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This work investigates multi-resolution methodologies for simulating dimer models. The solvent particles
which make up the heat bath interact with the monomers of the dimer either through direct collisions (short-
range) or through harmonic springs (long-range). Two types of multi-resolution methodologies are considered
in detail: (a) describing parts of the solvent far away from the dimer by a coarser approach; (b) describing
each monomer of the dimer by using a model with different level of resolution. These methodologies are
then utilised to investigate the effect of a shared heat bath versus two uncoupled heat baths, one for each
monomer. Furthermore the validity of the multi-resolution methods is discussed by comparison to dynamics
of macroscopic Langevin equations.

I. INTRODUCTION

Molecular dynamics (MD) approaches, based on the rules
of classical mechanics, have been used to study the be-
haviour of complex biomolecules in biological applica-
tions1,2. They are written in terms of the positions
and velocities of particles, representing either individ-
ual atoms or groups of atoms, describing parts of a
biomolecule3–6. Inter-particle forces in MD models in-
clude combinations of short-range and long-range inter-
actions7,8. In all-atom MD models, a common exam-
ple of short-range forces are interactions described by
the Lennard-Jones potential9,10, while Coulomb forces
provide an example of long-range forces7. Considering
coarse-grained or caricature MD models, short-range in-
teraction models include systems when particles only in-
teract through direct collisions11–14, while long-range in-
teractions also include models, where particles interact
through harmonic-springs15,16. Once the inter-particle
interactions are specified, MD describes the time evolu-
tion of the model as a system of ordinary or stochastic
differential equations for the positions of particles, which
can also be subject to algebraic constraints, represent-
ing bonds between atoms or fixed internal structures of
a biomolecule2,17,18.
Biologically relevant simulations have to be done in

aqueous solutions. A number of water models have been
developed in the literature to use in all-atom MD sim-
ulations, including commonly used three-site (SPC/E,
TIP3P) models19,20. In coarse-grained MD models, wa-
ter is often treated with the same level of coarse-graining
as other molecules in the system. For example, four wa-
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ter molecules are combined into a single coarse-grained
water bead in the Martini model3, while Wat Four water
model6 uses four linked beads placed at the corners of a
tetrahedron to collectively represent 11 water molecules.
In this paper, we consider two theoretical heat baths
which enable more analytical progress than solvent mod-
els based on all-atom or coarse-grained water models.
In both cases, the convergence to the Langevin descrip-
tion of the solute particle can be established in a certain
limit11–16. Our solute particle will also be treated with
the same level of simplicity and described as a simple
dimer molecule consisting of two monomers (beads) con-
nected by a spring.
Multi-resolution (hybrid) methods use detailed and

coarse-grained simulations in different parts of the simu-
lation domain during the same dynamic simulation21–24.
Such methods have been developed in different ap-
plication areas and at different spatial and temporal
scales in the literature, including dual-resolution ap-
proaches AdResS and H-AdResS for all-atom MD simula-
tions25–29, methods for coupling Brownian dynamics ap-
proaches with lattice-based stochastic reaction-diffusion
models30–32 or methods which make use of continuum
mean-field equations for the macroscopic component of
the simulation33–35.
In some multi-resolution MD approaches, the region of

high resolution moves together with the large microscopic
structure of interest so that the high resolution model is
always used for the whole considered structure, which
can range in size from a single biomolecule (a protein or
a DNA in solution27,28) to virus-like particles36,37. The
structure of interest is placed in the centre of the simula-
tion domain and it is solvated using a detailed atomistic
MD water in its immediate neighbourhood, which is cou-
pled with a coarse-grained water description in the rest
of the computational domain.
Another type of multi-resolution modelling is used for

modelling of macromolecules where a detailed model of
an important part of a macromolecule is coupled with
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a coarser model of the rest of the macromolecule. For
example, atomistic detail of the active part of an enzyme
has been coupled with a coarser model of the rest of the
protein38, different resolutions have been used in bead-
spring modelling of DNA39,40 or for modelling of polymer
melts41,42.
In this paper, we study both multi-resolution ap-

proaches using a simple dimer model consisting of two
monomers (beads) connected by a spring. Similar mod-
els, where a macromolecule is described as several beads,
representing parts of the simulated biomolecule, con-
nected by springs, have been obtained in the literature
using the method of ultra-coarse-graining43. Thus our
dimer model can be considered as a caricature of an ultra-
coarse-grained model of a macromolecule. We study its
behaviour in two theoretical heat baths. Our investiga-
tion focuses on multi-resolution (multiscale) descriptions
of the solvent which can be described at the microscopic
level of individual solvent molecules or at the macroscopic
(dimer) level with the introduction of extrinsic random
thermal forces on the monomers. We present models of
the same dimer with various multi-resolution descriptions
for the solvent and highlight the conditions and reasons,
when and why, different model approximations of the sol-
vent may be made in simulations.
Our paper is organized as follows. In Section II, we

introduce the macroscopic dimer model with a macro-
scopic description for solvent forces. This macroscopic
model is fully described by Langevin equations. The
Langevin macroscopic model is commonly used in simula-
tion due to ease of implementation and analysis. We dis-
cuss in Section II the properties of this description with
the intent to use these properties as benchmarks against
which to compare microscopic and multi-resolution sol-
vent models for the same dimer. Two theoretical micro-
scopic approaches to model the solvent are introduced
and studied through multi-resolution (simultaneous mi-
croscopic and macroscopic coupled) modelling in Sec-
tions III and IV. One of them is based on (very) short-
range interactions, as heat bath particles only interact
with the dimer on contact. The other one is at the op-
posite extreme, as it is based on (very) long-range inter-
actions, where the heat bath is modelled as a system of
many harmonic oscillators.

II. THE DIMER MODEL

In this section we will talk exclusively about the con-
struction of the model for the dimer which will be used
throughout this manuscript. In doing so, we describe
the solvent at the macroscopic level as an extrinsically
added random force. The result will be a set of Langevin
equations. Throughout the manuscript we will modify
the treatment of the solvent forces at various scales and
hybrid resolutions but the underlying dimer model will
be the same.
We consider a model of a dimer which is described

by positions of its two monomers, denoted by X1 =
[X1;1, X1;2, X1;3] and X2 = [X2;1, X2;2, X2;3], respec-
tively. Each monomer has the same mass, M . We de-
note by R the vector describing the separation between
the monomers, i.e. R = X2 − X1, and by R its mag-
nitude R = |R|. The interaction between monomers is
given in terms of the potential Φ ≡ Φ(R) : [0,∞) → R,
which generates a force on each of the monomers with
magnitude Φ′(R).
When the dimer is placed into a heat bath, there are

additional forces on the two monomers caused by in-
teractions with solvent molecules. The solvent forces
can be modelled in a number of different ways and at
various scales. In this manuscript, we consider two
classes of models to describe the solvent-dimer interac-
tions. The first, presented in Section III, models the
solvent as a bath of point particles which collide with
the monomers and elastic collisions (short-range interac-
tions) contribute to the generation of the forces. In the
second case, described in Section IV, solvent molecules
are point particles which oscillate around and inter-
act at a distance (through long-range interactions) with
the monomers. The solvent-dimer interactions are the
sum of harmonic oscillatory forces acting on each of the
monomers. Importantly, both descriptions under suit-
able assumptions lead to a macroscopic description of the
dimer given by the following set of Langevin equations

dX1 = V1 dt, (1)

dV1 =
Φ′(R)

M

R

R
dt− γV1 dt+ γ

√
2D dW1, (2)

dX2 = V2 dt, (3)

dV2 = −Φ′(R)

M

R

R
dt− γV2 dt+ γ

√
2D dW2, (4)

whereV1 = [V1;1, V1;2, V1;3] andV2 = [V2;1, V2;2, V2;3] are
velocities of the first and second monomer, respectively,
W1 and W2 are three-dimensional vectors of indepen-
dent Wiener processes, D is a diffusion coefficient and γ
is a friction coefficient, with dimension [γ] = [time]−1.

System (1)–(4) provides a macroscopic model of the
dimer, which we compare with microscopic (or multi-
resolution) MD simulations which explicitly model the
solvent. Its validity for different MDmodels can be tested
by comparing values of different dimer’s statistics at equi-
librium, including its expected length Ld, dimer velocity
autocorrelation function Cd(τ) and dimer diffusion con-
stant Dd, defined by

Ld = lim
t→∞

〈R〉 ,

Cd(τ) = lim
t→∞

1

3

〈
V(t+ τ) ·V(t)

〉
, (5)

Dd = lim
t→∞

1

6t

〈(
X(t)−X(0)

)2〉
,

whereX = (X1+X2)/2 is the centre of mass of the dimer
andV = (V1+V2)/2 is its velocity. These quantities can
be obtained analytically for our macroscopic model (1)–
(4) as follows. Adding equation (2) and equation (4) and
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noting that the sum of two independent Wiener processes
is another Wiener processesW with an infinitesimal vari-
ance which is the sum of the variances of the original two
processes, we obtain an Ornstein-Uhlenbeck process for
V in the following form

dV = −γV dt+ γ
√
D dW.

Therefore, we have

Cd(τ) =
Dγ

2
exp[−γτ ]. (6)

Integrating over τ , we deduce

Dd =

∫ ∞

0

Cd(τ) dτ =
D

2
. (7)

Taking the difference of equation (4) minus equation (2),
implementing the over-damped assumption (where γ is
large) and combining the independent Weiner processes
into a single Weiner processes W gives

dR = −2Φ′(R)

Mγ

R

R
dt+ 2

√
D dW.

The stationary distribution corresponding to this process
is proportional to exp[−Φ(R)/(MDγ)]. Normalizing, we
find the distribution of dimer lengths equal to

̺(R) =
exp

[
− Φ(R)

MDγ

]

4π
∫ ∞

0
r2 exp

[
− Φ(r)

MDγ

]
dr

.

In the simulations that follow in this manuscript, we shall
be assuming the dimer potential acts like a linear spring
with a rest length of ℓ0 and a spring constant of k between
the two monomers. That is, we shall assume

Φ(R) =
k(R− ℓ0)

2

2
. (8)

Each monomer within the dimer is representing a half of
a molecule of interest and the value of the spring con-
stant indicates the flexibility in which the molecule can
change its shape. In this paper, we consider the param-
eter regime where the spring constant k is sufficiently
large so that the dimer has a well-defined structure. In
the limit of large k, we have ε = MDγ/(k ℓ20) ≪ 1. Then,
Ld can be calculated as

Ld ≈ ℓ0

(
1 +

2MDγ

k ℓ20

)
, (9)

which is valid up to the first order in ε. In particular,
the presence of heat baths extends the dimer from its rest
length on average. In the following two sections, we study
two theoretical MD models, where we use equations (6),
(7) and (9) to compare the macroscopic theory with the
results obtained by MD simulations.

III. SHORT-RANGE INTERACTION HEAT BATH

We describe the two monomers as balls with radius r0
and mass M which interact with point solvent particles
when they collide with them. In particular, this is a the-
oretical model of a (very) short-range interaction heat
bath. Between collisions, monomers follow Newton’s sec-
ond law of motion in the form

M
dV1

dt
= Φ′(R)

R

R
, (10)

M
dV2

dt
= −Φ′(R)

R

R
, (11)

where, following our notation introduced in Section II,
positions and velocities of the monomers are denoted by
Xi and Vi, respectively, and R = X2 −X1.

Our short-range interaction heat bath is described in
terms of positions x

j
i and velocities v

j
i , of heat bath

particles, where i = 1, 2 is the monomer number and
j = 1, 2, 3, . . . , is the number of the heat bath particle.
Notice that this formulation allows us to consider two im-
portant cases: (a) each monomer has its own heat bath;
(b) a single heat bath is shared by both monomers. By
comparing our simulation results in cases (a) and (b), we
can explicitly investigate whether there are any signifi-
cant hydrodynamic interactions between the monomers.
In the case (b), we simplify our notation by describing
particles of the single heat bath by

xj = x
j
1 = x

j
2, and vj = v

j
1 = v

j
2. (12)

In both cases (a) and (b), we assume that all heat bath
particles have the same mass, m, and define (dimension-
less) parameter µ by

µ =
M

m
.

We are interested in the parameter regime where µ ≫ 1.
Our MD model is based on elastic collisions of heavy
monomers (balls with mass M and radius r0) with point
heat bath particles with masses m. We assume that
the collisions are without friction, then conservation of
momentum and energy yields the following formulae for
post-collision velocities12

Ṽi = [Vi]
‖
+

µ− 1

µ+ 1
[Vi]

⊥
+

2

µ+ 1

[
v
j
i

]⊥
, (13)

ṽ
j
i =

[
v
j
i

]‖
+

1− µ

µ+ 1

[
v
j
i

]⊥
+

2µ

µ+ 1
[Vi]

⊥
, (14)

where v
j
i is the velocity of the heat bath particle which

collided with the i-th monomer, tildes denote post-
collision velocities, superscripts ⊥ denote projections of
velocities on the line through the centre of the monomer
and the collision point on its surface, and superscripts ‖
denote tangential components.
Heat bath models based on elastic collisisions (13)–(14)

have been studied by a number of authors11–14. Consider
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a single monomer in infinite domain R
3, and let the heat

bath consist of an infinite number of particles with posi-
tions distributed according to the spatial Poisson process
with density

λµ =
3

8r20

√
(µ+ 1) γ

2πD
. (15)

This means that the number of points in a subset Ω of R3

has its probability mass function given by the Poisson dis-
tribution with mean λµ|Ω|, where |Ω| is the volume of Ω.
Let the velocities of the heat bath particles be distributed
according to the Maxwell-Boltzmann distribution

fµ(v) =
1

σ3
µ(2π)

3/2
exp

[
−v21 + v22 + v23

2σ2
µ

]
, (16)

where v = [v1, v2, v3] and

σµ =
√
(µ+ 1)Dγ. (17)

Then the monomer’s behaviour is known to converge to
the Langevin dynamics12,14. In particular, if we consider
that each monomer has its own heat bath, we can show
that the position and velocity of the monomers, Xi and
Vi, converge (in the sense of distributions) to the solution
of (1)–(4) in the limit µ → ∞.

In reality all beads representing a macromolecule exist
within a single heat bath. Thus, we ask whether the cor-
relations introduced by a bath of solvent which interacts
with both monomers has a non-negligible affect on the
equilibrium statistics of the dimer. Introducing such cou-
pled heat baths for both short-range (in this section) and
long-range (in Section IV) interactions we study whether
there is a significant difference between the one-bath and
two-bath models as we vary ℓ0, the separation distance,
introduced in equation (8). In order to study this prob-
lem, we make use of multi-resolution modelling.

A. Multi-resolution model using a co-moving frame

The solvent in the short-range heat bath interacts with
the monomers of the dimer through direct contact. In
order to simulate the model for long times, i.e. where
the dimer has undergone a large excursion, the simulated
domain must be vast as will be the number of solvent
particles that must be modelled. We present a multi-
resolution approach where we only model the solvent that
is within the close vicinity of the dimer. We consider a
co-moving cubic frame of length L that is centered at
Xf(t), which we here identify with the centre of mass of
the dimer at time t, i.e.

Xf(t) = X(t) =
X1(t) +X2(t)

2
. (18)

Within this frame we explicitly model the heat bath with
solvent particles, i.e. they are simulated in the cubic box

Xf(t) +

[
−L

2
,
L

2

]
×
[
−L

2
,
L

2

]
×
[
−L

2
,
L

2

]
. (19)

Externally we model the heat bath as a continuum,
where the particles are distributed according to the spa-
tial Poisson process with density λµ given in (15) and
the velocities are distributed according to fµ(v) given
in (16), see Figure 1(a) for a diagrammatic representa-
tion of the multi-resolution framework (drawn for clarity
in two spatial dimensions, while all our simulations are
three-dimensional). As the dimer moves around in R

3 the
frame will move with it. In order for the multi-resolution
model to capture the full model where solvent particles
are distributed in the entire domain, R3, we need to intro-
duce new solvent particles at the boundary of the frame.
Consider that time is discretized using small time step

∆t, i.e. if the current time is t, we want to calculate the
state of the system at time t + ∆t. In our simulations
of the multi-resolution model we need the probability of
introducing a particle at a boundary of frame (19) in a
timestep of length ∆t and subsequently the distribution
of the position xnew and velocity vnew of the new solvent
particle. For simplicity we transform into the coordinate
system of the co-moving frame which over an interval of
length ∆t has velocity

Vf =
Xf(t+∆t)−Xf(t)

∆t
. (20)

The frame is always translated to occupy the region
[0, L]3. Thus, the velocities for the solvent particles in
the new reference frame are given by wj = vj −Vf. We
first calculate the density of particles that enter the frame
via a particular boundary within a timestep of length ∆t.
Take, as an illustrative example, the boundary face cor-
responding to {x1 = 0}. Consider particles which are
in half-space (−∞, 0) × R

2 at time t. These particles
have not yet been explicitly included in the simulation.
Some of them will be in half-space (0,∞) × R

2 at time
t+∆t. Their density, h(x1), only depends on their first
coordinate x1 ∈ (0,∞). We can calculate h(x1) by in-
tegrating density (15)–(16) over solvent particles which
are at x′

1 ∈ (−∞, 0) at time t and have the appropriate
velocity to reach x1 ∈ (0,∞) at time t+∆t, namely as14

h(x1)=

∫ 0

−∞

∫

R2

λµ fµ

(
x1 − x′

1

∆t
+ Vf;1, v2, v3

)
dv2 dv3 dx

′
1

=
λµ

2
erfc

(
x1 + Vf;1∆t

σµ∆t
√
2

)
, (21)

where Vf;1 is the first component of the frame velocity
and erfc(z) = 2/

√
π
∫∞

z
exp(−s2) ds is the complemen-

tary error function. Integrating (21) over the domain
(0,∞) × [0, L] × [0, L] gives us the average number of
particles that have entered the frame from the {x1 = 0}
boundary in a time interval of length ∆t as

pin =

∫ ∞

0

∫ L

0

∫ L

0

h(x1) dx3 dx2 dx1 (22)

= λµL
2∆t

(
σµ√
2π

exp

[
−
V 2
f;1

2σ2
µ

]
− Vf;1

2
erfc

[
Vf;1

σµ

√
2

])
.
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FIG. 1. A diagrammatic representation of multi-resolution approaches for a dimer in a heat bath with short-range interactions.
(a) Simulation of the whole dimer in a co-moving frame. The green box depicts the co-moving frame that is centred about the
dimer. The blue dots correspond to solvent molecules that are explicitly modelled. Solvent molecules are not explicitly modelled
in the external gray regions. (b) Simulation of one monomer in a co-moving frame. (c) Simulation with a fixed region of space
where an MD model is explicitly used. A dimer molecule can move to the gray region where it is simulated using the Langevin
description.

In our simulations we choose a timestep small enough
that pin ≪ 1, we can therefore use pin as the probability
of introducing a new solvent particle. Let z = [z1; z2; z3]
be the position of the new solvent particle in the coordi-
nate system of the co-moving frame. Then coordinates
z2 and z3 are uniformly distributed in (0, L) and the first
coordinate can be sampled from the error function dis-
tribution

C1 erfc

[
z1 + Vf;1∆t

σµ∆t
√
2

]
, for z1 ∈ (0,∞), (23)

where C1 is a normalizing constant. Then the position
of the new solvent particle in the original coordinates is
xnew = z + Xf(t + ∆t) − [L/2, L/2, L/2]. The velocity,
w, of the new particle in the co-moving frame must have
a first coordinate exceeding z1/∆t in order to reach z1 in
a time interval of length ∆t. Noting that w = vnew −
Vf we write down the distribution of the velocity as the
following truncated Gaussian distribution

C2 H(v1∆t− (z1 + Vf;1∆t)) fµ(v), (24)

where C2 is a normalizing constant andH(·) is the Heavi-
side step function, satisfying H(y) = 1 for y ∈ [0,∞) and
H(y) = 0 otherwise. The position and velocity of solvent
particles introduced at the other five faces can be done
by symmetric modifications of the above distributions.
Random numbers from distributions (23) and (24) can

be efficiently sampled using acceptance-rejection algo-
rithms. We use an acceptance-rejection method for the
truncated normal distribution (24) presented in the lit-
erature44, while we sample random numbers from the
distribution (23) using the acceptance-rejection algo-
rithm presented in Table I. This is a generalization of
the acceptance-rejection algorithm for sampling random
numbers according to the distribution

√
π erfc(z) previ-

ously used in simulations in the stationary frame14. In
the case of the distribution (23), we need to sample ran-

• Generate two random numbers η1 and η2 uniformly
distributed in interval (0,1).

• Calculate a1(β) and a2(β) according to (27) and (28).

• Compute an exponentially distributed random
number η3 by η3 = −a1(β) log(η1).

• If η1 η2 < a2(β) erfc(η3 + β), then choose η3 as
a sample from the probability distribution (25).
Otherwise, repeat the algorithm.

TABLE I. Acceptance-rejection algorithm for sampling ran-
dom numbers according to the probability distribution p(z;β)
given by (25).

dom numbers according to the probability distribution

p(z;β) = C3(β) erfc(z + β), (25)

where β ∈ R is a constant and C3(β) is the normalizing
constant given by

C3(β) =

√
π

exp[−β2]−√
π β erfc(β)

. (26)

The algorithm in Table I does this by generating an ex-
ponentially distributed random number η3 with mean
a1(β), where

a1(β) =

√
π

2
×
{

erfc(β) exp(β2), for β ≥ 0;
1, for β ≤ 0.

(27)

To maximise the acceptance probability of this algo-
rithm, we choose its second parameter, a2(β), as

a2(β) =

{
1/ erfc(β), for β ≥ 0;
exp (2β/

√
π) , for β ≤ 0.

(28)

Then its acceptance probability is depending on β as

a2(β)

a1(β)C3(β)
. (29)
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FIG. 2. Plot of the acceptance probability (29) of the algo-
rithm presented in Table I for parameters given by (27) and
(28) (solid line) compared with the acceptance probability (29)
calculated for optimal choices of a1(β) and a2(β) for each pa-
rameter value β.

We plot the acceptance probability (29) in Figure 2 for
our choices (27)-(28) of a1(β) and a2(β) as the solid line.

We observe that the acceptance probability (29) for
β = 0 is equal to 2/π ≈ 63.7%. This value can be im-
proved14 in the case of β = 0 to 86.3% provided that we
choose a1 = 0.532 and a2 = 0.814. To obtain a similar
improvement for all values of β, we could choose both
a1(β) and a2(β) to maximise the acceptance probabil-
ity (29), rather than postulating that a1(β) is given by
the piecewise defined function (27) and optimizing a2(β)
only. The acceptance probability (29) of the resulting
algorithm (which would have a1(β) and a2(β) given by
a lookup table, rather than by using formulas (27)-(28))
is plotted in Figure 2 as the dashed line for compari-
son. However, in our illustrative simulations, we use the
acceptance-rejection algorithm in Table I with the values
of a1(β) and a2(β) given by (27)-(28).

Comparing equations (25) and (23), we observe that
we can sample random numbers from the distribution
(23) by sampling random numbers from the distribution
p(z;Vf;1∆t) (using the acceptance-rejection algorithm in
Table I for β = Vf;1∆t)) and multiplying them by the

factor σµ∆t
√
2.

One iteration (i.e. an update of the state of the sys-
tem from time t to time t + ∆t) of the multi-resolution
simulation algorithm in the co-moving frame is given as
Algorithm [S1]–[S7] in Table II. It evolves the positions
and velocities of both monomers together with the posi-
tions and velocities of N(t) solvent particles, where N(t)
does depend on time t. To formulate Algorithm [S1]–[S7],
we assume that the timestep ∆t is chosen small enough
so that at most one collision happens per iteration.

We initialize the two monomers with a separation dis-

tance ℓ0 and generate a Poisson number (with mean
λµ L

3) of solvent particles in our simulation domain,
the cubic frame (19). The solvent particles are initially
placed uniformly in the frame (19), where we remove par-
ticles overlapping with monomers (before we begin our
simulation) to get the initial number, N(0), of simulated
solvent particles. Their initial velocities are drawn from
the Maxwell-Boltzmann distribution (16).
In Step [S1], we update the system over the time in-

terval (t, t+∆t] using the “free-flight” positions for each
monomer and solvent particle, namely we use

X̂i(t+∆t) = Xi(t) +Vi(t)∆t, (30)

x̂
j
i (t+∆t) = x

j
i (t) + v

j
i (t)∆t, (31)

where i = 1, 2 is the monomer number and j =
1, 2, . . . , N(t), is the number of the heat bath particle.
Since ∆t is chosen so small that only one collision hap-
pens during the time interval [t, t + ∆t), most of the
“free-flight” positions of solvent particles are accepted in
Step [S2] as their updated positions xj

i (t+∆t) and only
the solvent particle colliding with a monomer is further
updated.
In Step [S3], we update the velocities of the monomers

by solving (10)–(11) over one time step [t, t + ∆t]. We
discretize (10)–(11) using the forward Euler method as
follows

V1(t+∆t) = Ṽ1 +
Φ′(R)

M

R

R
∆t, (32)

V2(t+∆t) = Ṽ2 −
Φ′(R)

M

R

R
∆t, (33)

where Ṽi, for i = 1, 2, is either the post collision velocity
(if a collision happened in Step [S2]) or is equal to Vi(t).
In Steps [S4]–[S5], we update the position and velocity of
the frame. We remove solvent particles which are outside
of the simulation domain and update N(t) accordingly.
In Step [S6], we use probability pin, given by (22), to

check whether any solvent particle entered the simula-
tion domain during the time interval (t, t + ∆t]. Since
pin is the probability of entering the domain through one
of its six sides, we can, for time step ∆t small enough
that 6pin ≪ 1, introduce at most one solvent particle
through a randomly chosen side with probability 6pin.
The initial position and velocity of the introduced sol-
vent particle are sampled according to distributions (23)
and (24) or their symmetric modifications, taking into
account through which side of the cubic frame (19) the
particle entered the frame.
There is one little caveat in our derivation of pin. To

derive equation (22) we integrated over the half-space
(−∞, 0)×R

2, meaning that once we consider all six faces
of the cubic frame (19) we have over-counted twice at the
edges and three times at the corners (as it is highlighted
with darker gray shading in our illustrative diagram in
Figure 1(a)). This will have negligible effect if we choose
L sufficiently large. However, it can bias our simula-
tion for values of L comparable with the monomer size
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[S1] Update the positions of the solvent and the
monomers by their “free-flight” positions (30)–(31).

[S2] If the “free-flight” position (31) of a solvent particle
lies within the radius of either of the monomers,
reverse the trajectories of the solvent and the
monomer by time τ < ∆t such that they are just
touching. Calculate post-collision velocities by
equations (13)–(14) and update their new positions
by moving forward by time τ . Otherwise, each
“free-flight” position is accepted as the particle’s
position at time t+∆t.

[S3] Update the velocities of the monomers by (32)–(33).

[S4] Calculate the new centre of the co-moving frame,
Xf(t+∆t), by (18). Update N(t) by removing
solvent particles which now lie outside of the
frame (19) from the simulation.

[S5] Calculate the velocity of the frame, Vf, over the
interval [t, t+∆t] by equation (20).

[S6] Generate two random number r1 and r2 uniformly
distributed in interval (0, 1). If r < 6pin, then choose
a side of the cube at random and generate proposed
position xnew and velocity vnew of the new solvent
particle according to distributions (23) and (24). If
r2 < hacc(xnew,vnew), then increase N(t) = 1 and
initialize the new solvent particle at position xnew

with velocity vnew.

[S7] Continue with step [S1] using time t = t+∆t.

TABLE II. One iteration of the multi-resolution simulation
algorithm of the dimer in a co-moving frame.

r0 when ∆t is not sufficiently small as boundary effects
become more pronounced. To compensate for this effect,
we consider the sampled position, xnew and velocity vnew

of the new incoming particle at time t+∆t and calculate
its previous position at time t by

y = xnew − vnew ∆t.

If y is in the regions which were counted twice or three
times in our derivation, we reject the proposed introduc-
tion of the new solvent particle with the corresponding
probability. Namely, we use the acceptance probability
in Step [S6] given by

hacc(xnew,vnew) =





1, for y −Xf(t) ∈ Y1;
1/2, for y −Xf(t) ∈ Y2;
1/3, for y −Xf(t) ∈ Y3,

where Yj ⊂ R
3 is the region of the space which consists of

points which have exactly j of their coordinates outside
of the interval [−L/2, L/2]. For example, in our two-
dimensional diagrammatic representation in Figure 1(a),
the lighter gray shading corresponds to region Y1 while
the darker gray shading corresponds to region Y2.
In our illustrative simulations, we use algorithm [S1]–

[S7] from Table II together with parameter values r0 =
0.08, γ = 10, D = 1, µ = 103, k = 106 and L = 0.72 for
the one-bath case. In Figure 3, we compare simulation

2 3 4 5

2

4

6

8

FIG. 3. The extension of the average length of a dimer from
its separation distance ℓ0. The equilibrium data for each
model was collected from a long-time simulation of length
100 dimensionless time units where ∆t = 10−6 and the
monomers were initially placed with separation ℓ0. The val-
ues of α = ℓ0/r0 presented are {2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5}.
The parameters used are r0 = 0.08, γ = 10, D = 1, µ = 103,
and k = 106. In the one-bath case we use L = 0.72 for the
frame (19) enclosing the whole dimer, and for the two-bath
case, we use L = 0.32 for each monomer frame.

results of the average length of the dimer at equilibrium,
Ld, for the one-bath and two-bath models. Since the
two-bath case uses uncoupled heat baths, we can fur-
ther improve the efficiency of our algorithm by centering
the co-moving frame corresponding to each heat bath on
the corresponding monomer, i.e. we use Xf(t) = Xi(t)
for the heat bath corresponding to the i-th monomer in
Step [S4] (instead of the centre of mass (18)) and choose
smaller value of L in the two-bath case, namely L = 0.32.
In both one-bath and two-bath models, the solvent parti-
cles are distributed according to the spatial Poisson pro-
cess with density λµ given by (15). The velocities are
distributed according to the Maxwell-Boltzmann distri-
bution fµ(v) given by (16). We note that in the two-bath
case, our model converges to the Langevin dynamics (1)–
(4) as µ → ∞. This allows us to attribute any changes
between the one-bath case and the Langevin model to the
correlations induced by sharing a heat bath. The asymp-
totic analytic result obtained for the Langevin model,
equation (9), is plotted as the black solid line for com-
parison.
In Figure 3, we set the separation distance to be

ℓ0 = α r0 where α ≥ 2, such that at this distance apart
the monomers are not overlapping. The plot shows the
two-sided 99% confidence intervals for (Ld − ℓ0)/ℓ0 for
α ∈ {2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5}. Firstly, we note that
Ld > ℓ0 in each of the models as predicted in (9). There
seems to be reasonable correspondence between the one-
and two-bath models, with the confidence intervals over-
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lapping. This suggests that the correlations we lose by
approximating a larger co-moving frame around both
monomers with two smaller dedicated frames around
each monomer are negligible, allowing us to increase ef-
ficiency without biasing our overall results. In the next
section, we build on this observation and present a multi-
resolution framework which replaces one of the smaller
dedicated frames by a coarser model of the heat bath,
written in terms of the Langevin dynamics.

B. Monomers with different resolution

As the length of a polymer (i.e. numbers of monomers)
increases, a model incorporating solvent particles around
each of the monomers becomes increasingly computation-
ally expensive. However, a fully coarse-grained Langevin
model of a polymer such as the Rouse model39 can lack
the required level of detail. Thus, some multi-resolution
approaches for simulating macromolecules only model
an important (small) part of a macromolecule using
a detailed modelling approach38–42. In our case, we
can mimic such methodologies by modelling the first
monomer with explicit solvent with a heat bath of phys-
ical molecules, while the second monomer is modelled
using the Langevin equations (3) and (4). Such a
multi-resolution approach is schematically shown in Fig-
ure 1(b). To simulate this model we use a co-moving
frame, given by equation (19), which is centered around
the first monomer, i.e. Xf(t) = X1(t).

One iteration of the algorithm is presented as Algo-
rithm [M1]–[M5] in Table III. To begin, we initialize the
particle positions and velocities in the similar way as in
the case of Algorithm [S1]–[S7], with the only difference
that the cubic frame (19) is now centered around the first
monomer. Steps [M1] and [M2] are directly equivalent to
steps [S1] and [S2]. In Step [M3], we update the position
and velocity of the second monomer by

V2(t+∆t) = V2(t)−
(
Φ′(R)

M

R

R
+ γV2(t)

)
∆t

+ γ
√
2D∆t ξ, (34)

where ξ is sampled from the normal distribution with
zero mean and unit variance. That is, we have re-
placed the heat bath of the second monomer by solv-
ing the corresponding Langevin equation (1)–(4) using
the standard Euler-Maruyama integrator. There have
been other schemes developed in the literature for dis-
cretizing the Langevin equation such as van Gunsteren
and Berendsen45 and the Langevin Impulse integrators,
which capture the Langevin dynamics more accurately
especially in the presence of forces, such as the spring
force between the monomers46. Another option would
be to consider the BBK integrator47, which we use in
Section IVA, where we present a multi-resolution algo-
rithm for the long-range interaction heat bath model and
discretize the Langevin equation using a combination of

[M1] Update the positions of the solvent and the
monomers by their “free-flight” positions (30)–(31).

[M2] If the “free-flight” position (31) of a solvent particle
lies within the radius of the first monomer, reverse
the trajectories of the solvent and the monomer by
time τ < ∆t such that they are just touching.
Calculate post-collision velocities by equations
(13)–(14) for i = 1 and update their new positions
by moving forward by time τ . Otherwise, each
“free-flight” position is accepted as the particle’s
position at time t+∆t.

[M3] Update the velocity of the first monomer by (32)
and the velocity of the second monomer by (34).

[M4] Calculate the new centre of the co-moving frame as
Xf(t+∆t) = X1(t). Update N(t) by removing
solvent particles which now lie outside of the
frame (19) from the simulation. Use steps [S5]–[S6]
from the algorithm in Table II to introduce new
solvent particles into the co-moving frame (19).

[M5] Continue with step [M1] using time t = t+∆t.

TABLE III. One iteration of the multi-resolution simulation
algorithm of the dimer in the heat bath with short-range in-
teractions, where the second monomer is simulated by the
Langevin dynamics.

the velocity Verlet and Euler-Maruyama integrators, see
equations (45)-(49). An additional approach is the Verlet
scheme48 that approximates the velocity using a central
difference discretization rather than the forward differ-
ence approach used in the Euler-Maruyama method, or
Runge-Kutta methods49, which could further reduce the
error of the multi-resolution simulations.
In order to compare simulations of the multi-resolution

model with simulations of the Langevin model (1)–(4) we
use the velocity autocorrelation function of the dimer,
Cd(τ), given by equation (5). It has been analytically
calculated for the Langevin description in equation (6).
In Figure 4, we present numerical estimates of the veloc-
ity autocorrelation function of the multi-resolution model
from long time simulation data, using definition (5).
Our results compare well with the theoretical result

for the Langevin model, though it seems like there is a
slightly raised value for Cd(0). Using (7), we can esti-
mate the diffusion constant of the dimer Dd by numeri-
cally integrating the velocity auto-correlation function in
interval [0, 1]. We obtain Dd ≈ 0.529, while its theoreti-
cal value for the dimer model is given in equation (7) as
D/2 = 0.5. Another approach is to fit the exponential
function, in the form equation (6), to the computational
result presented in Figure 4. In this way, the values of
bothD and γ can be estimated simultaneously. We found
that D ≈ 1.0714, which is higher than our parameter
value D = 1, and γ ≈ 9.6064, which is lower than γ = 10
used in our simulations. This could suggest that the value
of λµ is too low or that of σµ is too high in our sim-
ulations. However, when these quantities are measured
during the simulations we do not observe any deviation.



9

FIG. 4. The velocity autocorrelation function for the multi-
resolution model (blue solid line) for short-range interactions.
The function is estimated from long time simulation over di-
mensionless time of 500 time units. It is compared with the re-
sult for the Langevin description of the whole dimer, given by
equation (6) (red dashed line). The parameters are r0 = 0.08,
γ = 10, D = 1, µ = 103, k = 106, ℓ0 = 4r0, ∆t = 10−6 and
L = 0.32.

This suggests that, rather than our sampling methods,
there are small errors introduced by our implementation
of the moving frame, or more profound boundary effects
introduced by the small size of the frame. A potential
problem in the implementation of the co-moving frame,
is that solvent particles that leave the frame never return.
For a stationary frame this is valid as the monomer can-
not interact with a particle that leaves. However, for a
co-moving small frame centred about the monomer, a sol-
vent particle could leave the frame and return at a later
time in the simulation. This is not taken into account in
the presented algorithms.

IV. LONG-RANGE INTERACTION HEAT BATH

Coarse-grained models of molecular systems can be writ-
ten in terms of beads interacting through coarse-grained
force fields. Each bead represents a collection of atoms
and a coarse-grained potential energy can be constructed
from detailed all-atom MD. Such an approach can usu-
ally provide a good description of equilibrium properties
of molecular systems, but it does not necessarily lead to
correct dynamics if the time evolution of the system is
solely based on the Hamiltonian dynamics corresponding
to the coarse-grained potential energy surface50. Dynam-
ical behaviour can be corrected by introducing additional
degrees for freedom (fictitious particles) interacting with
each coarse-grained bead50–52. Fictitious particles can
then be subject to suitable friction and noise terms to
correct the dynamics.

Considering our dimer molecule model as an exam-
ple of a coarse-grained molecule, written in terms of two
coarse-grained beads (monomers) interacting through
coarse-grained potential energy (8), then each monomer
could be coupled with one or several fictitious particles
interacting with the monomer through a suitable har-
monic spring term50,51. Our long-range interaction heat
bath is based on this approach, by assuming that the i-th
monomer, i = 1, 2, is coupled with Ni harmonic oscilla-
tors, in a manner similar to well known theoretical heat
bath models15,16. Then equations (10)–(11), expressing
Newton’s second law of motion, include additional terms
as follows15

M
dV1

dt
= Φ′(R)

R

R
+

N1∑

j=1

k1,j α1,j

(
x
j
1 − α1,jX1

)
, (35)

M
dV2

dt
= −Φ′(R)

R

R
+

N2∑

j=1

k2,j α2,j

(
x
j
2 − α2,jX2

)
, (36)

where xj
i is the position of the j-th solvent particle which

interacts with the i-th monomer through a harmonic
spring with spring constant ki,j and interaction constants
αi,j , j = 1, 2, . . . , Ni, i = 1, 2. Equations (35)–(36) are
coupled with the evolution equations for solvent parti-
cles. We assume that vj

i is the velocity of the j-th solvent
particle interacting with the i-th monomer. Moreover, we
assume that all oscillators have the same mass, m. Us-
ing Newton’s second law of motion, we get the following
evolution equations for the heat bath oscillators

dxj
i

dt
= v

j
i , (37)

m
dvj

i

dt
= −ki,j

(
x
j
i − αi,jXi

)
, (38)

for j = 1, 2, . . . , Ni and i = 1, 2. Unlike in some ficti-
tious particle models50–52, we do not include friction and
random forces into equation (38) for solvent, because we
assume that we explicitly model all solvent particles, i.e.
N1 and N2 are considered to satisfy N1 ≫ 1 and N2 ≫ 1.
We are therefore working ‘close’ to the limit N1 → ∞
and N2 → ∞, in which we can get the convergence of
our long-range interaction heat bath to the Langevin dy-
namics as discussed below. In practice, it is impossible to
include all solvent molecules in simulations and friction
and noise terms are still included to control temperature
of the simulated system2,53. We can solve the solvent
equations of motion (37)–(38) to give2,54

x
j
i = x

j
i (0) cos (ωi,jt) +

v
j
i (0)

ωi,j
sin (ωi,jt)

+ αi,j ωi,j

∫ t

0

sin (ωi,j(t− τ))Xi(τ) dτ

where x
j
i (0) is the initial position of the j-th heat bath

particle corresponding to the i-th monomer, vj
i (0) is its

initial velocity and ωi,j = (ki,j/m)1/2 is its frequency.
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Substituting for x
j
1 and x

j
2 in dimer’s equations of mo-

tion (35)–(36), we obtain the following coupled system of
generalized Langevin equations

M
dV1

dt
= Φ′(R)

R

R
−
∫ t

0

κ1(τ)V1(t− τ) dτ + ξ1, (39)

M
dV2

dt
= −Φ′(R)

R

R
−
∫ t

0

κ2(τ)V2(t− τ) dτ + ξ2, (40)

where the friction kernel κi(τ) and noise term ξi ≡
ξi(t) = [ξi;1, ξi;2, ξi;3] are given by

κi(τ) = m

Ni∑

j=1

α2
i,j ω

2
i,j cos (ωi,jτ) ,

ξi(t) = m

Ni∑

j=1

x
j
i (0)αi,j ω

2
i,j cos (ωi,jt)

+ v
j
i (0)αi,j ωi,j sin (ωi,jt) ,

for i = 1, 2. We assume that initial positions and veloc-
ities of solvent oscillators, xj

i (0) and v
j
i (0), are both in-

dependently sampled according to their equilibrium dis-
tributions. Then noise autocorrelation function is given
by the generalized fluctuation-dissipation theorem

lim
t→∞

〈ξi;j(t) ξi;n(t− τ)〉 = 2kBT δj,n κi(τ),

where kB is the Boltzmann constant and T is the absolute
temperature. Next, we assume that the frequencies ωi,j

are sampled from a (continuous) exponential distribution
with mean ω and we set our interaction constants equal
to

αi,j =
1

ωi,j

√
2 γ ω

Ni mπ
, (41)

where γ > 0 is the friction constant used in equations (2)
and (4). Then friction kernel (41) becomes

κi(τ) =
2γ ω

π

1

Ni

Ni∑

j=1

cos (ωi,jτ) .

Passing to the limit Ni → ∞ allows us to consider the
above summation as a continuous integral over the distri-
bution of oscillator frequencies, with both friction kernels
κ1(τ) and κ2(τ) converging to the same friction kernel54

κ(τ) =
2γ

π

∫ ∞

0

cos (ωτ) exp
(
−ω

ω

)
dω

=
2γ

π

ω

ω2τ2 + 1
. (42)

Then
∫∞

0
κ(τ) dτ = γ. Moreover, we can define the lim-

iting friction kernel by

κ∞(τ) = lim
ω→∞

κ(τ),

which, for our choice of oscillators’ frequencies and in-
teraction terms (41), satisfies κ∞(τ) = 0 for τ > 0 and

FIG. 5. The extension of the average length of a dimer from
its separation distance ℓ0 for long-range interaction heat bath
models. The values of parameters are the same as in Figure 3,
together with ω = 100, N1 = N2 = N = 104, M = 1 and
m = 10−3, which give the same value of µ = M/m as used
in Figure 3. The simulations for the single heat bath case use
parameter choice (43) with α2

j = γ ω/(N π kj), kj = mω2
j /2,

and ωj sampled according to the exponential distribution with
mean ω, confirming result given in equation (44) (green dashed
line). The results for the two heat bath case are compared
with the result obtained for the Langevin model in equation
(9) (black solid line).

κ∞(0) = ∞. Thus the limiting kernel is a multiple of the
Dirac delta function. Therefore the position and velocity
of the monomers, Xi and Vi, converge to the solution of
(1)–(4) in the limit ω → ∞, provided that each monomer
has its own separate heat bath. Moreover, we obtain the
Einstein-Smoluchowski relation for the diffusion constant
of the monomer as D = kBT/(γ M).

As in Section III, we have explained our MD model of
the dimer using the case where each monomer has its own
heat bath. We now turn our attention to the case when
monomers share their heat bath. This has been studied in
the case of the short-range interaction MD model in Sec-
tion IIIA with the help of multi-resolution modelling in a
co-moving frame, as schematically shown in Figure 1(a).
In the case of long-range interactions, a co-moving frame
is less straightforward to implement because we need to
take into account that particles outside of the simulated
box do exert (long-range) forces on particles in our sim-
ulation domain. Some multi-resolution techniques in the
literature solve this problem by introducing suitable over-
lap (bridging, blending) regions51,55–57, where molecules
which are near the simulation domain exert some partial
forces on the simulated molecules.
In what follows, we do not truncate the simulated do-

main, but we consider a different multi-resolution ap-
proach in Section IVA. Before then we discuss results
comparable to Figure 3, i.e. we compare simulations with
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a single heat bath and two heat baths for the case of our
long-range interaction MD model. The results are pre-
sented in Figure 5, where we use the same values of ℓ0
as in Figure 3, expressed as α-multiples of r0, although
our long-range interaction model does not make use of
parameter r0. The value of Ld is for each value of ℓ0
calculated from a long simulation over 200 dimensionless
time units, where the first 100 time units are used to
equilibrate the system, while the second half of each sim-
ulation is used to compute Ld. To initialise this model
we start with monomers separated by the rest length ℓ0
and sample oscillators’ frequencies, ωi,j , according to the
exponential distribution with mean ω. Their positions
and velocities are sampled from the Maxwell-Boltzmann
distribution. For the two-bath model, each dimer parti-
cle is separately initialised with its own set of oscillators
around their respective positions in space.
In Figure 5, we observe that in the case of the two-bath

model we obtain results which match well with equation
(9) for our parameter values. These results are also di-
rectly comparable with the results obtained for the two-
bath case in Figure 3. The situation is more complicated
in the case of simulations with a single heat bath with
N oscillators. Then, using notation (12), we can rewrite
(35)–(36) as

M
dVi

dt
= (−1)i+1Φ′(R)

R

R
+

N∑

j=1

ki,j αi,j

(
xj − αi,jXi

)
,

for i = 1, 2, where the heat bath evolution equation (38)
includes terms corresponding to both monomers

m
dvj

dt
= −k1,j

(
xj − α1,jX1

)
− k2,j

(
xj − α2,jX2

)
,

for j = 1, 2, . . . , N . Our results will then depend how
we choose parameters ki,j and αi,j . For example, if we
choose ki,j and αi,j to be the same for both monomeres,
i.e.

k1,j = k2,j = kj , and α1,j = α2,j = αj , (43)

for j = 1, 2, . . . , N, then the oscillating frequency of the
j-th heat bath oscillator is ωj =

√
2kj/m and we can

subtract the evolution equations for monomers to obtain

M
d2R

dt2
= −2Φ′(R)

R

R
−

N∑

j=1

kj α
2
j R.

This equation does not contain any heat bath vari-
ables. Using (41) to select αj , i.e. using α2

j =

2 γ ω/(N mπ ω2
j ) = γ ω/(N π kj), we get

M
d2R

dt2
= −2Φ′(R)

R

R
+

γ ω

π
R.

Using potential (8), we conclude that we effectively ob-
tain a shorter rest length of the spring which gives the
following approximation

Ld ≈ 2 k π ℓ0
2 k π + γ ω

. (44)

[L1] Update velocities of the dimer and solvent particles
for a half time step using (45).

[L2] Update positions of the dimer and solvent particles
using (46).

[L3] Recalculate accelerations of each monomer and
solvent oscillators by (48), (49) and (50).

[L4] Update velocities of the dimer and solvent particles
for a half time step using (47).

[L5] Continue with step [L1] using time t = t+∆t.

TABLE IV. One iteration of the multi-resolution simulation
algorithm of the dimer in the heat bath with long-range in-
teractions, where the second monomer is simulated by the
Langevin dynamics.

This result is plotted in Figure 5 together with results
obtained by illustrative simulations. We use a long-time
simulation of length 200 dimensionless time units, with
monomers initially placed at separation ℓ0 and averaging
over the second half of the simulation (of length 100 di-
mensionless time units) to obtain the presented values of
dimer’s expected length Ld.

In Figure 5, we observe that the average dimer length,
Ld, during our single heat bath simulations is smaller
than the natural length of the spring, ℓ0. However, this
conclusion is only a consequence of our choice of param-
eters (43). An opposite phenomenon can be observed in
simulations for other parameter regimes. For example,
if we divide our oscillators into two groups consisting of
N1 and N2 oscillators, i.e. N = N1+N2, and choose our
parameters ki,j and αi,j such that

k2,j = 0, for j = 1, 2, . . . , N1,

k1,j = 0, for j = N1 + 1, N1 + 2, . . . , N,

then our “one-bath” case is effectively equal to the two-
bath case for which we have the result given in equation
(9) presented in Figure 5. In particular, depending on
our choices of ki,j and αi,j , the single heat bath case can
both increase or decrease the average length of the dimer.

A. Multi-resolution modelling of dimer

In Figure 1(b), we use our dimer example to illustrate
a multi-resolution approach which models a part of a
molecule using a detailed MD approach, while using a
coarser description of the rest of the molecule. Here, in
the same manner as carried out for our short-range model
in Section III B, we illustrate such a multi-resolution ap-
proach using our long-range interaction MD model. We
use the Langevin model (1)–(4) to coarse-grain one of
the monomers, while the other monomer is modelled in
detail using the MD model with its heat bath described
by harmonic oscillators (37)–(38). As in Figure 4, we
again calculate numerical estimates for the velocity au-
tocorrelation function, Cd(τ) in equation (5), from long
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time simulations of the dimer after equilibrium has been
reached.

The pseudo-code of one iteration our multi-resolution
algorithm is presented as Algorithm [L1]–[L5] in Ta-
ble IV. Algorithm [L1]–[L5] is based on the velocity Ver-
let integrator, where both monomers are updated by

Vi

(
t+ 1

2∆t
)
= Vi(t) +

1

2
Ai(t)∆t, (45)

Xi(t+∆t) = Xi(t) +Vi(t+
1
2∆t)∆t, (46)

Vi(t+∆t) = Vi

(
t+ 1

2∆t
)
+

1

2
Ai(t+∆t)∆t, (47)

where Ai, for i = 1, 2, is the acceleration of the corre-
sponding monomer. For the first monomer, its accelera-
tion A1 is defined as the right hand side of equation (35)
divided by M , i.e.

A1 =
Φ′(R)

M

R

R
+

1

M

N1∑

j=1

k1,j α1,j

(
x
j
1 − α1,jX1

)
. (48)

For the second monomer, we use the BBK integrator47,
i.e. we define its acceleration as

A2 = −Φ′(R)

M

R

R
− γV2 + γ

√
2D

∆t
ξ, (49)

where ξ is sampled from the normal distribution with
zero mean and unit variance. The corresponding solvent
oscillator integrator is identical to the scheme (45)–(47),
with X1, V1 and A1 replaced by xj , vj and aj , respec-
tively, where acceleration aj is defined as the right hand
side of equation (38) divided by m, i.e.

aj = −ki,j
m

(
x
j
i − αi,jXi

)
. (50)

The results obtained by Algorithm [L1]–[L5] are com-
pared with analytic results given by equation (6) for the
Langevin model in Figure 6. We see that there is a good
correspondence between these, suggesting that the value
ω̄ = 100 is large enough to create an accurate Dirac delta
approximation from the kernel function (42), along with
having a large enough number of oscillators, N1 = 105,
in our heat bath for our other approximations to hold.
If these conditions did not hold, we would see that our
kernel function has a different form (for example, decay-
ing at a slower rate), and in this case we would have to
use a generalized Langevin model as our coarse-graining
approach in order to capture the dynamics of the dimer
with sufficient accuracy.

The diffusion constant of the dimer, Dd, can again be
estimated by numerically integrating the velocity auto-
correlation function. Integrating our results from Fig-
ure 6 over interval [0, 1], we obtain Dd ≈ 0.510, which
compares well with the theoretical value, D/2 = 0.5,
given by equation (7).

FIG. 6. The velocity autocorrelation function for the multi-
resolution model (blue solid line) for long-range interactions,
estimated from long time simulation over dimensionless time
of 103 dimensionless time units. It is compared with the re-
sult for the Langevin description of the whole dimer, given by
equation (6) (red dashed line). The parameters are the same
as in Figure 4, namely γ = 10, D = 1, k = 106, M = 1,
m = 10−3, ℓ0 = 0.32, together with ω = 100 and N1 = 105.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have used two theoretical heat baths.
Although these heat baths are based on qualitatively
different descriptions of solvent-dimer interactions, they
both lead to the Langevin description, given in equa-
tions (1)–(4), in a certain limit. In particular, we can use
this limiting process to coarse-grain a part of the simu-
lated dimer molecule, while use a detailed MD model to
describe the rest of the molecule. Such a multi-resolution
approach has potential to significantly speed up com-
puter simulations of dynamics of macromolecules38–42,
provided that it is combined with additional multiscale
and multi-resolution methodologies, discussed below.

Our long-range interaction model leads to the sys-
tem of generalized Langevin equations, given by equa-
tions (39)–(40). Although we have worked in the param-
eter regime where the generalized Langevin equations can
be well approximated by the system of Langevin equa-
tions given by (1)–(4), this will not be the case in other
parameter regimes and for more realistic solvent descrip-
tions, especially when the memory kernel is estimated
from MD simulations58,59. One possible strategy in this
case is to couple a detailed MD model with a stochas-
tic coarse-grained model which is written with the help
of additional variables50–52. To improve the efficiency of
simulations further, one can then coarse-grain such a gen-
eralized Langevin description using a Brownian dynam-
ics approach14,60. Brownian dynamics modelling can be
further coupled with stochastic reaction-diffusion mod-
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elling based on lattice-based (compartment-based) meth-
ods22. Lattice-based models are very attractive for sim-
ulations of intracellular processes, because they enable
modelling of spatio-temporal processes in the whole cell
or its significant part61. Coupling Brownian dynamics
with compartment-based approaches has been used in a
number of applications, including multi-resolution mod-
elling of actin dynamics in filopodia62,63 or for modelling
intracellular calcium dynamics64.

In this paper, we have investigated multi-resolution
approaches, schematically described in Figure 1(a) and
1(b). Another class of multi-resolution approaches in
the literature considers a fixed subdomain of the com-
putational domain where a detailed modelling approach
is used, which is coupled with a coarser model in the
rest of the simulation domain21,22. Such an approach is
useful, for example, when modelling intracellular ion dy-
namics. Ions pass through an ion channel in single file
and an MD model has to be used to accurately compute
the discrete, stochastic, current in the channel65,66, while
the details of the behaviour of individual ions are less im-
portant away from the channel where copy numbers may
be very large. Thus, we can improve efficiency of our
simulations if we allow ions to pass between regions with
an explicitly modelled heat bath and a region where their
trajectories are described by coarser stochastic models51.

A similar multi-resolution approach can also be de-
signed for our illustrative dimer model. It is schemat-
ically shown in Figure 1(c), where we identify the re-
gion with explicitly simulated heat bath as {x1 > b} =
(b,∞) × R

2, where b is the fixed position of the bound-
ary. We are again interested in the behaviour of the
dimer in the MD model which would be considered in
the full space, R

3. However, we now want to replace
solvent particles which are in {x1 < b} = (−∞, b) × R

2

by a coarser Langevin description (1)–(4). To do that,
we have to carefully consider how we handle the transfer
of monomers between {x1 > b} and {x1 < b}. In Fig-
ure 1(c), we present a two-dimensional illustration of a
monomer when it intersects the interface, {x1 = b}. Such
a monomer is subject to the collisions with heat bath par-
ticles on the part of its surface which lies in {x1 > b}.
This has to be compensated by using a suitable random
force from {x1 < b}, so that the overall model is equiv-
alent to (1)–(4) in the Langevin limit. Such correction
terms can be derived analytically for the case of a spher-
ical monomer in our short-range interaction heat bath
and are presented in References14,54. They can be used
to couple the MD model with its corresponding Langevin
description, which can be further coupled with Brownian
dynamics, simulated using a much larger time step14.

Mathematical analysis of multi-resolution methodolo-
gies can make use of the analysis of the model behaviour
close to the boundaries of the computational domain. For
example, derivations of reactive (Robin) boundary con-
ditions of macroscopic models from their corresponding
microscopic descriptions67–69 can be generalized to the
analysis of behaviour of molecules close to hybrid in-

terfaces in multi-resolution schemes21,30,31. Analysis of
open boundaries of MD schemes (i.e. boundaries which
can transfer mass, momentum and energy) can lead to
further understanding of multi-resolution schemes such
as AdResS and hybrid continuum-particle dynamics70,
which enable efficient simulation of biomolecules at real-
istic physiological conditions71.
Equations for coupled detailed/coarse-grained models

can be systematically derived using Zwanzig’s projection
method, which has been used to address co-existence of
atoms and beads (larger coarse-grained units) in the same
dynamic simulations72,73. The equations of motion take
the form of dissipative particle dynamics, which have
been coupled with atomistic water simulations to design
multi-resolution schemes in the literature74. Other multi-
resolution methods couple atomistic water with specially
designed coarse-grained water models75 or with a contin-
uum approach35. Coupling discrete and continuum ap-
proaches can also be done for different molecular species
present in the system and our choice of a modelling ap-
proach for each species can be based on its relative abun-
dance76–78.
One of several important points which have been left

out from our discussion is the discretization of time. Al-
though our illustrative simulations use the same time step
for both the MD model and the Langevin description,
this is not the most efficient or desirable strategy, be-
cause the MD model requires much smaller time step
than the corresponding Langevin equation. There is po-
tential to design more efficient schemes by updating the
coarser description only at certain multiples of the time
step which is used in the most detailed model39. This is
also the case when a modeller further coarse-grains the
Langevin description into a Brownian dynamics model
which uses even large timesteps14.
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