with equation (21) where

β = 1/T , we obtain

∂

∂T
ln

(

α2
k f k

2

f 2
k

)

= (k−2)

(

∂

∂T
ln(Z1)−

1

2T

)

.

Since −∂/∂β (lnZ1) is equal to the average energy of the sys-

tem, 〈E〉, we have

〈E〉= T

2
+

T 2

k−2

∂

∂T
ln

(

α2
k f k

2

f 2
k

)

, (26)

where the first term on the right hand side of equation (26)

is the average kinetic energy of our one-atom system. Sub-

stituting equation (8) into the second term on the right hand

side, it can be rewritten as T 2∂ (ln f0)/∂T . Thus, using equa-

tion (6), we confirm that the second term on the right hand

side of equation (26) is the average potential energy.

E. Low temperature limit

Next, we consider the behaviour of the k-th standardised mo-

ment of force, αk(T ), given by equation (8), in the low tem-

perature limit, T → 0, which is equivalent to the limit β → ∞.

Since the inter-atomic potential U(r) has a global minimum at

r = r∗ in interval [0,L/2], integrals of the form (10) and (23)

can be approximated by Laplace’s method in the limit β → ∞
and T → 0, respectively. A general discussion of Laplace’s

method is given in Chapter 6 of the book by Bender and

Orszag28. We calculate the asymptotic expansion of f0(T )
by applying Laplace’s method to integral (23) for k = 0. We

approximate the integration limits of integral (23) to lie within

the domain r ∈ (r∗− ε ,r∗+ ε), where ε ≪ 1, and we Taylor

expand U(r) at r = r∗. Using U ′(r∗) = 0, we have

U(r)≈U(r∗)+(r− r∗)
2U ′′(r∗)/2

+(r− r∗)
3U (3)(r∗)/6+(r− r∗)

4U (4)(r∗)/24 ,

where we denote the mth derivative of U as U (m) for m ≥ 3.

Substituting into integral (23), we arrive at the asymptotic ex-

pansion

f0(T )∼
√

π T exp[−U(r∗)/T ]
√

2U ′′(r∗)

[

1+B0 T +O
(

T 2
)

]

, (27)

as T → 0, where constant B0 is given by28

B0 =
5(U (3)(r∗))2

24(U ′′(r∗))3
− U (4)(r∗)

8(U ′′(r∗))2
. (28)

To apply Laplace’s method to integral (23) for k = 2,4,6, . . . ,
we note that Fk(r) = (U ′(r))k for even values of k. Using

the truncated Taylor expansion around r = r∗ and noting that

U ′(r∗) = 0, we have

Fk(r) ≈ (r− r∗)
k
(

(

U ′′(r∗)
)k

+ (r− r∗)Ck,1

+(r− r∗)
2 Ck,2

)

, (29)

where Ck,1 and Ck,2 are constants, which can be expressed in

terms of the derivatives of potential U(r) at r = r∗ (see equa-



On standardised moments of force distribution in simple liquids 6

tions (A1) and (A2) in Appendix A). This gives the asymp-

totic expansion

fk(T )∼
√

π T exp[−U(r∗)/T ]
√

2U ′′(r∗)

× Ak

[

T k/2 + Bk T k/2+1 +O
(

T k/2+2
)]

.

(30)

as T → 0, where constants Ak and Bk are given by

Ak =
(

U ′′(r∗)
)k/2

(k−1)!!

and

Bk =
(4k−15)(k2 −1)(U (3)(r∗))2

72(U ′′(r∗))3
+

(k2 −1)U (4)(r∗)
8(U ′′(r∗))2

,

where the last formula reduces to equation (28) for k = 0. Sub-

stituting (27) and (30) into (8) gives the following expression

in the limit T → 0:

αk ∼ (k−1)!!

(

1 +
(k−2)B0 +2Bk − k B2

2
T + O

(

T 2
)

)

.

In particular, we have α2 ∼ 1+O
(

T 2
)

and

α4 ∼ 3 + 3

(

(U (3)(r∗))2

(U ′′(r∗))3
+

U (4)(r∗)
(U ′′(r∗))2

)

T +O
(

T 2
)

= 3+
203

6
T +O

(

T 2
)

. (31)

Therefore, Laplace’s method predicts that the standardised

moments of the force distribution, αk(T ), tend to the values

given in equation (2) for Gaussian moments in the low tem-

perature limit. This limiting behaviour is to be expected as

during the Laplace approximation we use a Gaussian distri-

bution to approximate the Boltzmann factor. We can inter-

pret this approach as approximating the force distribution as

Gaussian and perturbations of the system around small tem-

peratures give rise to non-Gaussian contributions to the stan-

dardised moments.

Results from MD simulation are illustrated in Figure 3 over

the range of values of temperature T . We see that the be-

haviour of kurtosis, α4, is well approximated by the linear

approximation 3+203T/6 given in equation (31) for the tem-

perature values satisfying T ≤ 0.1, though this agreement di-

verges as temperature T increases and higher order terms,

O
(

T 2
)

in equation (31), become significant. In Figure 3, we

fix the box width as L = 10. Increasing the box width much

further would take us to a regime where the particle is essen-

tially free and the approximation calculated by the Laplace

method around the potential minimum would lose validity.

IV. MANY-BODY SYSTEMS

In this section we employ the far field approximation ap-

proach introduced in Section III B and we will vary the num-

ber density of the system by changing the size L of the inte-

gration domain, which will be given as the three-dimensional

0 0.1 0.2 0.3

0

5

10

15

20

FIG. 3. Kurtosis, α4, as a function of temperature, T , for T ≤ 0.3.

The linear behaviour is estimated as α4(T )∼ 2.9388+37.002T for

T ∈ (0.01,0.10) (using the MD computed data, with density n = 0.1,

visualized as red dots). We compare this to the theoretical linear

result 3+203T/6 predicted by equation (31) (illustrated by the blue

dashed line).

cube [0,L]3. Using notation introduced in Section II, the dis-

tance between atoms labelled i, j = 1,2, . . . ,N positioned at

qi,q j ∈ R
3 is denoted by ri j =

∣

∣qi −q j

∣

∣. Taking into account

the periodic boundary conditions, the distance
∣

∣qi −q j

∣

∣ is the

minimum image inter-atomic distance given by

|qi −q j|=
(

(qx
i −qx

j)
2
+(qy

i −q
y
j)

2
+(qz

i −qz
j)

2
)1/2

, (32)

where the overline denotes ζ = ζ −L [ζ/L] for ζ ∈ R and [.]
rounds a real number to the nearest integer. For an interact-

ing N-body system the dimensionality of the integral given by

equation (7) is 3N. We first present an illustrative calculation

with N = 2 interacting atoms in Section IV A and then we

study systems with larger values of N in Section IV B.

A. Dependence of αk on density for N = 2 interacting atoms

In Section III, we have considered two atoms in the one-

dimensional spatial domain, where one atom was fixed at

position q0, i.e. we have effectively studied a single atom

in a one-dimensional potential well. Here, we will consider

N = 2 interacting atoms in the three-dimensional cubic do-

main [0,L]3 with periodic boundary conditions. We calcu-

late the k-th standardised moment of force according to equa-

tion (8). To do so, we consider equation (7), where we have

d3q = d3q1 d3q2, U(q) =U(r12), F1(q) = F1(r12) and we in-

tegrate over the domain Ω = [0,L]3 × [0,L]3 to get

fk =

∫

Ω
Fk

1 (r12) exp[−β U(r12)] d3q1 d3q2. (33)

It is useful to introduce a change of coordinates ξ ℓ = qℓ1 −qℓ2
and ηℓ = qℓ1 + qℓ2 for ℓ = x,y,z. We note that r12 is only de-
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pendent on the ξ ℓ variables, therefore one can trivially inte-

grate (33) through the ηℓ variables as the integrand has no

dependence on these to obtain

fk =
L3

8

L
∫

−L

L
∫

−L

L
∫

−L

Fk
1 (r12) exp[−β U(r12)] dξ x dξ y dξ z ,

where r12 is the minimum image inter-atomic distance (32).

This integral can be written in terms of standard Euclidean

distance r2 = (ξ x)2 +(ξ y)2 +(ξ z)2 as

fk = 8L3

L/2
∫

0

L/2
∫

0

L/2
∫

0

Fk
1 (r) exp[−β U(r)] dξ , (34)

where dξ = dξ x dξ y dξ z. In order to analyse fk further by

implementing a far field approximation, we need to make sure

we are in a regime where the integrand is small - we do this

by introducing a cutoff γ , which will divide the cube [0,L/2]3

into 8 cuboid subdomains, including

Ω1 = [0,γ ]3, Ω2 = [0,γ ]2 × [γ ,L/2],

Ω3 = [0,γ ]× [γ ,L/2]2, Ω4 = [γ ,L/2]3.

Utilising the symmetry of the problem, we can rewrite inte-

gral (34) as

fk = 8L3

(

∫

Ω1

+ 3

∫

Ω2

+ 3

∫

Ω3

+

∫

Ω4

)

Fk
1 (r) exp[−β U(r)] dξ .

(35)

Considering (35) for k = 0, the integral over Ω1 is independent

of L and provides a bulk contribution to f0 that will depend

on γ . The remaining three terms have integration domains

that allow the integrand to be accurately described by a Taylor

expansion giving the leading order contribution in the asymp-

totic limit L → ∞ as f0 ∝ L6, which can be rewritten in terms

of the density, n, in the form

f0 ∝ n−2 as n → 0. (36)

Considering fk for k 6= 0, the integral over Ω1 in equation (35)

is again independent of L. However in the far field expansion

the integrals over Ω2, Ω3 and Ω4 all decay with L due to the

force factor. As the integration domain has essentially been

transformed into that of inter-atomic distances about the three

coordinates, when we increase the domain length, the inter-

atomic force necessarily decays to 0. Therefore in the limit

L → ∞ the dominant term arises from integrating over Ω1,

and we see that, for k = 2,4,6,8, . . . ,

fk ∝ n−1 as n → 0 . (37)

This leaves us with the final result that in the low density

limit n → 0, combining equation (8) with asymptotic expres-

sions (36) and (37),

αk ∝ n1−k/2 as n → 0 . (38)

While this result has been calculated for N = 2 interacting

atoms, it is also confirmed for larger values of N by estimating

the k-th standardised moments using MD simulations, as it is

shown in the next section.

N tsim L0 n0

2 109 5 0.016

8 107 3 1/64

64 106 5 1/64

512 104 10 1/64

TABLE I. The length of MD simulation, tsim, the (smallest) box

width, L0, used for simulations with N atoms and density n0 for MD

simulations with varying temperatures.

B. MD simulations with N interacting atoms

In this section we present the results from MD simulations of

many-body systems in three spatial dimensions using differ-

ent values of N, including the case N = 2 (analyzed in Sec-

tion IV A). Atoms are subject to pairwise interactions gov-

erned by a Lennard-Jones potential, given in equation (3). For

each system we use a velocity-Verlet23 integrator and main-

tain the system in the canonical ensemble by incorporating

a Nosé-Hoover thermostat37, see Appendix B. We perform

two types of MD simulation studies: those that are used for

studying how the number density, n, of a system affects stan-

dardised moments, and those that aim to probe temperature

dependency. In all cases we utilise a time step ∆t = 0.01. In

the case of the simulation with N = 2 atoms, we initialise the

positions of atoms by setting q1 = 0 and q2 = (L/2,L/2,L/2),
whereas for the N = 8, 64, 512 atom systems, we choose to

initialise these on a uniform cubic lattice.

The MD simulation parameters are summarised in Table I,

where tsim is the total simulation time used for calculating the

required statistics, which is preceded by the initial simulation

of length tsim/10 used for equilibrating the system. When

investigating the number density dependence, we perform

20 simulations each with a box width of L = L0 × (6/5)i−1,
where i = 1,2, . . . ,20 labels the simulation number and L0 is

the smallest cubic box width. We simulate the N = 8,64,512-

atom systems with L0 = 3, 5, 10, respectively. This enables

direct comparison because we can identify triplets of simu-

lated systems corresponding to systems of the same number

densities. The two-atom system however is simulated in a

sparser regime with L0 = 5. We calculate statistics on the fly

for every time step, for every atom and for each coordinate

- therefore we average the computed results over the number

of time steps (tsim/∆t) and atom coordinates (3N). In partic-

ular, the statistics are calculated over 3N tsim/∆t data points.

This is equal to 6×1011 (resp. 1.536×109) data points in the

simulation with N = 2 (resp. N = 512) atoms.

Calculating the number density in three spatial dimensions

by n = N/L3, we can study the behaviour of kurtosis α4 as n

varies. The results are presented in Figure 4. We see general

agreement between behaviour of each of the four systems. We

see when n is equal, the values of kurtosis are larger for N = 2

than for the many-body systems with N = 8,64,512, which

agree well amongst themselves.

The results in Figure 4 enable us to test the asymptotic

expression (38) for k = 4 derived in the limit n → 0. Util-
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FIG. 4. Dependence of kurtosis α4 on density n. Each of the larger atomic systems (N = 8,64,512) is simulated over the same domain of

number densities, while the N = 2 system is simulated in a sparser domain, though all are simulated in three spatial dimensions. We truncate

the results of the N = 2 simulation in the plot, however the additional data points are used to calculate the results displayed in Figure 5.
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FIG. 5. Comparison of the results of MD simulations for a range

of values of the number of atoms, N. After long time simulation,

we compute the asymptotic behaviour αk ∝ n−κ and compare the

leading order power scalings for each system. We compare this with

the theoretical result (38) (denoted as a blue dashed line) that in the

limit n → 0 we expect the universal behaviour κ = k/2− 1, where

k = 2,4,6, . . . denotes which standardised moment of force we are

looking at.

ising similar log-log plots for MD data, we estimate the

power law behaviour of each standardised moment, αk, for

k = 4,6,8,10,12. Figure 5 illustrates the results. All systems

agree well with the predicted asymptotic behaviour (38), in

particular the N = 512 atom system. There is a slight devia-

tion between the results due to the fact that the smaller atom

systems require a larger tsim in order to converge fully to the

predicted value. This discrepancy is amplified when looking

at higher standardised moments due to the fact that we are cal-

culating statistics resulting from F12
1 (i.e. for α12) compared

to F4
1 (i.e. for α4), for example.

0 0.5 1 1.5
0

200

400

600

800

FIG. 6. Dependence of kurtosis α4 on temperature T . Each atomic

system is simulated at approximately the same density n = n0 given

in Table I.

The dependence of kurtosis α4 on temperature T is pre-

sented in Figure 6, where we keep the density fixed at n = n0

given in Table I. We observe that as temperature increases so

does the kurtosis of the force distribution associated with each

system. This can be explained in terms of the dynamics of the

interacting atom system. If we maintain each system in the

canonical ensemble, we expect on average that each atom will

have a kinetic energy equivalent to 3T/2 (when in reduced

units). As we increase this target temperature, the atoms be-

come more energetic and thus are able to probe closer inter-

atomic distances before a large repulsive force overcomes this

inertial attraction. The range of forces on the tagged parti-

cle widens as temperature increases and therefore contributes

to more outlier results in the distribution - leading to heav-

ier tails and therefore distributions which become increasingly

leptokurtic.
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In Figure 6, we observe that there is a qualitative differ-

ence between the results for N = 2 and larger atom sys-

tems. We see a bifurcation for the N = 64 and N = 512 sys-

tems at some temperature T∗ ∈ (0.6,0.65), where a steady in-

crease in kurtosis changes to a rapid increase. This bifurca-

tion point in the phase plane lies on the coexistence boundary

with (n,T ) = (1/64,T∗) and is due to a clustering mechanism

which has been seen in MD simulations of Lennard-Jones flu-

ids29. From our results we see that the N = 2 system has

missed this behaviour completely. Snapshots of the N = 512-

atom system at some T = 0.6 < T∗, and T = 0.66 > T∗ are

displayed in Figure 7. For T = 0.6, we see a large cluster has

formed in the many-atom system. There would be far fewer

outlier force results in this case due to the fact that the large

majority of atoms are moving as a collective and effectively

have fixed inter-atomic forces. Compared to the T = 0.66

snapshot, where we see that the atoms are too kinetically un-

stable to form these larger stable cluster structures, this results

in more outlier forces felt between atoms due to the fact that

the system is intrinsically more disordered. It is useful to note

that this bifurcation point is located on the vapour-liquid coex-

istence boundary, the mechanisms of which have been studied

on dilute Lennard-Jones fluids30; here we see that this results

in a bifurcation on standardised moments of the force distri-

bution.

To understand the underlying variations of kurtosis, α4,

with respect to changes in temperature and density, we use

12 × 16 MD simulations with N = 512 atoms and tsim =
3 × 106, varying simulation parameters (n,T ), where n =
10−2 +(i− 1)/10, for i = 1,2, . . . ,12, and T = 10−1 + j/10,

for j = 1,2, . . . ,16. The sampled values of excess kurtosis

(α4 − 3) are displayed in Figure 8. Here a bifurcation can be

seen when using the smallest density n = 0.01, as the change

in colour is prominent in this vertical strip, indicating a large

change of kurtosis. This occurs around T = 0.6, which is con-

sistent with the result in Figure 6, where we saw the bifurca-

tion similarly located, though the slight shift in temperature is

accounted for by the shift in density parameters used in each

simulation (namely n = 0.01 in Figure 8 and n = 1/64 in Fig-

ure 6).

In general, this low density strip contains the largest val-

ues of kurtosis, and covers much of the purely gas phase of

the Lennard-Jones fluid. This paper has so far probed the low

density limit in an attempt to understand why the standardised

moments of force are so large, though Figure 8 gives a good

overview that in general, regardless of phase, a decrease in

temperature, or an increase in density, systematically lead to

a lower value of standardised moments. In this case as n → ∞
or T → 0, we expect the α4 → 3 (excess kurtosis tends to

zero). This limiting regime corresponds to the solid phase of

a Lennard-Jones system, where the force variations are min-

imal and the distribution is Gaussian. There is not enough

space, nor energy, that lead to (many) outlier forces experi-

enced by any atom, so the force distribution becomes less and

less skewed from Gaussian, the deeper we probe in these re-

gions. This intuition was demonstrated analytically in Sec-

tion III E when we showed this limiting behaviour on a 1D

cartoon model with equation (31). It is interesting to note that

these changes in values of α4 appear smooth about changes in

temperature and density (in absence of the bifurcation point

for larger values of n), regardless of phase transitions.

(a) (b)

FIG. 7. Snapshots31 of the MD simulation are taken for the system

with N = 512 atoms at time t = 7.5×105 for: (a) T = 0.6 < T∗; and

(b) T = 0.66 > T∗. Density is n = 1/64.

V. DISCUSSION AND CONCLUSIONS

In Section III we have demonstrated use of a variety of meth-

ods to study the standardised moments of the force distribu-

tion in order to probe both their temperature and number den-

sity dependence. This gave way to a rich structure where we

show that the partition function for a 1D system can be cal-

culated entirely from these standardised moments. Extend-

ing the far field method introduced in Section III B to a sys-

tem with N atoms in three-dimensional physical space, Sec-

tion IV studies the dependence of αk on number density n,

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

FIG. 8. The excess kurtosis, α4 −3, calculated as a function of den-

sity n and temperature T for n ≤ 1.11 and T ≤ 1.7. The white dot-

ted lines describe coexistence lines of different phases of a Lennard-

Jones fluid taken from the literature32–35. The solid black dots in-

dicate (from left to right), the critical point and vapour-liquid-solid

triple points.
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deriving the asymptotic expression (38). Our analytic re-

sults are contrasted with MD simulations of four systems of

N = 2,8,64,512 interacting Lennard-Jones atoms and these

are compared. The results agree well with theoretical pre-

dictions though the results for systems with larger values of

N are seen to converge more readily to the theoretically pre-

dicted results. In particular, rich dynamics such as clustering

of Lennard-Jones fluids is completely missed by the systems

with smaller values of N, but captured for systems with N as

small as N = 64 atoms. In general, as temperature increases

αk increases due to energetic nature of atoms allowing them

to push closer together and experience larger forces. Cluster-

ing exhibited at the vapour-liquid coexistence phase incurs a

bifurcation point whereby a large increase is seen in the stan-

dardised moments of force in Figure 6, though a general in-

crease in temperature, or decrease in number density, results

in an increase in a4 regardless of the temperature/number den-

sity domain studied, as shown in Figure 8.
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Appendix A: Constants Ck,1 and Ck,2 in equation (29)

The constants appearing in equation (29), namely Ck,1 and

Ck,2, are given by formulas

Ck,1 =
k (U ′′(r∗))k−1U (3)(r∗)

2
, (A1)

Ck,2 =
k

24
(U ′′(r∗))

k−2 (A2)

×
(

3(k−1)
(

U (3)(r∗)
)2

+ 4U ′′(r∗)U (4)(r∗)

)

,

which can be derived in the following manner. Using Fk(r) =
(U ′(r))k for even values of k and U ′(r∗) = 0, we first note that

Fk,k(r∗) = k!
(

U ′′(r∗)
)k
,

Fk,m(r∗) = 0, for m ≤ k−1,

where Fk,m denotes the m-th derivative of Fk, i.e. the m-th

derivative of the k-th power of F . Therefore, the first three

non-zero terms of the Taylor expansion of Fk(r) around r = r∗
are

Fk(r)≈ (r− r∗)
k
(

U ′′(r∗)
)k
+(r− r∗)

k+1 Fk,(k+1)(r∗)
(k+1)!

+(r− r∗)
k+2 Fk,(k+2)(r∗)

(k+2)!
. (A3)

Therefore, we have Ck,1 = Fk,(k+1)(r∗)/(k + 1)! and Ck,2 =

Fk,(k+2)(r∗)/(k+2)! and, to derive equations (A1) and (A2),

we need to express derivatives Fk,m(r∗) for m = k + 1 and

m = k+2 in terms of derivatives of U(r) at r = r∗. Using the

product rule, the m-th derivative of Fk(r) can be, in general,

written as a finite sum of the form

Fk,m(r)=
k

∑
α0,α1,...,αm=0

C(α0,α1, . . . ,αm)
m

∏
i=0

(

F(i)(r)
)αi

, (A4)

where F(i)(r) is the i-th derivative of function F(r) and

C(α0,α1, . . . ,αm) are constants, many of them equal to zero.

In fact, all terms in the expansion (A4) have multiplicities that

sum to k, that is we can only sum over sequences satisfying
m

∑
i=0

αi = k, (A5)

and all terms in the expansion (A4) have m derivatives, that is,

we have m

∑
i=0

iαi = m, (A6)

where αi ∈ {0,1, . . . ,k} for i = 0,1,2, . . . ,m. Equation (A6)

is of the form of a finite Diophantine equation, which has

no closed form for the number of solutions. In particular,

simplifying equation (A4) by solving equations (A5)–(A6) is,

in general, not possible. However, noting the specific prop-

erty that F(r∗) = 0 = U ′(r∗), we see that all terms that have

α0 6= 0 will vanish when evaluated at this unique minimum

r = r∗. In particular, we will obtain relatively simple forms

of the sum (A4) for m = k+ 1 and m = k+ 2 by considering

equations (A5)–(A6) with α0 = 0.

First, let us consider that m = k + 1. Using α0 = 0, there

is only one solution of equations (A5)–(A6) in non-negative

integers, namely α1 = k− 1, α2 = 1 and α3 = α4 = · · · = 0.
Therefore, equation (A4) implies

Fk,(k+1)(r∗) =C(0,k−1,1,0, . . . ,0)
(

F(1)(r∗)
)k−1

F(2)(r∗).

Using the general Leibniz rule36, we evaluate the combina-

torial prefactor as C(0,k− 1,1,0, . . . ,0) = k(k+ 1)!/2. Sub-

stituting into Ck,1 = Fk,(k+1)(r∗)/(k+ 1)! and using F(r∗) =
−U ′(r∗) and that k is an even integer, we obtain formula (A1).

Second, we consider the case m= k+2. Using α0 = 0, there

are two solutions of equations (A5)–(A6) in non-negative in-

tegers. The first solution is α1 = k− 1, α2 = 0, α3 = 1 and

α4 = α5 = · · ·= 0.The second solution is α1 = k−2, α2 = 2

and α3 = α4 = · · ·= 0. Therefore, equation (A4) implies

Fk,(k+2)(r∗)

= C(0,k−1,0,1,0, . . . ,0)
(

F(1)(r∗)
)k−1

F(3)(r∗)

+C(0,k−2,2,0,0, . . . ,0)
(

F(1)(r∗)
)k−2(

F(2)(r∗)
)2

.

Using the general Leibniz rule36, we evaluate these combina-

torial prefactors as

C(0,k−1,0,1,0, . . . ,0) =
k

6
(k+2)!,

C(0,k−2,2,0,0, . . . ,0) =
k(k−1)

8
(k+2)!.

Substituting into formula Ck,2 = Fk,(k+2)(r∗)/(k+2)! and us-

ing F(r∗) = −U ′(r∗) and that k is an even integer, we obtain

equation (A2). Thus, we have arrived at the the expressions

for Ck,2 and Ck,2 that are used in equation (29).
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Appendix B: Thermostats used in MD simulations

Considering 3D simulations in Section IV B, we use a Nosé-

Hoover thermostat. Its parameter, originally37 denoted Q, is

the relaxation time of the thermostat. It is a measure of how

strongly the thermostat is attached to the dynamics of the sys-

tem. We choose a cautious value of Q = 10T for each simula-

tion; this linear scaling with T is necessary as we need to more

tightly couple the thermostat at lower temperatures in order to

accurately maintain the system in the canonical ensemble38.

For 1D simulations in Section III, we maintain the canon-

ical ensemble at a target (reduced) temperature T by imple-

menting a Langevin thermostat. This is due to problems with

ergodicity utilising the Nosé-Hoover thermostat for small sys-

tems39,40. Here the evolution of the free particle is modelled

(in reduced units) as41,42

ẍ =−dU

dx
− γ ẋ+

√

2γ T R(t) , (B1)

where R(t) is standard white noise, and γ acts as a friction pa-

rameter. We choose γ = 0.1 when calculating our illustrative

results presented Figures 1 and 3.
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