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A micro-hydrodynamics model based on elastic
collisions of light point solvent particles with
a heavy solute particle is investigated in the
setting where the light particles have velocity
distribution corresponding to a background flow.
Considering a range of stationary background flows
and distributions for the solvent particle velocities,
the macroscopic Langevin-type description of the
behaviour of the heavy particle is derived in the form
of a generalized Ornstein–Uhlenbeck process. At
leading order, the drift term in this process depends
upon both the geometric structure of the background
flow and the size of the heavy particle, while both
drift and diffusion terms scale with moments of
the light particle velocity distribution. Computational
methods for simulating the micro-hydrodynamics
model are then designed to confirm the theoretical
results. To enable long-time calculations, simulations
are performed in a frame co-moving with the heavy
particle. Efficient methods for sampling the position
and velocity distributions of incoming solvent
particles at the boundaries of the co-moving frame
are derived for a range of distributions of solvent
particles. The simulations show good agreement with
the theoretical results.

1. Introduction
The motion of a heavy particle within a heat bath
of light particles serves as a canonical model for
the molecular theory of Brownian motion [1–3]. In
particular, collisions with light heat bath particles
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result in momentum transfer to the heavy particle, thereby inducing Brownian motion of the
heavy particle. The Brownian dynamics of the heavy particle can be modelled via a Langevin
equation treating the contribution from random light particle collisions through drift and
diffusion terms [4].

Consider the motion of a heavy solute particle (a ball with radius R and mass M) which is
immersed within a solvent flow in domain Ω ⊂ ℝ3. The solvent is described as point particles
that interact with the heavy solute particle when they collide with it. This configuration has
been applied in a number of studies during the last 50 years, starting as one-dimensional [5]
and three-dimensional [6] mechanical models of Brownian motion. We denote the position
(centre) and velocity of the heavy solute particle by X and V, respectively. We assume that
all solvent particles have the same mass, denoted by m, and that they satisfy m≪ M. The
positions and velocities of solvent particles are denoted by xj and vj, respectively, where the
particle index j = 1,2,3, … goes over all integers for theoretical studies [6,7] with spatial domain
Ω = ℝ3. In contrast, there are a finite number of solvent particles in computational studies using
finite-sized domains. To approximate the theoretical case of Ω = ℝ3 in computational studies,
the solvent particles are introduced through suitable boundary conditions [8,9].

Denoting the dimensionless parameter μ = M/m and assuming that the collisions of the
heavy particle with point solvent particles are without friction, the conservation of momentum
and energy yield the following formulae for post-collision velocities [6,7]:

(1.1)V = V ∥ + μ − 1μ + 1 V ⊥ + 2μ + 1 vj ⊥,

(1.2)vj = vj ∥ + 1μ + 1 vj ⊥ + 2μμ + 1 V ⊥ .

Here, vj is the velocity of the solvent particle which collided with the heavy solute particle,
tildes denote post-collision velocities, superscripts ⟂ denote projections of velocities on the line
through the centre of the solute particle and the collision point on its surface, and superscripts∥ denote tangential components. Micro-hydrodynamics models based on elastic collisions,
equations (1.1) and (1.2), have been studied by a number of authors [5–10], all of whom
investigate the macroscopic behaviour of the heavy particle for μ≫ 1, where it provides a
mechanical description of Brownian motion.

For example, consider the case of the infinite domain Ω = ℝ3 containing an infinite number of
solvent particles with positions distributed according to a spatial Poisson process with constant
density:

(1.3)λμ = 3
8R2

(μ + 1) γ
2πD ,

where D is a diffusion coefficient having dimension [D] = [length]2 [time]−1 and γ is a fric-
tion coefficient having dimension [γ] = [time]−1. Let the velocities of the solvent particles be
distributed according to the Gaussian (Maxwell–Boltzmann) distribution

(1.4)fμ(v) = 1σμ3(2π)3/2 exp − v1
2 + v2

2 + v3
2

2σμ2 ,

where v = (v1, v2, v3)T and

(1.5)σμ = (μ + 1)Dγ ,

and assume that a solvent particle moves (between collisions) using the free flight, i.e. the
position and velocity of the jth solvent particle satisfy
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(1.6)dxj
dt = vj and dvj

dt = 0,

between the elastic collisions governed by equations (1.1)–(1.2). Then, it can be shown [6,8] that,
in the limit μ ∞, the behaviour of the heavy particle converges (in the sense of distributions)
to the Langevin dynamics given by

(1.7)dX = Vdt,
(1.8)dV = − γV dt + γ 2D dW,

where W is a three-dimensional vector of independent Wiener processes, and the drift term −γV
in equation (1.8) models friction.

Aside from standard Langevin dynamics of a heavy particle within a heat bath as governed
by equations (1.7)–(1.8), there has been an interest in manipulating or controlling the motion of
a heavy particle in a heat bath in some manner [11,12], with temperature gradients [13,14] and
electromagnetic fields [15,16] used to bias the motion of the heavy particle. There is a history
of literature extending the Brownian motion of a heavy object within a fluid flow comprising
lighter particles [17–21]. In many of these studies, macroscale models are formulated for the
heavy particle motion, informed by heat bath statistics of the type mentioned above. Often,
the assumption that the size or mass of the light particles be much less than that of the heavy
particle is necessary to make analytical progress; see [22,23]. Compare this with literature on
the flow of heavy spheres within a given flow where the interaction of the sphere and the
surrounding fluid is modelled at the macroscopic scale from the onset of the problem [24–
27]. The Brownian motion of particles within certain flows has been suggested as a possible
route to anomalous diffusion [28–30], motivating the development of more accurate models
bridging microscale Brownian motion with macroscale flows [31]. The development of more
accurate models of Brownian motion of a heavy particle immersed within generic flows aides
us in better understanding the theory behind recent experimental results on the dynamics of
Brownian particles within flows [32].

It is possible to reconcile models of Brownian motion of a heavy particle in a heat bath with
macroscopic models of a heavy particle within a fluid flow by generalizing the heat bath to
account for the directed motion of the heat bath particles according to a prescribed fluid flow.
In some studies, a Langevin model for the motion of a heavy particle within a background flow
has been asserted [33–38]. A derivation of Langevin dynamics for a heavy particle immersed
in a non-zero background flow field taking the form of a linear shear flow was presented
by Dobson et al. [39]. Earlier work described how to calibrate Gaussian particle distributions
for the motion of a large particle within specific flows [40], highlighting the role shear flows
have on particle diffusion at the macroscopic scale. Models allowing collisions of multiple
particles within a heat bath are naturally more involved, and for a theoretical treatment of
the problem, see [41], which obtains rigorous results for a continuous (repulsive) interaction
potential between multiple heavy particles and heat bath particles, accounting for the possibil-
ity of multiple kinds of particle interactions. Kim and Karniadakis [42] study the difference in
the Brownian motion of a heavy particle when the internal structure of interaction is considered
versus the case when only elastic collisions are allowed. They also discuss differences between
repulsive and attractive potentials.

In this paper, we extend the study of the Brownian motion of a heavy particle within a
heat bath to account for general flows of the light particles, as well as for general forms of
the light particle velocity distribution. We consider the problem where the heat bath particles
correspond to a velocity distribution with mean value equal to a background vector field u. The
variance (and, higher moments) of these distributions account for sampling differences owing
to the material of a flow. For instance, a rarefied gas will have a different distribution from
a liquid which features more heat bath particle collisions. Indeed, the latter generalization is
motivated by heavy-tailed velocity distributions that find application in high-energy granular
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gas experiments [43–46] and more generic composite velocity distributions that find application
in the study of plasma flows [47,48], to give two examples. Momentum is transferred from
the light heat bath particles to the heavy particle through collisions at the microscale, and we
upscale this process to obtain the Langevin dynamics for the Brownian motion of the heavy
particle at the mesoscale. The generic description accounts for a wide class of heat bath velocity
distributions (each corresponding to specific physical scenarios) and mean flows. The generic,
position-dependent distributions for the heat bath requires that the free-flight equations given
by equation (1.6) have to be generalized to include the mean velocity dependence, as well.
This is done in §2, where we introduce our microscopic model of the heat bath particles. We
then derive the Langevin description for a heavy solute particle in §3. Our theoretical results
take the form of a generalized Ornstein–Uhlenbeck process and are valid for generic forms
of the velocity distribution of the solvent particles comprising the heat bath (which is of use
even for heat bath configurations deviating from the standard Maxwell–Boltzmann statistics
[49]), as well as for generic stationary mean flows. We then develop an efficient computational
algorithm—in a frame co-moving with the heavy solute particle—to illustrate the theoretical
results in §4. We discuss the key findings and possible future directions in §5.

2. Motion of the solvent particles
We assume that the mean motion of the heat bath is described by a vector field u(x) which is
a stationary solution of a given fluid equation, such as the Navier–Stokes equations. Solvent
particle velocities are then sampled according to a distribution

(2.1)fμ(v,u) = Fμ(v − u),

where the function Fμ : ℝ3 [0,∞) satisfies the properties

(2.2)ℝ3
Fμ(q) dq = 1 and ℝ3

∥q∥4Fμ(q) dq < ∞ ,

for all μ ≥ 0. Note that equation (2.1) is a generalization of equation (1.4), which is covered by
our framework for u ≡ 0 and Fμ being the Gaussian distribution. In general, equation (2.1) states
that the velocity distribution is centred around the vector field u and is therefore u-dependent.
Some important cases of the function Fμ : ℝ3 [0,∞) will be given in the product form

(2.3)Fμ(q) = 1σμ3 F q1σμ F q2σμ F q3σμ ,

where function F : ℝ [0,∞) is given as the Gaussian, Laplace and generalized Gaussian

distributions, respectively, see §3, but our initial derivation will consider Fμ in its full generality
satisfying the conditions of equation (2.2).

Although the case where F  is a Gaussian distribution is most common in the statistical

physics literature, we note that the particular shape of a distribution is informed by the
material comprising the heat bath particles, accounting for features such as the propensity
for particle–particle interactions between the heat bath particles. Heavy-tailed distributions are
shown to agree better with experiments on certain granular gases with high-energy particles
[43–46]. Considering more detailed all-atom molecular dynamics models of solvent [50–52],
non-Gaussian distributions of forces can be estimated from simulations and used to parameter-
ize coarse-grained Brownian dynamics and Langevin dynamics models [53,54]. Rather than
taking a prescribed functional form, Fμ can also be solved for separately from our analysis,
and then inserted into our theory. For instance, to account for a background flow within which
binary, ternary or higher-order collisions of light particles are important, one may solve the
resulting Boltzmann equation for the light particle density [55]. However, to account for all
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possible distributions of relevance, we keep the form of Fμ general, requiring only that it
satisfies equation (2.2).

We assume that the particle velocities are distributed according to distribution of equation
(2.1) at any time t ≥ 0 in our theoretical investigations. This assumption implies that the position
and velocity of the jth solvent particle evolve according to the equations

(2.4)dxj
dt = vj and dvj

dt = ∇u vj ≡ ∑ℓ = 1

3 ∂u
∂xℓ vj, ℓ ,

where vj = (vj, 1, vj, 2, vj, 3)T. This is a generalization of free-flight equation (1.6), which we obtain
in the special case of zero flow u(x) ≡ 0 in equation (2.4).

In our illustrative simulations in §4, we initialize the velocities of particles according to
equation (2.1) at time t = 0 and let their positions and velocities evolve according to equation
(2.4). Assuming that the jth particle initial velocity is sampled as vj0, its velocity at time t
satisfies

vj(t) = u(xj(t)) + vj0.
This relation implies that the velocity distribution of equation (2.1) is preserved for all time t > 0
and we have (for Δt > 0)vj(t + Δt) − vj(t) = u xj(t + Δt) − u(xj(t)) = u xj(t) + vj(t)Δt +O(Δt) − u(xj(t)).
Applying the Taylor expansion, we get

dvj
dt = lim

Δt→ 0

vj(t + Δt) − vj(t)
Δt = lim

Δt→ 0
∇u vj(t) +O Δt = ∇u vj ,

which is what was claimed in equation (2.4).

3. Derivation of Langevin dynamics
We assume that the generalization of the Langevin dynamics equations (1.7)–(1.8) for the
motion of a heavy solute particle immersed within a heat bath comprising solvent particles
moving with a prescribed flow profile u can be written as

(3.1)dX = V dt,
(3.2)dV = α(X,V) dt + β(X,V) dW,

where W is a three-dimensional vector of independent Wiener processes, and the drift and
diffusion coefficients α(X,V) and β(X,V) depend on the velocity field u(x) and the underlying
distribution Fμ. The Langevin formulation (3.1)–(3.2) applies if the mass ratio of the Brownian
particle to the solvent particles is large, i.e. for m≪ M, or equivalently for μ≫ 1. To calculate
the drift and diffusion coefficients, we first express them as integrals over the surface of the
heavy particle:

(3.3)S(X,R) ≡ S(X(t),R) = y ∈ ℝ3 ∥y − X(t)∥ = R .

This is done, for general function Fμ satisfying the properties of equation (2.2), in the following
theorem.

Theorem 3.1. Let y be a point on the surface (3.3) of the heavy particle, i.e., y ∈ S(X,R), and let

vectors η2 ∈ ℝ3 and η3 ∈ ℝ3 be chosen so that (y − X)/R, η2, η3  comprise an orthonormal basis for ℝ3.
Define the functions:
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(3.4)
ψℓ(y) = −

2λμ yℓ − Xℓ(t)
(1 + μ)R 0

∞

−∞

∞

−∞

∞ ξ1 + V(t) ⋅ y − X(t)R 2

× Fμ − ξ1 + u ⋅ y − X(t)R y − X(t)R + ∑i = 2

3 ξi − u ⋅ ηi ηi dξ3 dξ2 dξ1

and

(3.5)
ϕℓ, j(y) =

4λμ yℓ − Xℓ(t) yj − Xj(t)
(1 + μ)2R2

0

∞

−∞

∞

−∞

∞ ξ1 + V(t) ⋅ y − X(t)R 3

× Fμ − ξ1 + u ⋅ y − X(t)R y − X(t)R + ∑i = 2

3 ξi − u ⋅ ηi ηi dξ3 dξ2 dξ1 .

Then, the drift coefficient of the Itô stochastic differential equations (3.1)–(3.2) for the motion of the heavy
solute particle can be expressed as the surface integral

(3.6)αℓ(X,V) = S(X(t),R)
ψℓ(y) dA , ℓ = 1,2,3 ,

where dA is the surface element centred at y. The diffusion terms are given by the square root of the
matrix having entries

(3.7)βℓ, j2 (X,V) = S(X(t),R)
ϕℓ, j(y) dA , ℓ, j = 1,2,3 .

Proof. We assume, in the limit of large μ, that the velocity of the heavy particle evolves accord-
ing to discretized SDE (3.2) which can be written as

(3.8)Vℓ(t + Δt) = Vℓ(t) + αℓ(t)Δt + βℓ(t) Δt χℓ ,

where Δt is a (small) time-step and χℓ, for ℓ = 1,2,3, is a normally distributed random number
with zero mean and unit variance. To determine α and β, we will match the mean and variance
of the velocity jump in the microscopic solvent model to those of equation (3.8).

Let y ∈ S(X,R) be a point on the surface of the heavy particle. We first find the distribu-

tion measuring the average change in velocity of the heavy particle owing to collisions near
the surface point y during the time interval [t, t + Δt]; we will show that this quantity is to
the leading order in Δt given as ψℓ(y) Δt, where ψℓ(y) is expressed by equation (3.4). Then,ψℓ(y) ΔtdA is the average change of the ℓth component of the velocity of the heavy molecule
caused by collisions with heat bath particles in the time interval [t, t + Δt] on the surface element
dA centred at y.

Consider a heat bath particle located at point x at time t which collides with the heavy
particle at time t + τ ∈ (t, t + Δt) at the surface point which had position y at time t. Since Δt is
small and the velocity jump of the heavy particle owing to collision with any one heat bath
particle is small, we approximate V to be a constant in the interval [t, t + Δt]. That is to say, the
change in V is O( Δt). At this level of approximation, the coordinate of the surface point at the

collision time t + τ is equal to y + τV. Since the heat bath molecule moved from x to the collision
point y + τV, its velocity before the collision was

v = y + τV(t) − xτ = V(t) + y − xτ .

Making use of equation (1.1), we write the change in velocity of the heavy particle owing to the
collision as

(3.9)V − V = 2
1 + μ v − V(t) ⊥ = 2

1 + μ v − V(t) ⋅ y − X(t)R y − X(t)R .
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The position x of the heat bath molecule must be in the half space above the plane tangent to
the heavy particle at the collision point y + τV(t); in particular, this means that the component
of the velocity v in the direction y − X(t) must be negative. We then parameterize the allowable
velocities using

(3.10)v = −ξ1
y − X(t)R + ξ2η2 + ξ3η3 ,

where ξ1 > 0, ξ2, ξ3 ∈ ℝ, and (y − X(t))/R,η2 and η3 comprise an orthonormal basis for ℝ3. Using
this basis to represent velocity vectors, we rewrite equation (3.9) as

(3.11)V − V = − 2
(1 + μ)R ξ1 + V(t) ⋅ y − X(t)R y − X(t) .

For a given heat bath particle velocity v, the set of possible starting points allowing for a
collision with the heavy particle within the surface area element dA centred at y during the time
interval [t, t + Δt] is a cylinder of cross-sectional area dA and perpendicular height:

ℎ = Δt V(t) − v ⋅ y − X(t)R = Δt ξ1 + V(t) ⋅ y − X(t)R .

We assume the number of heat bath particles in this cylinder is Poisson distributed with meanλμ times its volume ℎdA. The probability of collision of a heat bath particle with velocity in the
interval (v, v + dv) with the surface element dA over the time interval [t, t + Δt] reads

(3.12)λμΔt ξ1 + V(t) ⋅ y − X(t)R dAfμ −ξ1
y − X(t)R + ξ2η2 + ξ3η3 dv .

To find the average change in velocity of the heavy particle owing to collisions with dA during
the time interval [t, t + Δt], we multiply equation (3.11) by equation (3.12) and integrate over all
possible velocities v parameterized by equation (3.10) obtaining

ψℓ(y) ΔtdA = − ΔtdA 2λμ yℓ − Xℓ(t)
(1 + μ)R 0

∞

−∞

∞

−∞

∞ ξ1 + V(t) ⋅ y − X(t)R 2

× fμ −ξ1
y − X(t)R + ξ2η2 + ξ3η3 dξ3 dξ2 dξ1

= − ΔtdA 2λμ yℓ − Xℓ(t)
(1 + μ)R 0

∞

−∞

∞

−∞

∞ ξ1 + V(t) ⋅ y − X(t)R 2

× Fμ − ξ1 + u ⋅ y − X(t)R y − X(t)R + ∑i = 2

3 ξi − u ⋅ ηi ηi dξ3 dξ2 dξ1 .

Note that we have expressed u in terms of the basis vectors (y − X(t))/R, η2, η3 , obtaining the
representation

u = u ⋅ y − X(t)R y − X(t)R + u ⋅ η2 η2 + u ⋅ η3 η3.

From here, we integrate this expression over the surface of the heavy molecule, and upon
equating this integral to the average velocity jump in equation (3.8), we obtain equation (3.6) in
the limit Δt 0.

To determine the diffusion term, we calculate the variance in the velocity jump in the ℓth
direction from time t to time t + Δt and equate this with βℓ2(t)Δt in equation (3.8). It is also
possible to have off-diagonal terms in the diffusion tensor, and we account for these as well.
Since the mean velocity jump is O(Δt), the variance (to leading order) is the second moment

of the velocity jump. We square the quantity (3.11), multiply it by equation (3.12), and then
integrate over all possible parameterizations of v in equation (3.10), finding that the variance in
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the ℓth component of the velocity jump of the heavy particle owing to collisions with dA over
the time interval [t, t + Δt] is ϕℓ, j(y) ΔtdA, where

ϕℓ, j(y) =
4λμ yℓ − Xℓ(t) yj − Xj(t)

(1 + μ)2R2
0

∞

−∞

∞

−∞

∞ ξ1 + V(t) ⋅ y − X(t)R 3

× fμ −ξ1
y − X(t)R + ξ2η2 + ξ3η3 dξ3 dξ2 dξ1

=
4λμ yℓ − Xℓ(t) yj − Xj(t)

(1 + μ)2R2
0

∞

−∞

∞

−∞

∞ ξ1 + V(t) ⋅ y − X(t)R 3

× Fμ − ξ1 + u ⋅ y − X(t)R y − X(t)R + ∑i = 2

3 ξi − u ⋅ ηi ηi dξ3 dξ2 dξ1 .

Integrating ϕℓ, j(y) ΔtdA over the surface S(X(t),R) of the heavy molecule, and matching with

second moment terms βℓ, j2 (t)Δt in equation (3.8), we obtain the 3 × 3 matrix β2 for which we then

need to find the matrix root. However, since βℓ, j2 (t) = βj, ℓ2 (t) by symmetry of equation (3.5), the

matrix β2 is real symmetric and hence such a root exists. ∎
Theorem 3.1 has given us a procedure by which to determine the drift and diffusion terms

once a distribution Fμ is known. Importantly, we have needed to make no assumptions on the
light particle distribution, other than require conditions (2.2) to hold, so our results are generic
with respect to the distribution Fμ. Physical justification for the Langevin formulation (3.1)–(3.2)
requires that the mass ratio be large, and we will exploit this to simplify the expressions in
Theorem 3.1 in the μ≫ 1 limit. This is equivalent to the large variance limit σμ ≫ 1. As we
will see, this will still involve a rather generic class of distributions, holding physically relevant
examples—such as the Gaussian distribution (1.4)—as special cases.

(a) Results for the large-mass-ratio limit
We simplify the results of Theorem 3.1 by accounting for the fact that the Langevin formulation
(3.1)–(3.2) requires that the mass ratio be large, i.e. we assume μ≫ 1. This is equivalent toσμ ≫ 1, and in this subsection, we derive functional forms for α and β in this physically relevant
limit. To make further progress along these lines, note that Theorem 3.1 has involved finding
a triple integral over the moments of certain generic probability density functions. There is
always one direction of integration along which a moment is contributed, and two which are
effectively inert. We define the marginal density function

(3.13)fμ(ξ1) =
−∞

∞

−∞

∞fμ −ξ1
y − X(t)R + ξ2η2 + ξ3η3 dξ3 dξ2 ,

where we have integrated over the two inert directions. Assuming that this integration can be
carried out, let us assume the result takes the functional form

(3.14)fμ(ξ) = 1σμ F ξσμ .

Here, F  is still kept general, and is assumed to inherit properties of the density function Fμ
in equation (2.2). We also assume the marginal density function (3.14) satisfies the moment
relations

(3.15)a
∞ξκfμ(ξ) dξ = F κσμκ +O 1σμ as σμ → ∞, for κ = 0, 1, 2, 3,

8
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where the leading term is independent of the specific finite value of a. The asymptotic relation
(3.15) follows for many distributions from

a
∞ξκfμ(ξ) dξ = a

∞ξκ 1σμ F ξσμ dξ = σμκ a/σμ
∞ qκF q dq = F κσμκ − σμκ

0

a/σμqκF q dq,

where

(3.16)F κ =
0

∞qκF q dq .

The leading-order terms in equation (3.15) are listed for a variety of specific distributions in
table 1.

Theorem 3.2. Assume that the marginal density function fμ(ξ1) in equation (3.13) takes the form
(3.14) and satisfies the asymptotic scalings (3.15). The Itô stochastic differential equations (3.1)–(3.2) for
the motion of the heavy solute particle has drift and diffusion terms which take the form

(3.17a)α(X,V) = − 2πF 1 γ V − u(X) − AR u(y) − u(X) + O 1σμ ,

and

(3.17b)β(X,V) = 2πF 3Dγ I + O 1σμ as σμ → ∞,

where operator AR given by

(3.18)AR[w] = 3
4πR2 S(X(t),R)

y − X(t)R w(y) ⋅ y − X(t)R dA,

incorporates the geometry of the flow and finite-size effects of the heavy particle.
Proof. Using equation (3.13) in equation (3.4), we obtain

ψℓ(y) = −
2λμ yℓ − Xℓ(t)

(1 + μ)R 0

∞ ξ1 + V(t) ⋅ y − X(t)R 2fμ ξ1 + u ⋅ y − X(t)R dξ1 .

Using equations (1.3) and (1.5), we get

ψℓ(y) = −
3γ yℓ − Xℓ(t)

4σμR3 2π u ⋅ y − X(t)R
∞ ξ + V(t) − u ⋅ y − X(t)R 2fμ(ξ) dξ .

Using equation (3.15), we obtain

ψℓ(y) = − 3γ
4R2 2π

yℓ − Xℓ(t)R F 2σμ + 2F 1 V(t) − u ⋅ y − X(t)R +O 1σμ ,

as σμ → ∞. Substituting into equation (3.6) and using the following integration results on the
surface of the sphere

S(X(t),R)

yℓ − Xℓ(t)R dy = 0 for all ℓ = 1, 2, 3 , and

(3.19)S(X(t),R)

yℓ − Xℓ(t)R yj − Xj(t)R dy = 4πR2

3 δℓ, j for all ℓ, j = 1, 2, 3 ,

then, the drift term α can be evaluated as

9
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α(X,V) = −
3F 1γ

2R2 2π S(X(t),R)

y − X(t)R V(t) − u(y) ⋅ y − X(t)R dy +O 1σμ
= −

3F 1γ
2R2 2π S(X(t),R)

y − X(t)R V(t) − u(X(t)) ⋅ y − X(t)R dy
− S(X(t),R)

y − X(t)R u(y) − u(X(t)) ⋅ y − X(t)R dy +O 1σμ ,

as σμ → ∞, which simplifies to equation (3.17a). Next, to simplify the diffusion terms, we use
equations (3.13), (3.15), (1.3) and equation (1.5) in equation (3.5) to obtain

ϕℓ, j(y) =
4λμ yℓ − Xℓ(t) yj − Xj(t)

(1 + μ)2R2 u ⋅ y − X(t)R
∞ ξ + V(t) − u ⋅ y − X(t)R 3fμ(ξ) dξ

= 3Dγ2

2R2 2π
yℓ − Xℓ(t) yj − Xj(t)R2 F 3 +O 1σμ .

Substituting into equation (3.7) and using equation (3.19), we get

βℓ, j2 = 3Dγ2

2R2 2π S(X(t),R)

yℓ − Xℓ(t) yj − Xj(t)R2 F 3 +O 1σμ dA
= 2πF 3Dγ2 δℓ, j +O 1σμ for all ℓ, j = 1, 2, 3 .

As the squared diffusion tensor β2 is diagonal up to leading order, and since the full diffusion
tensor β2 is real symmetric, we have that the square-root matrix exists and is diagonal up to
leading order, resulting in equation (3.17b). ∎

Theorem 3.2 has allowed us to simplify the general integrals present in Theorem 3.1 by
assuming a large mass ratio limit and then using the asymptotic property of equation (3.15)
of the marginal distributions with finite-size effects encoded by operator AR. To further study
finite mass ratio corrections, one could retain higher-order terms in powers of σμ−1, developing
a perturbation series for equation (3.17). To do so, one calculates higher-order terms in the
asymptotic expansion of equation (3.15), finding

Table 1. Asymptotic scale constants in equation (3.15) for various marginal density functions F , given by equation (3.16).

Distribution F (q) F 0 F 1 F 2 F 3

Gaussian 1
2π

exp − q2

2
1
2

1
2π

1
2

2
π

Laplace 1
2 2

exp − |q|
2

1
2

1
2

2 6 2

Generalized Gaussian
(θ = 3 in equation
(3.26))

3
2 2 Γ(1/3)

exp − q
2

3 1
2

2−5/6 Γ(5/6)
π

1
Γ(1/3)

2
3

Hyperbolic secant 1
2 sech πq

2
1
2 0.37122 1

2 0.97464

Uniform
1
2 if |q | ≤ 1

0 otherwise

1
2

1
4

1
6

1
8
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(3.20)a
∞ξκfμ(ξ) dξ = F κσμκ − F (0) aκ + 1

(κ + 1)σμ − F ′(0) aκ + 2

(κ + 2)σμ2 +O 1σμ3 for κ = 0, 1, 2, 3 .

When the velocity distribution of light particles is symmetric about the velocity field, F ′(0) = 0,

and hence the O σμ−2  terms drop out. One then uses these terms in the integrals for ψℓ(y) and

ϕℓ, j(y), adding additional terms to the integrals evaluated in the proof of Theorem 3.2. We
illustrate the asymptotic expansion of equation (3.20) with the following example.

Example 3.1. Consider the Gaussian distribution with mean zero and variance σμ. We
calculate

a
∞fμ(ξ) dξ = 1

2 1 − erf a
2σμ = F 0 −

a
2πσμ +O 1σμ3 ,

a
∞ξ fμ(ξ) dξ = σμ

2π
exp − a2

2σμ2 = F 1σμ − a2

2 2πσμ +O 1σμ3 ,

a
∞ξ2fμ(ξ) dξ = σμ

2 π
πσμ 1 − erf a

2σμ + 2a exp − a2

2σμ2
= F 2σμ2 − a3

3 2πσμ +O 1σμ3 ,

a
∞ξ3fμ(ξ) dξ = σμ

2π
2σμ2 + a2 exp − a2

2σμ2 = F 3σμ3 − a4

4 2πσμ +O 1σμ3 .

For instance, when the mass ratio μ = M/m is equal to 104, the first finite-size correction is
O σμ−1 = O 10−2  while the error term is of size O σμ−3 = O 10−6 . As such, the leading-order terms

in Theorem 3.2 will be sufficient for cases with mass ratios of these sizes.

(b) Role of velocity distribution shape on the drift and diffusion
To better understand Theorem 3.2, it is worth considering how the shape of the light particle
velocity distribution influences the drift and diffusion terms.

Corollary 3.1. If the light particles are distributed according to Maxwell–Boltzmann statistics
(equation (1.4)), then F  is Gaussian, ℱ1 = 1/ 2π, ℱ3 = 2/π and equation (3.17) reduce to

(3.21a)α(X,V) = − γ V − u(X) − A[u(y) − u(X)] +O 1σμ ,

(3.21b)β(X,V) = 2Dγ I +O 1σμ , as σμ → ∞ .

Corollary 3.1 shows that Theorem 3.2 reduces to the result (1.8) for the special case u ≡ 0. Next,
we consider more general velocity distributions Fμ(q) with thin or heavy tails. For any fixed
shape parameter θ > 0, a generalized Gaussian distribution takes the form

(3.22)Fμ(q; θ) = θ
2 2 Γ(1/θ)σμ 3

exp − ∥q∥
2σμ θ

.

This may seem like a distribution that will not separate into the product form of equation (2.3)
for general θ, making the calculation of a marginal distribution complicated or even impossible.
However, this all depends upon how we define the vector norm ∥q∥. Let us take

∥q∥=∥q∥θ := ∑ℓ = 1

3
|qℓ|θ 1/θ

.
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Then, equation (3.22) becomes

(3.23)Fμ(q; θ) = ∏ℓ = 1

3 θ
2 2 Γ(1/θ)σμ exp −

|qℓ|
2σμ θ

.

Although the θ = 2 (Maxwellian) distribution is most common in the statistical physics
literature, we remark that other values of θ have applications. The particular shape of a
distribution is informed by the physics of the light particles, accounting for features such as
the propensity for particle–particle interactions between the heat bath particles. Heavy-tailed
distributions with θ = 1 (Laplace) [46] and θ = 3/2 [43–45] are arguably better distributions for
certain granular gases in experiments with high-energy particles. Non-Gaussian distributions of
forces can also be estimated from more detailed all-atom molecular dynamics models of solvent
[50–54].

Theorem 3.3. Let the distribution of solvent particle velocities follow a generalized Gaussian
distribution of the form of equation (3.22) with vector norm ∥q∥=∥q∥θ, then drift and diffusion terms in
equation (3.17a) and (3.17b) reduce to

(3.24a)α(X,V) = − χ1(θ) γ V − u(X) − A[u(y) − u(X)] +O 1σμ ,

(3.24b)β(X,V) = χ2(θ) 2Dγ I +O 1σμ ,

as σμ → ∞, where the scale factors read

(3.25)χ1(θ) = 2(2 − θ)/θΓ 2 + θ
2θ and χ2(θ) = 81/θ

2π1/4 Γ 2 + θ
2θ Γ 4 + θ

2θ .

Here, Γ denotes the gamma function, and the scale factors are well-defined for all θ > 0.
Proof. Using equation (3.23) we can integrate over the two inert coordinates in equation

(3.13), constructing the marginal distribution function according to equation (3.14),

(3.26)F (q) = θ
2 2 Γ(1/θ)

exp − |q|
2

θ
,

with θ > 0. Using equation (3.16), we have

F 1 = 2(4 − 3θ)/(2θ)

π
Γ 2 + θ

2θ and F 3 = 8(4 − θ)/(2θ)

π Γ 2 + θ
2θ Γ 4 + θ

2θ .

The result then follows from an application of Theorem 3.2. ∎
We have that both scale factors of equations (3.25) are decreasing functions of θ, with

limθ→ 0+
χ1, 2(θ) = ∞ , limθ→ ∞

χ1(θ) = π
2 ≈ 0.88623 , and limθ→ ∞

χ2(θ) = π1/4

2 ≈ 0.66567 .

Therefore, when 0 < θ < 2, the heavy tails result in a sampling of a greater proportion of
larger velocities, resulting in both faster drift and larger diffusion when compared with the
Gaussian (Maxwell–Boltzmann) results. When θ > 2, the thin tails result in sampling of a greater
proportion of smaller velocities, resulting in both slower drift and smaller diffusion when
compared with the Gaussian results. We list key values of these scale factors in table 2, while
also providing a plot of each as a function of θ. We conclude this section with an example where
Theorem 3.2 is not applicable, necessitating the more general treatment of Theorem 3.1.

Example 3.2. Assume that the solvent particle velocities are sampled according to the Dirac
delta distribution fμ(v,u) = Fμ(v − u), where Fμ(q) is in the product form of equation (2.3) for
F (q) = δ(q). Then, we have

12
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a
∞ξκfμ(ξ) dξ = a

∞ξκ 1σμ δ ξσμ dξ = 1 − H(a) if  κ = 0 ,
0 if  κ = 1, 2, 3 ,

where H( ⋅ ) is the Heaviside step function, so the marginal distribution depends on a and yet
not on σμ. Define S−(X(t),R) ⊂ S(X(t),R) to be the set

S−(X(t),R) = y ∈ S(X(t),R) and u(y) ⋅ y − XR < 0 .

Applying Theorem 3.1, the drift coefficient of the Itô stochastic differential equations (3.1)–(3.2)
for the motion of the heavy solute particle can be expressed as the surface integral

αℓ(X,V) = − 2λμ
1 + μ S−(X(t),R)

yℓ − Xℓ(t)R V(t) − u ⋅ y − X(t)R 2
dA , ℓ = 1,2,3 ,

where dA is the surface element centred at y. Also, Theorem 3.1 implies that the diffusion terms
are given by the square root of the matrix having entries

βℓ, j2 (X,V) = 4λμ
(1 + μ)2 S−(X(t),R)

yℓ − Xℓ(t)R yj − Xj(t)R V(t) − u ⋅ y − X(t)R 3
dA,

for each pair ℓ, j = 1,2,3. Since the integral is performed over S− rather than S this builds an

asymmetry into the dynamics, where the structure of this asymmetry strongly depends upon
the geometry of the flow u(y) local to the heavy particle.

As previously discussed in §2, the choice of probability density for the light particle
velocities serves as a model for the specific material comprising the heat bath. Probability
densities viewed as a sum of simpler densities find application in the statistical understanding
of certain plasma flows [47,48], where they allow for better agreement with experimental
observations than would single simple distributions. As such, it is worth extending our results
to this case. We consider a distribution function for the velocities of the light particles given by

(3.27)fμ(v,u) = Fμ(v − u) where Fμ(q) = ∑ℓ = 1

ℓ* cℓ Fμ, ℓ(q)

Table 2. Constants scaling the drift and diffusion terms of equation (3.24) in Theorem 3.3 for various marginal density
functions F  according to equation (3.25) (left) and plots of the scale factors x1(θ) and x2(θ) (right).

Distribution θ χ1(θ) χ2(θ)

Heavy-tail limit θ→ 0+
∞ ∞

Laplace θ = 1 1.77245 3.26109

Heavy-tailed
Gaussian

θ = 3
/2 1.16885 1.40335

Maxwell–Boltzmann θ = 2 1 1

Thin-tailed Gaussian θ = 3 0.89592 0.76865

Thin-tail limit
θ→ ∞ 0.88623 0.66567
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and each function Fμ, ℓ obeys the properties (2.2) while the coefficients are subject to the

constraint ∑ℓ = 1

ℓ* cℓ = 1, so that in turn Fμ(q) also obeys the properties of equation (2.2). We assume

that each Fμ, ℓ has corresponding marginal distribution function Fμ, ℓ(ξ) = σμ−1F ℓ(ξ/σμ) satisfying

the asymptotic scaling

(3.28)a
∞ξκ 1σμ F ℓ ξσμ dξ = F ℓ; κσμκ +O 1σμ

as σμ → ∞, given κ = 0,1,2,3, …, where the leading term is independent of the value of a.
Theorem 3.4. Let the marginal distribution of light particle velocities takes the form of a superposi-

tion of simpler densities (3.27). Then, the drift and diffusion terms in equation (3.17) reduce to

(3.29a)α(X,V) = − 2π ∑ℓ = 1

ℓ∗
F ℓ; 1 γ V − u(X) − A[u(y) − u(X)] +O 1σμ ,

(3.29b)β(X,V) = π
2 ∑ℓ = 1

ℓ∗
F ℓ; 3 2Dγ I +O 1σμ as σμ → ∞ .

Proof. Using equation (3.27), we can integrate over the two inert coordinates in equation
(3.13), constructing the marginal distribution function according to equation (3.14), in the form

F (q) = ∑ℓ = 1

ℓ* cℓF ℓ(q). From here, we calculate the asymptotic scalings needed to describe the drift

and diffusion terms, ℱ1 = ∑ℓ = 1

ℓ* ℱℓ; 1 and ℱ3 = ∑ℓ = 1

ℓ* ℱℓ; 3. The result then follows from an application

of Theorem 3.2. ∎
Example 3.3. Consider a generalized Gaussian distribution for the light particle velocities

with polynomial factors that influence the shape of the distribution (for applications of such
distributions in plasma physics, see [47,48,56]), say equation (3.27) with each Fμ, ℓ(q) chosen so
that the marginal distribution F (q) takes the form

(3.30)F (q) = ∑ℓ = 1

ℓ∗ cℓ q2ℓexp( − q2/2)
2ℓ + 1

2 Γ ℓ + 1
2

,

with the coefficients satisfying ∑ℓ = 0

ℓ* cℓ = 1. We find for equation (3.30) that the leading-order

terms in the moments (3.15) take the form

(3.31)F 0 = 1
2 , F 1 = ∑ℓ = 1

ℓ∗ cℓΓ(ℓ + 1)
2 Γ ℓ + 1

2

, F 2 = ∑ℓ = 1

ℓ∗ cℓΓ ℓ + 3
2

Γ ℓ + 1
2

, F 3 = ∑ℓ = 1

ℓ∗ 2 cℓΓ ℓ + 2
Γ ℓ + 1

2

.

Applying Theorem 3.4, the drift and diffusion terms in equation (3.17) reduce to

(3.32a)α(X,V) = − π ∑ℓ = 1

ℓ∗ cℓΓ(ℓ + 1)
Γ ℓ + 1

2

γ V − u(X) − A[u(y) − u(X)] +O 1σμ ,

(3.32b)β(X,V) = π∑ℓ = 1

ℓ∗ cℓΓ(ℓ + 2)
Γ ℓ + 1

2

2Dγ I +O 1σμ as σμ → ∞ .
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(c) Finite-size effects and the role of the flow geometry
While our results are valid for generic vector fields u modelling the mean flow, it is worth
considering some specific examples to illustrate the theory. In this subsection, we consider
how the drift term (3.17a) in Theorem 3.2 behaves under specific stationary flows u of a given
geometric structure. We first derive a general result for flows which are smooth enough. It is
given as Theorem 3.5, which is then applied to several specific choices of flows in the corolla-
ries. Theorem 3.5 can be applied to a number of flows commonly used in the fluid mechanics
literature; see [57] and [58] for many examples and additional motivation behind some of the
flows we study in this subsection.

Theorem 3.5. Let u ∈ C2(ℝ3). Then, the finite-size correction (3.18) in the drag term (3.17a) reads

(3.33)

A[u(y) − u(X)] = R2

10

3∂
2u1

∂y1
2 + ∂

2u1

∂y2
2 + ∂

2u1

∂y3
2 + 2 ∂2u2

∂y1∂y2
+ 2 ∂2u3
∂y1∂y3

∂2u2

∂y1
2 + 3∂

2u2

∂y2
2 + ∂

2u2

∂y3
2 + 2 ∂2u1

∂y1∂y2
+ 2 ∂2u3
∂y2∂y3

∂2u3

∂y1
2 + ∂

2u3

∂y2
2 + 3∂

2u3

∂y3
2 + 2 ∂2u1

∂y1∂y3
+ 2 ∂2u2
∂y2∂y3 y = X(t)

+ O R4 ,

as R→ 0
Proof. Using the Taylor expansion near y = X(t), we have for y ∈ S(X(t),R)

(3.34)

u(y) − u(X(t)) = ∑ℓ = 1

3 ∂u(X(t))
∂yℓ (yℓ − Xℓ(t)) + ∑ℓ = 1

3
∑k = 1

3 1
2
∂2u(X(t))
∂yℓ∂yk (yℓ − Xℓ(t))(yk − Xk(t))

+ ∑ℓ = 1

3
∑k = 1

3
∑j = 1

3 1
3
∂3u(X(t))
∂yℓ∂yk∂yk (yℓ − Xℓ(t))(yk − Xk(t))(yj − Xj(t)) +O R4

= linear terms + quadratic terms + cubic terms +O R4 .

Since AR is a linear operator, we have

AR[u(y) − u(X(t))] = AR[linear terms] + AR[quadratic terms] + AR[cubic terms] +O R4 .

Utilizing the symmetry of the integration domain, we have that

S(X(t),R)

y − X(t)R (yℓ − Xℓ(t))C ⋅ y − X(t)R dA = 0,

for all ℓ = 1,2,3 and all constant vectors C, from which it follows AR[linear terms] = 0. Similarly,

S(X(t),R)

y − X(t)R (yℓ − Xℓ(t))(yj − Xj(t))(yk − Xk(t))C ⋅ y − X(t)R dA = 0

for all ℓ, j, k = 1,2,3 and all constant vectors C, from which it follows AR[cubic terms] = 0.
Consequently, we deduce

(3.35)AR[u(y) − u(X(t))] = AR[quadratic terms] +O R4 ,

where the quadratic terms given in equation (3.34) will result in non-zero contributions. We
consider the action of AR on a generic vector with strictly quadratic terms, of the form

(3.36)B = ∑ℓ = 1

3
∑j = 1

3 Bℓ, j(yℓ − Xℓ(t))(yj − Xj(t)) ,

where the Bℓ, j are constant in y. We have that
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(3.37)

AR[B] = 3
4πR2 S(X(t),R)

y − X(t)R ∑ℓ = 1

3
∑j = 1

3 Bℓ, j(yℓ − Xℓ(t))(yj − Xj(t)) ⋅ y − X(t)R dA
= 3

4πR2 ∑ℓ = 1

3
∑j = 1

3

S(X(t),R)

y − X(t)R (yℓ − Xℓ(t))(yj − Xj(t)) Bℓ, j ⋅ y − X(t)R dA
= R2

5

3B1, 1; 1 + B2, 2; 1 + B3, 3; 1 + B1, 2; 2 + B2, 1; 2 + B1, 3; 3 + B3, 1; 3B1, 2; 1 + B2, 1; 1 + B1, 1; 2 + 3B2, 2; 2 + B3, 3; 2 + B2, 3; 3 + B3, 2; 3B1, 3; 1 + B3, 1; 1 + B2, 3; 2 + B3, 2; 2 + B1, 1; 3 + B2, 2; 3 + 3B3, 3; 3

.

Here by Bℓ, j; k, we mean the kth component (k = 1,2,3) of Bℓ, j. Comparing the general vectorB with the form of the quadratic terms in the expansion (3.34) for u(y) − u(X(t)), the quadratic
terms may be written in the form (3.36) provided

(3.38)Bℓ, j; k = 1
2
∂2uk(X(t))
∂yℓ∂yj .

Since u(y) is assumed smooth, by Clairaut’s Theorem, we can exchange partial derivatives in
equation (3.38) to get Bℓ, j; k = Bj, ℓ; k for all ℓ, j = 1,2,3. Substituting equation (3.38) into equations
(3.37) and equation (3.35), we obtain equation (3.33). ∎

Corollary 3.2. If the flow of solvent particles is governed by a linear velocity field u(y), then the
correction term AR[u(y) − u(X)] in equation (3.17) vanishes, in which case the Itô stochastic differential
equations (3.1)–(3.2) for the motion of the heavy solute particle has drift term which takes the form

(3.39)α(X,V) = − 2πF 1 γ V − u(X) +O 1σμ as σμ → ∞ .

Proof. For any linear flow, equations (3.35) and (3.38) imply AR[u(y) − u(X)] = 0 and the result
(3.39) then directly follows from equation (3.17a).

Examples of flows for which Corollary 3.2 is applicable include: (i) uniform flow, u(x) = C,
where C is a constant vector; (ii) planar Couette flow, u(x) = 0,0,ux1

T, with velocity directed
along the x3 axis and u being a constant; and (iii) generic stagnation flows given in the formu(x) = u1x1, u2x2, u3x3

T, where the condition u1 + u2 + u3 = 0 holds [59,60]. For these flows,
Corollary 3.2 implies that the SDEs given by drift and diffusion terms (3.39) are exact, with no
finite-size corrections needed. We now provide an example of a quadratic flow, the Poiseuille
flow within a circular pipe [61], to illustrate the role of the correction term.

Corollary 3.3. If the flow of solvent particles is governed by a Poiseuille flow within a pipe of radius ℎ
taking the form

(3.40)u(x) = 0, 0, 1 − x1
2 + x2

2ℎ2 u T

,

where u is a constant, then the Itô stochastic differential equations (3.1)–(3.2) for the motion of the heavy
solute particle has drift term of the form

(3.41)α(X,V) = − 2πF 1 γ V − 0, 0, 1 − 2R2

5ℎ2 −
X1

2 + X2
2ℎ2 u T

+ O 1σμ
as σμ → ∞.

Proof. We have

∂2u3

∂y1
2 = − 2uℎ2 , ∂2u3

∂y2
2 = − 2uℎ2 , and ∂2u3

∂yℓyj = 0 otherwise .

The correction term A[u(y) − u(X)] then reads
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A[u(y) − u(X)] = R2

10 0, 0, − 4uℎ2

T
= − 2R2u

5ℎ2 0, 0, 1 T .

Using this correction term in equation (3.17a), and noting that there are no higher-order
corrections since the flow is exactly quadratic, we obtain equation (3.41). ∎

As our last example in this subsection, we consider a boundary-layer flow over a stretching
plate, which admits an exact solution found by Crane [62]. Assume a plate lying on the x3 = 0
plane is stretched along the x1 axis. Then, in the region x1 > 0, x2 ∈ ℝ, x3 > 0, we have the
velocity field

(3.42)u(x) = u x1ℎ1
exp − x3ℎ3

, 0, − uℎ3ℎ1
1 − exp − x3ℎ3

T
,

where u,ℎ1 and ℎ3 are positive constants.
Corollary 3.4. If the flow of solvent particles is governed by a boundary-layer flow described by the

solution of Crane (3.42), then the Itô stochastic differential equations (3.1)–(3.2) for the motion of the
heavy solute particle has drift term of the form

(3.43)

α(X,V) = − 2πF 1 γ V − u
1 + R2

10ℎ3
2
X1(t)ℎ1

e−X3(t)/ℎ3

0ℎ3ℎ1
1 + R2

10ℎ3
2 e−X3(t)/ℎ3 − ℎ3ℎ1

+ O 1σμ + O R4

as R→ 0 and σμ → ∞.
Proof. Differentiating the components of equation (3.42), we obtain

∂2u1
∂y1∂y3

= − uℎ1ℎ3
e−y3/ℎ3, ∂2u1

∂y3
2 = uℎ1ℎ3

2 y1 e−y3/ℎ3, ∂2u3

∂y3
2 = uℎ1ℎ3

e−y3/ℎ3,

while all other second-order partial derivatives are zero. Using Theorem 3.5, we have

AR[u(y) − u(X)] +O R4 = R2

10

∂2u1

∂y3
2

0

3∂
2u3

∂y3
2 + 2 ∂2u1

∂y1∂y3 y = X(t)
= R2u e−X3(t)/ℎ3

10ℎ1ℎ3

X1(t)/ℎ3

0
1

.

Substituting into equation (3.17a), we obtain equation (3.43). ∎
4. Simulations in a co-moving frame
In this section, we validate the results of §3 by performing illustrative computer simulations.
One way to compare the theory and simulation is to numerically approximate the scale factors
for the drift (χ1(θ)) and diffusion (χ2(θ)) terms in the motion of a heavy particle predicted by
the theory, assuming the velocities of solvent particles are sampled according to the generalized
Gaussian distribution (3.26). Since we want to estimate the scale factors χ1(θ) and χ2(θ), we need
to perform simulations over sufficiently long time, averaging over many collisions with solvent
particles. Our simulations consider more than 108 solvent particles and the system evolves for
more than 108 time steps of length Δt. In particular, a direct simulation of such a large system
would be computationally intensive.

To design an efficient computational scheme, we only explicitly simulate the behaviour of
approximately 900 particles at any one time, because our computer simulations perform in a
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co-moving cubic frame of length L that is centred at X(t), i.e. solvent particles are explicitly
simulated in the cubic box

(4.1)X(t) + − L2 , L2 × − L2 , L2 × − L2 , L2 ,

while we assume that the solvent particles are distributed according to the spatial Poisson
process with density λμ given by equation (1.3) and their velocities are distributed according tofμ(v,u) given by equation (2.1). Simulation in a co-moving frame was introduced in Gunaratne
et al. [9] for the case without flow, i.e. for u ≡ 0 and for the Gaussian distribution (1.4). Here,
we extend this approach to the case of general flow, i.e. for u ≠ 0 and for general velocity
distribution (2.1) as Algorithm [A1]–[A6] in table 3, which presents an update of the state of the
system from time t to time t + Δt, where the time step Δt is assumed to be small enough so that
at most one collision happens during the time interval [t, t + Δt]. Algorithm [A1]–[A6] evolve the
positions and velocities of N(t) solvent particles, where N(t) will fluctuate around the value 900
in our illustrative simulations in co-moving frame (4.1).

The initial position and velocity of the heavy particle are X(0) = 0 and V(0) = 0, respectively.
The positions of solvent particles are initialized in the exterior of the heavy particle according to
a spatial Poisson process with density λμ in our simulation domain (4.1). The initial velocities of
solvent particles are drawn from the distribution fμ(v,u) given by equation (2.1).

We first update the positions in Step [A1] over the time interval [t, t + Δt] using the free-flight
equations

(4.2)X(t + Δt) = X(t) + V(t) Δt,
(4.3)xj(t + Δt) = xj(t) + vj(t) Δt,

where j = 1,2, …,N(t). In Step [A2], we update the velocities of the solvent particles which did
not collide with the heavy particle by a discretized version of equation (2.4), that is, by

(4.4)vj(t + Δt) = vj(t) + ∇u(xj(t)) vj(t) Δt,
where ∇u(xj(t)) means that we evaluate ∇u at the position xj(t) of the jth particle at time t.
This means that equations (4.3) and (4.4) form the forward Euler discretization of ODEs (2.4).
To formulate Algorithm [A1]–[A6], we assume that Δt is chosen small enough so that at most
one collision happens during the time interval [t, t + Δt]. To determine the colliding particle, we
evaluate the condition

xj(t + Δt) − X(t + Δt)
2

< R,

for all solvent particles in Steps [A2] and [A3]. If the particle did collide, then we do not use
equation (4.4) during the collision time-step. In Step [A4], we update the position and velocity
of the co-moving frame to X(t + Δt) and

(4.5)Vf = X(t + Δt) − X(t)
Δt .

We update N(t) by removing the solvent particles which are outside of the simulation domain.
In Step [A5], we calculate the number of particles which entered the simulation domain during
the time interval [t, t + Δt] through each corresponding side of the co-moving frame. The mean
number of particles entering through the left (−) and right (+) of the ith side is denoted as

(4.6)pi±(Vf), for i = 1,2,3,

and it is calculated for each considered distribution in §4a, where we also specify the distribu-
tions of the initial positions xnew and velocities vnew of the introduced solvent particles. Since
our calculation of incoming probabilities (4.6) uses boundaries equal to infinite planes, some
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regions are counted twice or three times in our derivation. Therefore, in Step [A5], we consider
the proposed sampled position xnew and velocity vnew of each incoming particle at time t + Δt,
calculate its previous position at time t byy = xnew − vnew Δt,
and define the acceptance probability by

(4.7)

ℎacc(xnew, vnew) =
1, for y − X(t) ∈ Y1;

1/2, for y − X(t) ∈ Y2;
1/3, for y − X(t) ∈ Y3,

where Yj ⊂ ℝ3 is the region of the space which consists of points which have exactly j of
their coordinates outside of the interval [−L/2, L/2]. The acceptance probability (4.7) takes into
account that regions Y2 and Y3 are counted twice and three times, respectively, in our derivation
of boundary conditions of co-moving frame (4.1). Regions Y1 and Y2 are illustrated in the
schematic of our co-moving frame in figure 1a with some of their boundaries highlighted by the
magenta and green shading. Region Y3 is next to the corners of the cube consisting of points,
which have all coordinates outside of the interval [−L/2, L/2].

(a) Distributions of particles entering the co-moving frame in Step [A5]
To apply Algorithm [A1]–[A6], we need to calculate the number, positions and velocities of
incoming solvent particles in Step [A5]. We will study the behaviour at the boundary side

(4.8)X1(t) − L2 × X2(t) − L2 , X2(t) + L
2 × X3(t) − L2 , X3(t) + L

2 ,

in Theorem 4.1, where this boundary is approximated as the plane {X1(t) − L/2} × ℝ2 dividing
the space ℝ3 into two half-spaces approximating the exterior and the interior of the co-moving
frame (4.1). We consider those particles which are not explicitly simulated at time t (because

Table 3. One iteration of the simulation algorithm in a co-moving frame.

[A1]   Update the positions of the solute and solvent particles by calculating their free-flight positions (4.2)–(4.3).

[A2]   Update the velocities of all solvent particles for which the free-flight position (4.3) lies outside the radius of the
solute particle by equation equation (4.4).

[A3]   If the free-flight position (4.3) of a solvent particle lies within the radius of the solute particle, reverse the
trajectories of the solvent and the solute particles by time τ < Δt such that they are just touching. Calculate
post-collision velocities by equations (1.1)–(1.2) and further update their new positions by moving forward by
time τ. Otherwise, each free-flight position (4.3) is accepted as the particle’s position at time t + Δt.

[A4]   Update N(t) by removing those solvent particles which lie outside of the co-moving frame (4.1) centred at
new position of the solute particle, X(t + Δt), from the simulation. Calculate the velocity of the co-moving
frame, Vf, over the time interval [t, t + Δt] by equation (4.5).

[A5]   Generate six Poisson distributed random numbers Ni− and Ni+, for i = 1, 2, 3, with means pi−(Vf) and pi+(Vf),
respectively. For each side i, generate Ni− and Ni+ proposed positions and velocities of new solvent particles.
For each proposed new particle position xnew with velocity vnew, generate a random number r uniformly
distributed in interval (0, 1). If r < ℎacc(xnew, vnew), where ℎacc(xnew, vnew) is given by equation (4.7), then
increase N(t) by 1 and initialize the new solvent particle at the proposed position xnew with velocity vnew.

[A6]   Continue with Step [A1] using time t = t + Δt.
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they are outside of the co-moving frame at time t), but they have to be included in the simula-
tion at time t + Δt, because they entered the co-moving frame at time t + Δt. The results for the
five other sides of the co-moving frame (4.1) can be obtained in the same way.

Theorem 4.1. Let Δt > 0. Let us assume that solvent particles are distributed according to the
Poisson distribution with density λμ in the half space (−∞, X1(t) − L/2) × ℝ2; their initial velocities are
distributed according to fμ(v,u) and there are no particles in the half space (X1(t) − L/2,∞) × ℝ2 at timet. Then, the positions x and velocities v of solvent particles are distributed at time t + Δt according to

(4.9)
g(x, v; Δt) = H X1(t) − L/2 − x1 + v1Δt λμfμ(v,u)

− H X1(t) − L/2 − x1 λμ∇ufμ(v,u) ∇u vΔt + O (Δt)2 ,

where H( ⋅ ) is the Heaviside step function and

∇ufμ(v,u) ∇u v ≡ ∑j, ℓ = 1

3 ∂fμ
∂uj (v,u(x)) ∂uj∂xℓ (x) vℓ .

The marginal distribution of the positions x of solvent particles at time t = Δt is then

(4.10)
%(x; Δt) = λμ

(L/2 + x1 − X1(t))/Δt
∞

−∞

∞

−∞

∞fμ(v,u) dv3 dv2 dv1

− H X1(t) − L/2 − x1 λμΔt ℝ3
∇ufμ(v,u) ∇u vdv + O (Δt)2 .

Proof. Solvent particles which have their position x = (x1,x2,x3)T and velocity v = (v1, v2, v3)T at
time t + Δt were previously (at time t) with the position and velocity, which we denote byxold = (x1, old,x2, old,x3, old)T and vold = (v1, old, v2, old, v3, old)T. There will be non-zero solvent particles with
velocity v at point x at time t + Δt provided that x1, old < X1(t) − L/2 which implies that

(4.11)g(x, v; Δt) = H(X1(t) − L/2 − x1, old) λμfμ(v,u(xold)) .

Using equations (4.3) and (4.4), we havex1, old = x1 − v1, old Δt,v1, old = v1 − ∇u(xold) vold Δt,

(a)

L

X(t)

1

0.8

0.6

0.4

F
(q

),
 G

(q
)

0.2

0
–6 –4 –2 w

q

0 2 4 6

(b)

Gaussion F(q)
Gaussion G(q)
Laplace F(q)
Laplace G(q)

Figure 1. (a) Schematic of the co-moving frame (4.1) is shown as the blue cube with centre X(t) and size L. Some parts of
region Y1 (used in equation (4.7)) are between the magenta shaded planes and between the green shaded planes, while the
region (next to the edge) bounded by the green and magenta planes is a part of Y2. (b) Functions F (q) and G(q) given by

equation (4.14) and listed in table 5. The shaded part illustrates the probability distribution (4.19) for ω = −1.
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Substituting into equation (4.11), we obtain

g(x, v; Δt) = H X1(t) − L/2 − x1 + v1Δt λμfμ(v,u(x − vΔt)) + O (Δt)2 .

Using the Taylor expansion, we obtain equation (4.9) to order O((Δt)2). The marginal distribu-
tion of the positions x of solvent particles at time t + Δt can then be obtained by integratingg(x, v; Δt) over all possible velocities, giving

%(x; Δt) = ℝ3
g(x, v; Δt) dv .

Using the formula for g(x, v; Δt) given by equation (4.9), we obtain equation (4.10). ∎
To apply Theorem 4.1 to the left side in the first direction (4.8) of the co-moving frame (4.1),

we identify the co-moving frame (4.1) at time t + Δt with the semi-infinite cuboid

(4.12)X(t + Δt) + − L2 ,∞ × − L2 , L2 × − L2 , L2 .

Then, the mean number of particles entering through the left side in the first direction (4.8) of
the co-moving frame can be calculated as the average number of particles in the semi-infinite
cuboid (4.12) by integrating

(4.13)p1
−(Vf) =

[X1(t + Δt) − L/2,∞) × [0, L]2
%(x; Δt) dx,

where %(x; Δt) is given by equation (4.10) and we have used that the integration domain
can be translated in the second and third directions without changing the integral. To eval-
uate integrals in equations (4.10) and (4.13), we will assume that the velocity distributionfμ(v,u) = Fμ(v − u) in equation (2.1) is given in the product form (2.3) and u is a constant vector
(uniform flow). We define

(4.14)G(z) = z
∞
F (q) dq and K(z) = z

∞
G(q) dq .

Since ∇u is a zero matrix for uniform flow u, equation (4.10) simplifies as follows:

(4.15)%(x; Δt) ≡ %(x1; Δt) = λμG L + 2x1 − 2 X1(t) − 2u1 Δt
2σμΔt .

Substituting into equation (4.13), we get

p1
−(Vf) = λμ L2σμΔt K Vf, 1 − u1σμ ,

where Vf = (V f, 1,V f, 2,V f, 3)T is the frame velocity defined by equation (4.5) and u is the underly-
ing flow vector field. Using symmetry, we can then express the numbers of particles entering
the co-moving frame during one time step through each side by

(4.16)pi±(Vf) = λμ L2σμΔt K ±
ui − Vf, iσμ , for i = 1, 2, 3.

These numbers are then used in Step [A5] of Algorithm [A1]–[A6] in table 3. The distribution
of the initial positions of the incoming particle is proportional to equation (4.15) which is
restricted to the semi-infinite cuboid (4.12). Since equation (4.15) only depends on x1, the
distribution of the second and third coordinates is uniform in [X2(t + Δt) − L/2, X2(t + Δt) + L/2]
and [X3(t + Δt) − L/2, X3(t + Δt) + L/2], respectively, while the first coordinate can be sampled as

(4.17)x1 = X1(t + Δt) − L/2 + ζσμΔt ,
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where ζ is the dimensionless distance (expressed in units of σμΔt) from the boundary (4.8) at
time t + Δt. Using equation (4.15), we can sample ζ according to a distribution proportional to

G ζ + V\scriptsize f, 1 − u1σμ , for ζ > 0.

Using symmetry, the distances of particles entering the co-moving frame through each of its
sides are sampled according to distributions proportional to

(4.18)G ζ ±
ui − Vf, iσμ , for ζ > 0.

To sample random numbers from distributions (4.18), we will use the acceptance–rejection
Algorithm [S1]–[S4] listed in table 4.

This is a generalization of the acceptance–rejection algorithms that were previously used for
simulations with Maxwell–Boltzmann statistics [8,9]. In the case of the distributions (4.18), we
need to sample random numbers according to the probability distribution

(4.19)p(ζ;ω) =
G(ζ + ω)
K(ω) , for ζ > 0,

where ω ∈ ℝ is a parameter. This distribution is illustrated in figure 1b using the pink shading
for ω = −1 and F  being the Laplace distribution.

The algorithm in table 4 samples random numbers according to the distribution (4.19)
by generating an exponentially distributed random number η3 with mean a1(ω), which is a
parameter of the method satisfying

(4.20)p(ζ;ω) ≤ 1a2(ω)K(ω) exp − ζa1(ω) for all ζ > 0,

where a2(ω) is the second parameter of the method. Substituting equation (4.19) into equation
(4.20), we get

(4.21)a2(ω)G(ζ + ω) exp ζa1(ω) ≤ 1 for all ζ > 0.

The inequality (4.21) can always be satisfied for some choices of parameters a1(ω) and a2(ω),
because G is exponentially decreasing for large values of ζ as can be seen in figure 1b. In

practice, we have to choose a1(ω) and a2(ω) to have a relatively high acceptance probability
which is the number on the left-hand side of condition (4.21). Since our exponentially distrib-
uted random number η3 is obtained in Step [S3] as η3 = −a1(ω) log (η1), we can substitute this into
the left-hand side of condition (4.21) for ζ to get the acceptance probability in Step [S4] as

(4.22)
a2(ω)G(η3 + ω)η1

.

A relatively high acceptance probability gives an efficient algorithm, because it decreases the
number of repeats of Steps [S2]–[S4] in table 4. Since η1 is uniformly distributed in Step [S2]
and η3 = −a1(ω) log (η1), we can substitute into equation (4.22) to get the probability that the
algorithm [S2]–[S4] finishes in one iteration as

(4.23)
0

1 a2(ω)G( − a1(ω) log(s) + ω)s ds = ω
∞ a2(ω)a1(ω) G(ζ) dζ =

a2(ω)K(ω)a1(ω) .

An appropriate choice of the parameters a1(ω) and a2(ω) will depend on our choice of F . In our

illustrative simulations, we will use two of the functions F : ℝ [0,∞) which have been listed
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in table 1 in §3, namely, the Gaussian (Maxwell–Boltzmann statistics) and Laplace distributions.
For these distributions, the integrals G and K defined by equation (4.14) can be evaluated

and are listed in table 5 together with the choices of a1(ω) and a2(ω), which we use in our
simulations. However, any choice of a1(ω) and a2(ω) will lead to correct sampling of random
numbers by the Algorithm [S1]–[S4] provided that they satisfy the inequality (4.21) for all ζ > 0.
Finally, we need a method for sampling velocities of particles introduced into the simulation in
Step [A5] according to distribution (4.9). In the case of a velocity distribution fμ(v,u) = Fμ(v − u)
taking the form of a product as in equation (2.3) and u being a constant vector (uniform flow),
this simplifies to sampling the first coordinate of the incoming velocity of the particle entering
through the first side according to the truncated distribution proportional to

(4.24)F v1 − u1σμ restricted to the subdomain v1 > x1 + L/2 − X2(t)
Δt ,

while the second and third coordinate of the velocity, v2 and v3, are sampled according to
untruncated distributions F (vj/σμ)/σμ, for j = 2,3. Using equation (4.17) and symmetry, the ith
coordinates of velocities of particles entering the co-moving frame through the ith left and right
sides are sampled according to distributions proportional to

(4.25)F vi − uiσμ restricted to the subdomain vi > ζσμ + Vf, i ,
and

(4.26)F vi − uiσμ restricted to the subdomain vi < − ζσμ + Vf, i ,
respectively. An appropriate choice of the algorithm for sampling random numbers according
to truncated distributions (4.25)–(4.26) will depend on the choice of F , and it is provided for

specific distributions in §4b.

(b) Illustrative simulations for Gaussian and Laplace distributions
In figure 2a, we present a trajectory of the solute particle calculated by Algorithm [A1]–[A6] and
visualized as the red line over a relatively short (dimensionless) time interval t ∈ [0,10]. In this
simulation, we use the uniform flow u = (1,0,0)T with the dimensionless parameters

(4.27)D = γ = m = R = 1, Δt = 10−5, M = 104, L = 4,

and the Gaussian distribution for F (q). In particular, we use the formulas for a1(ω) and a2(ω) for

the Gaussian distribution listed in table 5. To justify these choices, we note that in the case ofω ≥ 0, the formulas for a1(ω) and a2(ω) in table 5 imply that condition (4.21) can be rewritten as

Table 4. Acceptance–rejection algorithm for sampling random numbers according to the probability distribution p(ζ;ω)
given by equation (4.19).

[S1] Calculate a1(ω) and a2(ω) that satisfy the inequality (4.21) for all ζ > 0.

[S2] Generate two random numbers η1 and η2 uniformly distributed in the interval (0,1).

[S3] Compute an exponentially distributed random number η3 by η3 = − a1(ω) log(η1).

[S4] If η1 η2 < a2(ω)G(η3 + ω) , then choose η3 as a sample from the probability distribution (4.19). Otherwise, go

to Step [S2] of the algorithm.
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G(ζ + ω)
G(ω) exp

ζF (ω)
G(ω) ≤ 1 for all ζ > 0.

The left-hand side is equal to 1 for ζ = 0, which is the maximum value of the left-hand side
for ζ ≥ 0, meaning that the condition (4.21) is satisfied. On the other hand, if ω < 0, then the
formulas for a1(ω), a2(ω) and G(ω) in table 5 for the Gaussian distribution imply that the

condition (equation 4.21) can be rewritten as

erfc ζ + ω
2

exp (ζ + ω) 2
π

≤ 1 for all ζ > 0,

where the left-hand side is equal to 1 at point ζ = −ω and this is the maximum value of the
left-hand side for ζ ≥ 0, meaning that the condition (4.21) is again satisfied.

Using different formulas of a1(ω) and a2(ω) for ω ≥ 0 and ω < 0 improves the acceptance
probability (4.23) of Algorithm [S1]–[S4], which can be further improved if we use tabulated
functions, see [9] for further discussion. The initial velocity of the introduced solvent particle is
sampled according to the truncated Gaussian distribution (4.24) using an acceptance–rejection
method presented in the literature [63].

Using our parameter values (4.27), equations (1.3) and (1.5) give

(4.28)μ = 104, λμ ≈ 14.96, σμ ≈ 100.

In particular, the volume of the co-moving frame available to solvent particles is L3 − (4/3)πR3

and it contains around λμ(L3 − (4/3)πR3) ≈ 895 solvent particles on average. The positions of
solvent particles in the co-moving frame at time t = 10 are visualized in figure 2a as blue dots.

Figure 2a illustrates a relatively short simulation for time t ∈ [0,10]. Next, we increase
the simulated time interval to t ∈ 0, 2×103  using the same values of parameters (4.27) and

implementing Algorithm [A1]–[A6] over 2×108 simulated time-steps. We use uniform flow:

Table 5. Functions G and K defined by equation (4.14) and parameters a1(ω) and a2(ω) satisfying the inequality (4.21) for

some marginal density functions F  introduced in table 1.

Gaussian distribution Laplace distribution

F (q) 1
2π

exp − q2

2
1

2 2
exp − |q|

2

G(q) 1
2 erfc q

2
2F (q) sign(q) + H( − q) =

1
2 exp − |q|

2
, for q ≥ 0;

1 − 1
2 exp − |q|

2
, for q < 0.

K(q) F (q) − qG(q) 2F (q) + |q| − q
2a1(ω) G(ω)

F (ω)
,  for ω ≥ 0;

π
2

,  for ω ≤ 0.

2

a2(ω) 1
G(ω)

,  for ω ≥ 0;

2 exp ω 2
π

,  for ω ≤ 0.

2 exp ω
2
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(4.29)u = (u1, 0, 0)T, where u1 ∈ −1, − 3
4 , − 1

2 , − 1
4 , 0, 1

4 , 1
2 , 3

4 , 1 ,

presenting the results of these nine long-time simulations in figure 2b. In each simulation, we
average the first component of the velocity of the solute particle, ⟨V1⟩, at every two time steps,
so that we average over 108 individual data points to calculate ⟨V1⟩. We plot this quantity in
figure 2b as a function of u1, confirming the theoretical result ⟨V1⟩ = u1.

Our calculated results for the Laplace distribution are also presented in figure 2b, where we
use the same parameter values (4.27)–(4.28) and the same nine underlying homogeneous flows
(4.29) as in the Gaussian case. Using the formulas for F , G, K, a1(ω) and a2(ω) in table 5 for the

Laplace distribution and equation (4.23), we conclude that the Algorithm [S1]–[S4] finishes in
one iteration of Steps [S2]–[S4] with probability

a2(ω)K(ω)a1(ω) =
1 ,  for  ω ≥ 0;

exp 2ω + 2 |ω| exp ω
2

,  for  ω ≤ 0.

In particular, if ω ≥ 0, then the distribution (4.19) is an exponential distribution and our choices
of a1(ω) and a2(ω) listed in table 5 ensure that every exponentially distributed random number
calculated in Step [S3] is accepted in Step [S4], so that the algorithm in table 4 finishes in one
iteration of Steps [S2]–[S4]. Initial velocities of the introduced solvent particles are sampled
according to the truncated Laplace distribution (4.24). To do this, we can sample a random
number according to the Laplace distribution and accept it, if it is inside the desired range of
values. Such an acceptance–rejection algorithm will have its acceptance probability greater than
1/2, provided that the truncated Laplace distribution (4.24) includes both positive and negative
values. If not, then the truncated Laplace distribution becomes an exponential distribution and
we do not need to use an acceptance–rejection algorithm.

Figure 3b shows the estimated values of coefficients χ1(θ) and χ2(θ) for both Laplace (θ = 1)
and Gaussian (θ = 2) distributions. To estimate χ2(θ), we calculate the average:

(4.30)χ2(θ) ≈ 1
2Dγ2

(Vi(t + Δt) − Vi(t))2

Δt 1/2

during the same long-time simulations of the Algorithm [A1]–[A6], which we have used for
figure 2. To estimate χ1(θ), we plot ⟨Vi(t + Δt) − Vi(t)⟩/Δt as a function of Vi − ui in figure 3a for
the simulation with u1 = 1. Using the best linear fit for each coordinate i = 1,2,3, we obtain three

z
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Figure 2. (a) The initial trajectory of the large particle for u = (1,0,0)T in the time interval t ∈ [0,10] is visualized as the
red line together with the snapshot of positions of solvent particles at time t = 10 (blue dots). (b) The first coordinate of the
average velocity of the large particle, ⟨V1⟩, plotted as a function of the first coordinate of the fluid flow, u1.
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values of slopes; the resulting estimates of −χ1(θ) are shown in figure 3b. All simulation results

fall within the O(σμ−1) error predicted by the theory.

5. Discussion
We have derived a Langevin-type macroscopic description of a solute particle immersed in
a heat bath of light point particles which are subject to a stationary flow. A range of flows
and velocity distributions have been considered in §3 and efficient methods for simulating the
microscopic system in a co-moving frame have been designed in §4. Our results extend the
theory for Brownian motion of a heavy particle to the case where the light heat bath particles
follow a prescribed flow. We highlight some key points from our theoretical findings.

The result in Theorem 3.1 provides a general approach for determining the drift and
diffusion terms of the Langevin dynamics (3.1)–(3.2) governing the motion of the heavy
particle. Many distribution functions (including generalized Gaussian distributions) obey the
symmetry property manifesting as the asymptotic scaling (3.15). For heat bath particles obeying
such velocity distributions, the approach taken in Theorem 3.2 allows us to simplify the
expressions in Theorem 3.1 greatly, resulting in explicit formulas for the drift and diffusion
coefficients in the generalized Ornstein–Uhlenbeck process (3.2). The influence of the particular
velocity distribution chosen for the heat bath particles manifests through factors which scale
the drift and diffusion terms. When the heat bath particle velocities obey a Gaussian distribu-
tion (Maxwell–Boltzmann statistics) these scale factors reduce to unity, simplifying to scales
common in the literature. When the heat bath particle velocity distribution has a heavy tail, we
find that the scale factors are greater than unity (so, faster heat bath particles are more common
than in the Gaussian case), while when the heat bath particle velocity distribution is thin-tailed
the scale factors are less than unity (hence, slower heat bath particles are more common than in
the Gaussian case). These theoretical findings are verified in our numerical simulations in §4.

In addition to the velocity distribution-dependent scale factors discussed above, the drift
term in the obtained generalized Ornstein–Uhlenbeck process also depends upon the flow. Prior
literature (see, for instance, [33–38]) has generally assumed that the drift term α scales likeα ∼ −(V − u(X)), with a formal derivation for certain linear shear flows appearing more recently
in Dobson et al. [39]. This approximation is reasonable for heavy particles of negligible size or
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Figure 3. (a) Estimation of the coefficient χ1(1) defined in equation (3.25) for the simulation of the large particle in flowu = (1,0,0)T. We plot ⟨Vi(t + Δt) − Vi(t)⟩/Δt as a function of Vi − ui, for each coordinate i = 1,2,3, and use the best
linear fit to estimate the slope, −χ1(1), shown in the second panel. (b) Coefficients χ1(θ) and χ2(θ) estimated using
equation (4.30) from the simulation of the Algorithms [A1]–[A6] for θ = 1 (Laplace distribution) and θ = 2 (Gaussian
distribution) as functions of flow velocity u1.
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for linear flows. However, for heavy particles of finite size in nonlinear flows, this scaling is
not complete, and we show via Theorem 3.2 that there are finite-size effects when the heavy
particle is large enough to interact with the geometry of the flow. Therefore, the appropriate
leading-order scaling for the drift term is α ∼ −(V − u(X) −AR) where the correction term AR
is defined by equation (3.18) and depends upon both the flow geometry and the size R of
the heavy particle. If the underlying flow of heat bath particles is smooth enough over the
problem domain Ω, Theorem 3.5 implies AR = O(R2) in the particle size R. Therefore, when

O(R2) contributions are larger than O(σμ−1) contributions, it is necessary to include the finite-size

correction to the drift term.
There are a number of ways our work might be extended. Regarding the heavy particle,

we have assumed a perfect sphere and neglected rotation or angular momentum. Including
angular in addition to linear momentum would greatly complicate the governing equations,
yet would permit a more realistic view of how a finite-size heavy particle moves within a
flow. Inclusion of solid-body motions would also allow for the consideration of non-spherical
particles. Furthermore, we have considered one heavy particle immersed within a heat bath of
many light particles, and the extension to two or some finite number of heavy particles would
be another possible generalization. Collisions with the heat bath particles bias the motion of
heavy particles toward the imposed flow, and hence the motion of heavy particles is expected to
be along the mean flow yet may differ from this mean flow greatly after interacting with other
heavy particles either directly by collisions [64] or indirectly by hydrodynamic interactions
through the solvent [65,66]. The co-moving frame algorithm could also be reformulated as
an event-based algorithm, where one would replace the time step Δt by the time between
collisions, which could be obtained by using equation (2.4) to calculate the potential collision
time for each heat bath particle and taking the minimum of them as the next collision time.
Depending on u, the next collision time could be calculated exactly or approximately, and in
some cases, this could lead to further computational savings. Additional future computational
work would include interactions between the light solvent particles and estimating properties
of statistical distributions from the underlying molecular dynamics simulations of the flow
[53,54].
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