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Directional switching in a self-propelled particle model with delayed interactions is investigated. It is
shown that the average switching time is an increasing function of time delay. The presented results
are applied to studying collective animal behaviour. It is argued that self-propelled particle models
with time delays can explain the state-dependent diffusion coefficient measured in experiments with
locust groups. The theory is further generalized to heterogeneous groups where each individual can
respond to its environment with a different time delay.
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Collective animal behaviour is often modelled by
individual-based (agent-based) models which assume
that each individual alters its behaviour according to sig-
nals in its neighbourhood [1–8]. Examples include for-
aging ant colonies [9], swarming locusts [10], schooling
fish [11] and flocking birds [12]. Basic self-driven particle
models can successfully explain some experimentally ob-
served group-level properties, but additional conjectures
have to be hypothesized at the individual-level to fully
explain experimental data [13, 14]. In this Letter, we
show that interactional time delays, which are present
but often neglected in models of collective animal be-
haviour, can also explain these experimental group-level
observations without making further ad hoc conjectures
about the behaviour of individuals.
Animal groups often make sudden changes in their di-

rection of movement. In some cases a switch in group
direction is a response to an external influence, such
as the presence of a predator, but experiments with lo-
custs [10] and prawns [13] have shown that directional
switching can occur without an abrupt change in the ex-
ternal environment. In these experiments, the animal
motion is constrained to movement in a ring-shaped do-
main. A group then has two possible modes of coher-
ent motion, clockwise and counterclockwise rotation, and
switching between these two modes of behaviour can be
described as noise-induced transitions in a bistable po-
tential [14, 15]. Group-level behaviour is then described
in terms of the Langevin equation for the average velocity
U of the group:

dU = F (U) dt+
√

2D(U) dW, (1)

where F (U) and D(U) are drift and diffusion coefficients,
respectively, and dW is white noise. Classical self-driven
particle models predict that D(U) is a constant indepen-
dent of U [10], i.e. D(U) ≡ const. However, detailed
analysis of experimental data reveals that group-level
fluctuations increase if the system is in the disorded state
with no preferred direction of movement (i.e. D(U) has a
local maximum around U ∼ 0) [14]. This observation has

been previously captured in generalized self-driven parti-
cle models which postulate that each individual responds
to loss of its alignment by increasing its own fluctuations
[14, 15], i.e. each individual also has as a state-dependent
diffusion coefficient. In this Letter, we show that models
with time delays does not need to make this conjecture
and can also explain the observed behaviour of D(U).

Time delayed models take into account that the in-
teractions between moving individuals are not necessar-
ily instantaneous because of information-processing times
[16, 17]. We consider several ways to incorporate time de-
lays into self-driven particle models of collective animal
behaviour. We start with the simplest model which uses
the same time delay for all individuals. Later, we also
study a generalized model in which we assume that the
individuals might respond to low local group alignment
by increasing the information processing time. Finally,
we investigate the influence of random delays on the
switching of direction of movement. All considered sce-
narios are compatible with available experimental data.
Moreover, we find that the mean switching time for a
group with constant delays is shorter than that of a group
with normally distributed delays and longer than that of
a group with exponentially distributed delays.

A simple time delay model of experiments in ring-
shaped domains [10, 13] can be formulated as follows. We
consider a group of N individuals moving along a one-
dimensional circle, which we identify with the interval
Ω = [0, 1) with periodic boundary conditions. Each indi-
vidual is described by its position, Xi ≡ Xi(t) ∈ Ω, and
velocity, Vi ≡ Vi(t), i = 1, 2, . . . , N . The ring-shaped do-
main has a sufficient width that individuals can pass each
other, i.e. one-dimensional modelling implicitly assumes
that individuals can cross through each other [10, 14].
Each individual adjusts its behavior according to the be-
havior of its neighbours, which can be found less than a
distance R (the interaction radius) from it. The set of
neighbours of the i-th individual at time t is defined as
Ji,R(t) = {j ∈ {1, 2, . . . , N} | min(dij(t), 1−dij(t)) ≤ R},
where dij = |Xi(t) − Xj(t)|. The time evolution of Xi
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and Vi is then given by the following equations:

dXi = Vi(t) dt, (2)

dVi =
[

sign (Ui,R(t− τ))− Vi(t)
]

dt+ η dWi, (3)

where τ ≥ 0 is the time delay of signal transmission be-
tween individuals, η > 0 is a parameter, dWi are stan-
dard white noise terms (independently sampled for each
individual), sign : R → {−1, 0, 1} is the signum function
and

Ui,R(t) ≡
1

|Ji,R(t)|

∑

j∈Ji,R(t)

Vj(t) (4)

is the average of the velocities of individuals which are
within the R-neighbourhood of the i-th individual at time
t. The average velocity of the whole group, U(t), which
appeared in Eq. (1) can be obtained using (4) provided
that R is large enough, i.e. U(t) = Ui,R(t) for R larger
than 0.5 and arbitrary i and t.
Model (2)–(3) is equivalent to the standard self-

propelled particle model of Vicsek [1, 10, 14] for τ = 0,
i.e. for the case when interactions between individuals
are assumed to occur instantaneously. If τ > 0, then the
model takes into account that individuals can only receive
and process its neighbour’s information after a time de-
lay. Illustrative results computed by model (2)–(3) are
presented in Fig. 1(a). We plot the average velocity of
the group, U(t), as a function of time for N = 30 in-
dividuals. The initial positions of individuals are taken
uniformly from the interval [0, 1], and the initial veloc-
ities are normally distributed numbers with zero mean
and unit variance. The presented time series uses differ-
ent values of time delay τ in different time intervals. We
initially report results of the delay-free model (τ = 0) for
t ∈ [0, 103). Then we take τ = 0.5 for t ∈ [103, 2 × 103)
and τ = 1 for t ≥ 2 × 103. We can clearly see switching
between two states corresponding to clockwise (U ∼ −1)
and counterclockwise (U ∼ 1) movement of the group.
We also conclude that the switching time between dif-
ferent directions of motion increases with increased time
delay.
The mean switching time estimated from long time

stochastic simulations is plotted in Fig. 1(b) as a function
of group size N . As the group size increases the mean
switching time is significantly increased. We again com-
pare results computed for the non-delay model (τ = 0)
with results computed for the models with delays (τ =
0.5 and τ = 1). The mean switching time is an increas-
ing function of τ for all values of N . This is further
illustrated in Fig. 1(c) where we present simulations of
model (2)–(3) for different transmission delay times τ for
N = 20.
To get some insights into the mechanism behind the

generation of ordered motion of the self-propelled parti-
cle model, we investigate model (2)–(3) where the inter-
action radius is so large that all individuals interact with
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FIG. 1: (color online). (a) Average velocity U(t) calculated
by the model (2)–(3) with N = 30, R = 0.15, η = 2. We use
τ = 0 for times t ∈ [0, 103), τ = 0.5 for times t ∈ [103, 2×103),
and τ = 1 for times t ≥ 2× 103.
(b) Mean switching time as a function of the size of group
N for τ = 0 (blue circles), τ = 0.5 (red squares) and τ = 1
(green triangles). Note the log scale on the y-axis.
(c) Mean switching time as a function of the time delay for
model (2)–(3) (blue circles) and generalized model (10)–(11)
(red squares). Parameter values used are N = 20, R = 0.15,
η = 2. Note the log scale on the y-axis.
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each other. The local velocity average Ui,R(t) in equation
(3) is then equal to the global velocity average U(t) and
Eq. (3) reduces to

dVi =
[

sign (U(t− τ))− Vi(t)
]

dt+ η dWi, (5)

which can be further analysed. Adding Eqs. (5) for
i = 1, 2, . . . , N , and dividing by N , we obtain delayed
stochastic differential equation for U(t)

dU =
[

sign (U(t− τ))− U(t)
]

dt+ η N−1/2 dW. (6)

Let P (u, t) denote the probability density of the stochas-
tic process defined by Eq. (6), i.e. P (u, t)du is the prob-
ability that U(t) ∈ [u, u + du). It satisfies the delay
Fokker-Planck equation [18, 19], as discussed in Supple-
mental Material (SM). Using the small delay approxima-
tion method [18, 19], the first order approximation to sta-
tionary probability distribution Pst(u) = limt→∞ P (u, t)
is given by

Pst(u) ≈ C exp[−φ(u)], (7)

where C is a normalization constant and the potential
φ(u) is given by

φ(u) = −
2N

η2

[

∫ u

erf

{
√

N

2η2τ
[(1− τ)ν + τsign(ν)]

}

dν

−
u2

2

]

. (8)

Here, the error function is defined by erf(x) =
2√
π

∫ x

0
exp(−z2)dz. The stationary distribution approx-

imation given by (7) has two global maxima at u = ±1
as shown in Fig. 2. One can clearly distinguish the quasi-
stationary states when the transmission delays are large,
which is consistent with the simulation results shown in
Fig. 1(a).
The above analysis is only valid for large values of R.

In the case of the original local interaction model (2)–
(3), we will follow the computational approach in [20] to
estimate the drift and diffusion coefficients in equation
(1) numerically. This approach was previously applied
to experimentally measured time series for locust groups
[14]. The approximation of the diffusion coefficient D(u)
is given by

D(u) ≈
1

2

〈

[U(t+ δt)− U(t)]2

δt

〉∣

∣

∣

∣

U(t)=u

, (9)

where 〈·〉 denotes an average over many realizations and
δt is an effective time scale on which the one-dimensional
approximation (1) holds. The estimated diffusion coef-
ficient for the model (2)–(3) with instantaneous interac-
tion (i.e., τ = 0) is approximately constant (see Fig. 1A
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FIG. 2: (color online). The approximation of stationary dis-
tribution given by (7) for parameters N = 20, η = 2 and τ = 1
(dash-dot line), τ = 2 (dotted line), τ = 3 (solid line).
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FIG. 3: (color online). Estimation of the diffusion coeffi-
cient of the local interaction model (2)–(3) with N = 30, R =
0.15, η = 2 and τ = 1. The diffusion coefficient is estimated
by using (9) with δt = 0.1.

in [14]). Running long time simulations of delayed model
(2)–(3) and using δt = 0.1 in (9), we present the esti-
mated effective diffusion coefficient in Fig. 3 for τ = 1.
Restricting the values of U to [−1, 1], the diffusion coeffi-
cient in Fig. 3 has approximately quadratic shape which
qualitatively compares well with the analysis of locust ex-
perimental data (see Fig. 2A in [14]). In order to mimic
the quadratic shape of the diffusion coefficient, Yates et.al
[14] hypothesized a nontrivial diffusion term for the de-
scription of individuals. However, we see from Fig. 3
that the estimated diffusion coefficient of the delayed in-
teraction model (2)–(3) can also explain the experimental
observations. Moreover, the diffusion coefficient of model
(2)–(3) has a local maximum near U = 0, and it has min-
imal values near U = ±1. Consequently, noise regains
its strength as the system leaves U = ±1 which helps
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the system to return into one of the favourable states
U = ±1. The estimated drift coefficient, effective po-
tential, and the stationary probability for model (2)–(3)
are presented in SM (see Figs. S1 and S2) together with
the computational analysis which justifies the validity of
the one-dimensional group-level description given by Eq.
(1).
Model (2)-(3) assumes that all interactions occur with

the same time delay. However, actual delays in real sys-
tems may not necessarily be the same for all individuals
in the system. Delays might also be state dependent
because disordered states (confusion) might increase the
length of the information transmission delay. To take
these effects into account, we generalize model (2)-(3) by
replacing Eq. (3) with

dVi =
[

sign (Ui,R(t− τi))− Vi(t)
]

dt+ η dWi, (10)

i.e. each individual has its own time delay τi, i =
1, 2, . . . , N. First, we assume that τi ≡ τi(t) depends on
time t as follows:

τi(t) = τ{1 + [ max
j∈Ji,R

(|Vj(t)|)− |Ui,R(t)|]}, (11)

where τ is a constant corresponding to the informa-
tion transmission delay in high local group alignment,
maxj∈Ji,R

(|Vj(t)|) is the maximum absolute value of the
velocity of the neighbours of individual i at time t. Equa-
tion (11) means that the information transmission delay
will increase when the local group alignment is low. This
assumption on the delay is satisfied in real traffic flow.
For instance, it will need longer time for a driver to rec-
ognize signals and make responses in traffic jams than in
good traffic conditions [21].
The mean switching time of the original model (2)–(3)

and the generalized model (10)–(11) as a function of the
scale of time delay τ for a specific case of the group size
(N = 20) is shown in Fig. 1(c). The mean switching time
is significantly increased for all values of τ in comparison
with the original model which demonstrates that moving
individuals can keep a high aligned state by increasing
their response time when the group looses its coherence.
The mean switching time as a function of N and the
estimated diffusion and drift coefficients are plotted in
SM (see Figs. S3 and S4).
In our final example, we consider that time delays τi

in (10) are constant in time, but different for each in-
dividual. The time delays τi > 0 are chosen according
to distribution f ≡ f(τ ′) : [0,∞) → [0,∞) with mean
delay τ > 0. We consider random delays τi given by
the following two different distributions: (i) exponential
distribution, i.e. τi = ζ(τ), where ζ is exponentially dis-
tributed with mean τ ; (ii) (truncated) normal distribu-
tion: τi = τ + cξ, where ξ is normally distributed with
zero mean and standard deviation one. The delays are
constant (τi = τ) for c = 0 and are normally distributed
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FIG. 4: (color online). The mean switching time for delays
that are normally distributed with c = 1 (red triangles), nor-
mally distributed with c = 2 (magenta squares) and exponen-
tially distributed (green stars) as a function of the scale of the
mean time delay. The corresponding results computed with
constant delays are plotted as blue circles. The other parame-
ters are N = 100, R = 0.15 and η = 4. Note the log scale on
the y-axis.

around τ for c 6= 0 (depending on τ and c the distri-
bution has to be truncated to avoid negative delays and
the truncated distribution shifted to keep its mean value
equal to τ [22]).
We compare the mean switching time for distributed

delays with the original model (constant delay) in Fig.
4. We again see increased coherence as the average time
delay τ increases. It can be observed that the average
switching time for standard normally distributed delays
is longer than that for constant delays. However, the
average switching time for exponentially distributed de-
lays is shorter than that for constant delays. The mean
switching time for normally distributed delays with c = 2
is significantly increased for all values of τ in comparison
with the mean switching time for normally distributed
delays with c = 1, which implies that, for normally dis-
tributed delays, the average switching time increases as
the randomness of the delay increases.
To summarize, we have studied the directional switch-

ing of a self-driven particle model with constant, time-
varying and random delay times, respectively. The pre-
sented analytical and numerical results have demon-
strated that time delays can significantly influence the
group-level dynamics. A rapid transition occurs from
disordered movement of individuals within the group to
highly aligned collective motion as the density of group
or the time delays increase. Moreover, we have re-
ported that the heterogeneity of the group (distribution
of time delays) can further facilitate coherence in collec-
tive swarm motion.
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Herbert-Read, D. J. T. Sumper, and A. J. W. Ward,
PLOS Computa. Biol. 9, e1002961 (2013).

[14] C. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I.
Kevrekidis, P. Maini, and D. Sumpter, Proc. Natl. Acad.
Sci. U.S.A. 106, 5464 (2009).

[15] R. Erban and J. Haskovec, Kinetic and Related Models
5, 817 (2012).

[16] C. Masoller and A. C. Mart́ı, Phys. Rev. Lett. 94, 134102
(2005).

[17] L. Mier-y-Teran-Romero, E. Forgoston, and I. B.
Schwartz, IEEE Trans. on Robotics 28, 1034 (2012).

[18] T. D. Frank, Phys. Rev. E 72, 011112 (2005).
[19] See Supplemental Material for the Fokker-Planck equa-

tion and for the derivation of the result given in Eq. (8).
[20] R. Erban, I. G. Kevrekidis, D. Adalsteinsson, and T. C.

Elston, J. Chem. Phys. 124, 084106 (2006).
[21] R. Sipahi and S.-I. Niculescu, in Deterministic Time-

Delayed Traffic Flow Models: A Survey (Springer-Verlag,
Berlin, 2010).

[22] C. P. Robert, Statistics and Computing, 5, 121 (1995).


